JP2004053570A - Inspection method of microorganism - Google Patents

Inspection method of microorganism Download PDF

Info

Publication number
JP2004053570A
JP2004053570A JP2002241193A JP2002241193A JP2004053570A JP 2004053570 A JP2004053570 A JP 2004053570A JP 2002241193 A JP2002241193 A JP 2002241193A JP 2002241193 A JP2002241193 A JP 2002241193A JP 2004053570 A JP2004053570 A JP 2004053570A
Authority
JP
Japan
Prior art keywords
medium
microorganism
fluorescence
microorganisms
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002241193A
Other languages
Japanese (ja)
Inventor
Tomohiro Samori
佐守 友博
Yoichi Hashiguchi
橋口 陽一
Kazuaki Koitabashi
小板橋 和昭
Yumi Fujiwara
藤原 由美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN INST OF FOODS ECOLOGY IN
JAPAN INSTITUTE OF FOODS ECOLOGY Inc
Japan Clinical Laboratories Inc
Original Assignee
JAPAN INST OF FOODS ECOLOGY IN
JAPAN INSTITUTE OF FOODS ECOLOGY Inc
Japan Clinical Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN INST OF FOODS ECOLOGY IN, JAPAN INSTITUTE OF FOODS ECOLOGY Inc, Japan Clinical Laboratories Inc filed Critical JAPAN INST OF FOODS ECOLOGY IN
Priority to JP2002241193A priority Critical patent/JP2004053570A/en
Publication of JP2004053570A publication Critical patent/JP2004053570A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quick and simple inspection method of microorganism. <P>SOLUTION: After inoculating a test piece on a medium supplemented with fluorescein substrate or luminescent substrate, the method performs inspection by measuring signals generated over time and comparing the signals. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明は食品、臨床検査等における微生物の検査に用いられる。
【0002】
【従来の技術】食品や臨床検査試料中の微生物、とりわけ細菌類の検出には適当な培地中で微生物を培養し、形態学的及び生化学的な特性を基に分離・同定を行っている。培地においても液体培地、あるいは寒天培地等その目的に応じて種々の形態のものが用意されている。培地中に発色性基質や蛍光性基質を加えて、微生物の生化学的特性により発色、あるいは蛍光を検出することにより微生物を検出、同定する方法が開発されている。
しかしながら、これらの培地による検査では、試料を培地に接触させ、通常、1日〜数日間の培養を行った後、発色の度合い、蛍光強度等を観察することにより検査をおこなっているため、検査時間が長くなるという欠点がある。また、その操作は、食品を培地に添加して振とう培養した後、培養液を遠心分離又はフィルター処理し、これに蛍光基質を加えて反応させ、微生物が産生する酵素により蛍光基質から蛍光物質を遊離させ、反応液にアルカリを添加した後、再度遠心分離又はフィルター処理を行い、上澄液の蛍光を測定するというものである。しかしながら、この方法においては、遠心分離又はフィルター処理操作を行うなど操作が煩雑であるという問題があった。
このような欠点を改善する目的で、特開平5−336993では、プレートのA、B、Cの三ヶ所に培地と蛍光基質を入れ、Aは試料を培養後、アルカリ液で培養を停止して蛍光強度を測定、BとCには試料を培養する前にアルカリ液を入れてブランクとし、Bは蛍光物質そのものを入れて陽性コントロールとし、Cは何もいれずに陰性コントロールとして、Aの蛍光強度をB及びCの蛍光強度と比較することによって微生物を検出する方法が開示されている。この方法では、蛍光測定して、微生物を検出する際には、培養を停止しなければならず、ある一定時間後に検出する、従来の方法と大きな違いはない。
【0003】
一方、微生物の培地中での増殖を経時的に検出する方法として、液体培地中での、微生物の増殖を濁度の変化として捉え、波長660nmでの吸光度変化を指標とする方法がある。しかし、この方法は、その都度、培養液の一部を採取して計測しなければならなく、またその測定感度も低いため、もっぱら、大量培養時のモニターに利用されており、微生物の検査方法としては不向きである。寒天平板培地での検査では、そのような光学機器を用いた測定ができないため、発生してくるコロニーを肉眼で観察し、コロニー数及びその大きさ等を指標に検査を行っている。この平板培養では、コロニーが形成されるまでは検出できないため、検査に時間がかかるといった欠点がある。
【0004】
【発明が解決しようとする課題】本発明の課題は微生物の検査において、迅速かつ高感度な検査方法を提供することである。
【0005】
【課題を解決する手段】本発明者ら発色性或いは蛍光性基質を添加した微生物の検査用培地で微生物を検査する時に、経時的に発生してくる信号を微生物の培養を停止させることなく検出し、その信号強度の比較を行うことにより、従来の方法よりも短時間にかつ簡便に微生物の検査を行えることを見出し発明を完成させた。
本発明は、以下の構成からなる。
1、微生物又はその分泌物の作用により生成する物質を検出することによる微生物の検出方法において、被検試料と信号を生成しうる物質とを接触させた後、生じる信号を経時的に少なくとも2回検出する工程を含み、検出された信号を経時的に比較することを特徴とする微生物の検査方法。
2、発色物質及び/又は蛍光物質を生成しうる基質を培地中に含ませて生じる発色強度及び/又は蛍光強度を検出する上記1記載の検査方法。
3、上記1又は2に記載の方法に用いる装置。
【0006】
【本発明の実施態様】本発明をさらに詳細に説明するため、実施態様を例示して説明する。
(培地)微生物の増殖させうる培地であればその組成、形態は特に限定されることはなく、一般に市販されている培地を用いることができる。培地としては、検出しようとする微生物が生育できる培地であれば特に制限されないが、大腸菌群やE.coliを対象とする場合は、特開平4−51890号公報記載の大腸菌群増殖用培地、後記のKS培地、ブレインハートインフュージョン培地、ハートインフュージョン培地、トリプトソーヤ培地、乾燥ブイヨン培地、ブリリアントグリーン乳糖ブイヨン培地(BGLBと略す)、乳糖ブイヨン培地(LBと略す)、EC培地(ECと略す)等が挙げられるが、KS培地が特に好ましい。
【0007】
(基質)上記の培地中に微生物自体又はその分泌物により発蛍光や発色しうる培地を添加して用いる。例えばβ−D−グルクロニダーゼの基質として、4−メチルウンベリフェリル−β−D−グルクロニド(MUGLR、蛍光測定)、フェノールフタレイン−モノ−β−D−グルクロニド(PHEGLR、発色測定)、パラニトロフェニル−β−D−グルクロニド(PNPGLR、発色測定)、5−ブロモ−4−クロロ−3−インドリル−β−D−グルクロニド(XGLR、発色測定)、β−D−ガラクトシダーゼの基質として4−メチルウンベリフェリル−β−D−ガラクトピラノシド(MUGAL蛍光測定)、5−ブロモ−4−クロロ−3−インドリル−β−D−ガラクトピラノシド(X−Gal、発色測定)、オルトニトロフェニル−β−D−ガラクトピラノシド(ONPGal、発色測定)、パラニトロフェニル−β−D−ガラクトピラノシド(PNPGal、発色測定)、6−ブロモ−2−ナフチル−β−D−ガラクトピラノシド(BNGal)、6−ホスホ−β−D−ガラクトシド6−ホスホガラクトヒドラーゼの基質であるオルトニトロフェニル−β−D−ガラクトピラノシド−6−リン酸(ONPGP、発色測定)、α−D−ガラクトシダーゼの基質として、4−メチルウンベリフェリル−α−D−ガラクトピラノシド(蛍光測定)、β−D−グルコシダーゼの基質として4−メチルウンベリフェリル−α−D−グルコシド(蛍光測定)、α−アミラーゼとα−ブルコシダーゼの両方を検出する基質として、オリゴマルトース(ペンタマー、ヘキサマー、ヘプタマー等)のパラニトロフェイル誘導体(発色測定)、ノイラミニダーゼの基質として、4−メチルウンベリフェリル−N−アセチル−β−D−グルコサミニド(MUNAG、蛍光測定)、エステラーゼの基質として、種々の脂肪酸の4−メチルウンベリフェリルエステル(蛍光測定)、フルオレセインジアセテート(FDA、蛍光測定)、6−カルボキシフルオレセインジアセテート(CFDA、蛍光測定)、ホスフアターゼの基質としてはフェノールフタレイン、α−又はβ−ナフトール、パラニトロフェノール等のリン酸エステル(発色測定)や4−メチルウンベリフェリルリン酸(蛍光測定)、ペプチダーゼの基質としては、パラニトロアニリンのアミノ酸又はオリゴペプチド誘導体(発色測定)、7−アミノ−4メチルクマリンのアミノ酸又はオリゴペプチド誘導体(蛍光測定)等が利用される。さらに、DNAと結合することにより蛍光を発する色素、例えば4,6−ジアミノ−2−フェニルインドール、臭化エチジウム、アクリジンオレンジ、8−アニリノ−1−ナフタレンスルホン酸、ヘキスト色素33258等も用いられる。培地の形態は液体培地或いは寒天平板培地等適当な形態が選択される。用いられる基質の量は、検体中の微生物量よりも過剰であれば特に制限されず、例えば培地に対し1×10−2〜1×10−4Mが好ましい。
【0008】
(経時的信号検出)検査試料を上記の培地に接触させ、培地中で微生物の増殖を行う。
その時に例えば4−メチルウンベリフェリル−β−D−グルクロニドを含む培地で、培養した場合には、遊離してくる4−メチルウンベリフェロンを蛍光測定により検出する。
寒天平板培地を採用資した場合には、平板の上部又は底面に励起光を照射し、発生する蛍光強度を測定する。このような平板の場合には、上部から励起光を照射するならば、発生してくる上部蛍光をハーフミラーを用いた蛍光測定法で測定する方法が採用される。この方法は、通常トップトゥトップ法として良く知られた方法である。
さらに、市販の落射型の蛍光顕微鏡を用いても検出可能である。また、発色測定であれば、反射光測定により平板上の発色を測定することができる。
さらに、これら光の検出には、通常の写真カメラ、或いは光電管やCCDカメラにより検出し、変換された電気信号はそれぞれ適当な信号処理がなされて、データとして出力することも可能である。上記の概念図を図1に示した。
【0009】
(信号の処理)検査試料を培地に接触させた後の、適当な時点で発生してくる信号(発色或いは蛍光等)を測定し、その後一定時間経過した後に信号を測定する。その信号の強度を、前に測定した信号の強度と比較して、微生物の増殖を判定する。また微生物の種に特異的に分解されうる基質を培地中に添加しておくことにより、微生物の分類も可能になる。
【0010】
(検査対象試料)本発明方法に用いられる検体としては、食品、医薬、農薬、化粧品、飲料水、尿等微生物混入の有無を検出する必要のあるものが用いられるが、肉類、魚介類、野菜類、果物類等の生鮮食料品を用いるのが好ましい。
【0011】
(微生物)本発明方法の検出対象である微生物としては、種々の細菌、真菌等が挙げられるが、食品を検体とした場合には大腸菌群が重要である。ここで大腸菌群とは、ラクトース分解酵素を産生する能力を有する一群の微生物で、エシェリシア属、サイトロバクター属、クレブシエラ属、エンテロバクター属等に属するものである。
【0012】
【実施例】以下、本発明を更に詳しく説明するため実施例を挙げる。
【実施例1】(培地の調製)以下の組成の培地を調製した。
ペプトン 5g/L
食塩 5g/L
リン酸1ナトリウム  2.2g/L
リン酸2ナトリウム  2.7g/L
ピルビン酸ナトリウム 1.0g/L
トリプトファン    1.0g/L
寒天        10.0g/L
ソルビトール     1.0g/L
4−MUグルクロニド 0.05g/L
X−グルクロニド   0.2g/L
上記の組成の培地を121℃で15分間オートクレーブ滅菌し、24穴のプレートウエルに1mLずつ分注し、寒天平板培地として用いた。
【0013】
【実施例2】(微生物の検出)大腸菌を含む試料検体を実施例1で調製した寒天平板培地に接種し、37℃で培養した。試料を接種した寒天平板培地をそのまま市販のデンシトメーターを用いて、励起波長365nm、蛍光波長440nmで経時的に蛍光測定した。同時に反射光測定により波長660nmの反射率を測定した。また同時に肉眼によりコロニーの形成を観察し、それぞれの結果を表1に示した。

Figure 2004053570
以上の結果、肉眼でコロニー形成を観察する方法では24時間経過後でなければ観察されなかったのに対して、経時的に蛍光或いは発色を測定する本発明の方法では3〜6時間の培養で既に信号の変化を捉えることができ、迅速に微生物を検査できることが判った。
【0014】
【実施例3】(蛍光顕微鏡による検出)
実施例2と同様に操作して、寒天平板上に大腸菌を接種し、臭化エチジウム及び6−カルボキフルオレセインジアセテート(CFDA)をそれぞれ寒天平板上に添加して、培養を行った。経時的に蛍光顕微鏡で観察したところ、肉眼ではコロニーが観察されない6時間経過時点で明らかな蛍光信号を観察することができた。エチジウムブロミドでは赤味をおびた蛍光が観察され、一方CFDAでは黄緑色の蛍光が観察された。
その1例の写真を図2に示した。
このように、本発明の方法により、迅速に微生物を検査できることが判った。
【発明の効果】
本発明によれば、微生物の検査を従来よりも格段に迅速かつ簡便に行うことが可能である。
【0015】
【図面の簡単な説明】
【図1】蛍光測定の概念図を示したものである。[0001]
TECHNICAL FIELD The present invention is used for testing microorganisms in foods, clinical tests, and the like.
[0002]
2. Description of the Related Art For detection of microorganisms, particularly bacteria, in foods and clinical test samples, microorganisms are cultured in an appropriate medium and separated and identified based on morphological and biochemical characteristics. . As the medium, various forms such as a liquid medium and an agar medium are prepared according to the purpose. A method for detecting and identifying a microorganism by adding a chromogenic substrate or a fluorescent substrate to a medium and detecting color or fluorescence based on the biochemical characteristics of the microorganism has been developed.
However, in the test using these media, the sample is brought into contact with the medium, and after culturing for one to several days, usually, the test is performed by observing the degree of color development, fluorescence intensity, etc. There is a disadvantage that the time is long. In addition, the operation is to add the food to the culture medium and culture with shaking, then centrifuge or filter the culture solution, add a fluorescent substrate to the reaction, and react with the enzyme. Is released, alkali is added to the reaction solution, and then centrifugation or filter treatment is performed again, and the fluorescence of the supernatant is measured. However, this method has a problem in that the operation is complicated, such as performing centrifugation or filter processing.
For the purpose of remedying such drawbacks, Japanese Patent Application Laid-Open No. 5-336993 discloses that a medium and a fluorescent substrate are put in three places of A, B, and C on a plate, and A is used to culture the sample and then stop the culture with an alkaline solution. Measure the fluorescence intensity. B and C are filled with an alkaline solution before culturing the sample to make a blank, B is the fluorescent material itself as a positive control, C is a negative control without adding anything, and the fluorescence intensity of A is A method for detecting a microorganism by comparing the fluorescence intensity of B and C with that of B is disclosed. In this method, when detecting a microorganism by fluorescence measurement, the culture must be stopped, and there is no significant difference from the conventional method in which detection is performed after a certain period of time.
[0003]
On the other hand, as a method for detecting the growth of microorganisms in a culture medium over time, there is a method in which the growth of microorganisms in a liquid medium is regarded as a change in turbidity, and a change in absorbance at a wavelength of 660 nm is used as an index. However, this method requires that a part of the culture solution be sampled and measured each time, and its measurement sensitivity is low. Not suitable as. In the test using an agar plate medium, since measurement using such an optical instrument cannot be performed, the generated colonies are observed with the naked eye, and the test is performed using the number of colonies, their size, and the like as indices. In this plating, detection cannot be performed until colonies are formed.
[0004]
SUMMARY OF THE INVENTION An object of the present invention is to provide a quick and highly sensitive test method for testing microorganisms.
[0005]
Means for Solving the Problems The present inventors detect a signal generated with the passage of time without stopping culture of microorganisms when testing the microorganisms in a microorganism test medium to which a chromogenic or fluorescent substrate has been added. By comparing the signal intensities, it has been found that the microorganisms can be tested more easily and in a shorter time than the conventional method, and the invention has been completed.
The present invention has the following configurations.
1. In a method for detecting microorganisms by detecting a substance produced by the action of a microorganism or a secretion thereof, after contacting a test sample with a substance capable of producing a signal, a signal produced is produced at least twice over time. A method for testing a microorganism, comprising a step of detecting, and comparing the detected signals with time.
2. The test method according to the above item 1, wherein the color intensity and / or the fluorescence intensity generated by including a substrate capable of producing a color-forming substance and / or a fluorescent substance in a medium are detected.
3. An apparatus used in the method according to the above 1 or 2.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail by way of examples.
(Medium) The composition and morphology of the medium are not particularly limited as long as the medium is capable of growing microorganisms, and a commercially available medium can be used. The medium is not particularly limited as long as the microorganism to be detected can grow. In the case of E. coli, a medium for growing Escherichia coli described in JP-A-4-51890, a KS medium, a brain heart infusion medium, a heart infusion medium, a trypto soy medium, a dried bouillon medium, a brilliant green lactose bouillon described later A culture medium (abbreviated as BGLB), a lactose broth medium (abbreviated as LB), an EC medium (abbreviated as EC) and the like can be mentioned, and a KS medium is particularly preferable.
[0007]
(Substrate) A medium capable of emitting fluorescence or coloring due to the microorganism itself or its secretion is added to the above medium. For example, as a substrate of β-D-glucuronidase, 4-methylumbelliferyl-β-D-glucuronide (MUGLR, fluorescence measurement), phenolphthalein-mono-β-D-glucuronide (PHEGLR, color measurement), paranitrophenyl -Β-D-glucuronide (PNPGLR, color measurement), 5-bromo-4-chloro-3-indolyl-β-D-glucuronide (XGLR, color measurement), 4-methylumbellium as a substrate for β-D-galactosidase Ferryl-β-D-galactopyranoside (MUGAL fluorescence measurement), 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal, color measurement), orthonitrophenyl-β -D-galactopyranoside (ONPGal, color measurement), paranitrophenyl-β-D-galactopyranosi (PNPGal, color measurement), 6-bromo-2-naphthyl-β-D-galactopyranoside (BNGal), orthonitrophenyl-substrate of 6-phospho-β-D-galactoside 6-phosphogalactohydrase β-D-galactopyranoside-6-phosphate (ONPGP, color measurement), 4-methylumbelliferyl-α-D-galactopyranoside (fluorescence measurement) as a substrate of α-D-galactosidase, β 4-methylumbelliferyl-α-D-glucoside (fluorescence measurement) as a substrate for D-glucosidase, and oligomaltose (pentamer, hexamer, heptamer, etc.) as a substrate for detecting both α-amylase and α-bulcosidase. As a substrate for a paranitrophenyl derivative (color measurement) and neuraminidase, 4-methylumbelliferyl-N -Acetyl-β-D-glucosaminide (MUNAG, fluorescence measurement), 4-methylumbelliferyl esters of various fatty acids (fluorescence measurement), fluorescein diacetate (FDA, fluorescence measurement), and 6-carboxyfluorescein as esterase substrates Phosphate esters such as phenolphthalein, α- or β-naphthol, and paranitrophenol (color measurement) and 4-methylumbelliferyl phosphate (fluorescence measurement) are used as substrates for diacetate (CFDA, fluorescence measurement) and phosphatase. As the peptidase substrate, an amino acid or oligopeptide derivative of paranitroaniline (color measurement), an amino acid or oligopeptide derivative of 7-amino-4-methylcoumarin (fluorescence measurement), or the like is used. Further, dyes that emit fluorescence upon binding to DNA, for example, 4,6-diamino-2-phenylindole, ethidium bromide, acridine orange, 8-anilino-1-naphthalenesulfonic acid, Hoechst dye 33258 and the like are also used. As the form of the medium, an appropriate form such as a liquid medium or agar plate medium is selected. The amount of the substrate to be used is not particularly limited as long as it is larger than the amount of microorganisms in the sample, and for example, 1 × 10 −2 to 1 × 10 −4 M is preferable for the medium.
[0008]
(Detection of signal over time) The test sample is brought into contact with the above-mentioned medium, and the microorganism is grown in the medium.
At that time, for example, when cultured in a medium containing 4-methylumbelliferyl-β-D-glucuronide, released 4-methylumbelliferone is detected by fluorescence measurement.
When an agar plate medium is employed, the top or bottom of the plate is irradiated with excitation light and the intensity of the generated fluorescence is measured. In the case of such a flat plate, if the excitation light is irradiated from above, a method of measuring the generated upper fluorescence by a fluorescence measurement method using a half mirror is adopted. This method is commonly known as a top-to-top method.
Furthermore, detection is possible using a commercially available epifluorescence microscope. In the case of color measurement, color development on a flat plate can be measured by reflected light measurement.
In addition, the light can be detected by an ordinary photographic camera or a photoelectric tube or a CCD camera, and the converted electrical signals can be subjected to appropriate signal processing and output as data. The above conceptual diagram is shown in FIG.
[0009]
(Signal processing) A signal (color or fluorescence, etc.) generated at an appropriate time after the test sample is brought into contact with the culture medium is measured, and after a certain period of time, the signal is measured. The strength of the signal is compared to the strength of the signal measured previously to determine the growth of the microorganism. In addition, by adding a substrate that can be specifically decomposed to the species of the microorganism to the medium, the microorganism can be classified.
[0010]
(Samples to be Inspected) Samples used in the method of the present invention include those which need to detect the presence or absence of microorganisms such as food, medicine, pesticides, cosmetics, drinking water, urine, etc. It is preferable to use fresh foods such as fruits and fruits.
[0011]
(Microorganisms) Microorganisms to be detected by the method of the present invention include various bacteria and fungi. When food is used as a sample, the coliform group is important. Here, the Escherichia coli group is a group of microorganisms having the ability to produce lactose-degrading enzyme, and belongs to the genus Escherichia, the genus Cytobacter, the genus Klebsiella, the genus Enterobacter, and the like.
[0012]
EXAMPLES Examples will be given below to explain the present invention in more detail.
Example 1 (Preparation of medium) A medium having the following composition was prepared.
Peptone 5g / L
Salt 5g / L
2.2 g / L monosodium phosphate
2.7 g / L disodium phosphate
Sodium pyruvate 1.0g / L
Tryptophan 1.0g / L
Agar 10.0g / L
Sorbitol 1.0g / L
4-MU glucuronide 0.05g / L
X-glucuronide 0.2g / L
The medium having the above composition was sterilized in an autoclave at 121 ° C. for 15 minutes, dispensed into a 24-well plate well in an amount of 1 mL each, and used as an agar plate medium.
[0013]
Example 2 (Detection of microorganisms) A sample containing Escherichia coli was inoculated on the agar plate medium prepared in Example 1 and cultured at 37 ° C. The fluorescence of the agar plate medium inoculated with the sample was measured over time at an excitation wavelength of 365 nm and a fluorescence wavelength of 440 nm using a commercially available densitometer. At the same time, the reflectance at a wavelength of 660 nm was measured by reflected light measurement. At the same time, colony formation was observed with the naked eye, and the results are shown in Table 1.
Figure 2004053570
As a result, the method of observing colony formation with the naked eye was observed only after 24 hours, whereas the method of the present invention in which fluorescence or color development was measured over time was cultured for 3 to 6 hours. It has already been found that changes in signals can be detected and microorganisms can be quickly tested.
[0014]
Embodiment 3 (Detection by fluorescence microscope)
In the same manner as in Example 2, Escherichia coli was inoculated on an agar plate, and ethidium bromide and 6-carboxyfluorescein diacetate (CFDA) were respectively added to the agar plate, followed by culturing. Observation with a fluorescence microscope over time showed that a clear fluorescence signal could be observed after 6 hours when no colonies were observed with the naked eye. Reddish fluorescence was observed with ethidium bromide, while yellow-green fluorescence was observed with CFDA.
A photograph of one example is shown in FIG.
As described above, it was found that the microorganisms can be rapidly tested by the method of the present invention.
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the test of microorganisms can be performed much more rapidly and simply than before.
[0015]
[Brief description of the drawings]
FIG. 1 shows a conceptual diagram of fluorescence measurement.

Claims (3)

微生物又はその分泌物の作用により生成する物質を検出することによる微生物の検出方法において、被検試料と信号を生成しうる物質とを接触させた後、生じる信号を経時的に少なくとも2回検出する工程を含み、検出された信号を経時的に比較することを特徴とする微生物の検査方法。In a method for detecting a microorganism by detecting a substance produced by the action of a microorganism or a secretion thereof, a signal produced is detected at least twice over time after contacting a test sample with a substance capable of producing a signal. A method for testing a microorganism, comprising the steps of: comparing detected signals over time. 発色物質及び/又は蛍光物質を生成しうる基質を培地中に含ませて生じる発色強度及び/又は蛍光強度を検出する請求項1記載の検査方法。The test method according to claim 1, wherein a coloring intensity and / or a fluorescence intensity generated by including a substrate capable of producing a coloring substance and / or a fluorescent substance in a culture medium are detected. 請求項1又は2に記載の方法に用いる装置。An apparatus for use in the method according to claim 1.
JP2002241193A 2002-07-17 2002-07-17 Inspection method of microorganism Pending JP2004053570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241193A JP2004053570A (en) 2002-07-17 2002-07-17 Inspection method of microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241193A JP2004053570A (en) 2002-07-17 2002-07-17 Inspection method of microorganism

Publications (1)

Publication Number Publication Date
JP2004053570A true JP2004053570A (en) 2004-02-19

Family

ID=31943968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241193A Pending JP2004053570A (en) 2002-07-17 2002-07-17 Inspection method of microorganism

Country Status (1)

Country Link
JP (1) JP2004053570A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025608A (en) * 2004-07-12 2006-02-02 Chisso Corp Microorganism culture medium
FR2955121A1 (en) * 2010-01-08 2011-07-15 Millipore Corp Agar culture medium for microorganisms, comprises a nutrient medium in which a fluorogen substrate and a compound are dissolved in a homogeneous manner, where the compound is used for masking the residual fluorescence
JP2011529187A (en) * 2008-07-24 2011-12-01 バイオメリュー・インコーポレイテッド Methods and systems for detection and / or characterization of biological particles in a sample
JP2012139138A (en) * 2010-12-28 2012-07-26 Nissui Pharm Co Ltd Detection method of vibrio parahemolyticus
US8315190B2 (en) 2005-01-28 2012-11-20 Qualcomm Incorporated Method and apparatus for interworking between push-to-talk over cellular (PoC) systems and instant messaging (IM) systems
JP2016174581A (en) * 2015-03-20 2016-10-06 株式会社槌屋 Microorganism detection device, microorganism detection program, and microorganism detection method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025608A (en) * 2004-07-12 2006-02-02 Chisso Corp Microorganism culture medium
US8315190B2 (en) 2005-01-28 2012-11-20 Qualcomm Incorporated Method and apparatus for interworking between push-to-talk over cellular (PoC) systems and instant messaging (IM) systems
JP2011529187A (en) * 2008-07-24 2011-12-01 バイオメリュー・インコーポレイテッド Methods and systems for detection and / or characterization of biological particles in a sample
US10435733B2 (en) 2008-07-24 2019-10-08 Biomerieux, Inc. Method and system for detection and/or characterization of a biological particle in a sample
FR2955121A1 (en) * 2010-01-08 2011-07-15 Millipore Corp Agar culture medium for microorganisms, comprises a nutrient medium in which a fluorogen substrate and a compound are dissolved in a homogeneous manner, where the compound is used for masking the residual fluorescence
JP2012139138A (en) * 2010-12-28 2012-07-26 Nissui Pharm Co Ltd Detection method of vibrio parahemolyticus
JP2016174581A (en) * 2015-03-20 2016-10-06 株式会社槌屋 Microorganism detection device, microorganism detection program, and microorganism detection method

Similar Documents

Publication Publication Date Title
US5064756A (en) Microbial susceptibility assay using 7-n-(aminoacyl)-7-amido-4-methylcoumarins
JP3043063B2 (en) Precipitation test for microorganisms
US5079144A (en) Microorganism testing with a hydrolyzable fluorogenic substrate
US7745169B2 (en) Device and method for the detection and enumeration of multiple groups of microorganisms
Delisle et al. Rapid detection of Escherichia coli in urine samples by a new chromogenic beta-glucuronidase assay
JPH05505312A (en) Bacteriological analysis method and culture medium for detecting Salmonella bacteria
JP2008530993A (en) Detection of microbial strains in liquid samples
FI96434B (en) Apparatus for amplifying fluorescence and kinetics and methods of using the apparatus
WO2008104681A2 (en) Bacteria detection and/or identification medium
JPH05508556A (en) Method and apparatus for detecting bacterial contamination of transfusable blood
JP4909342B2 (en) Test medium
US20160017402A1 (en) Method and apparatus utilizing enzyme substrates producing slow diffusing fluorescent product appearances and chromogens, and use in combination with fast diffusing product appearances
JP2004053570A (en) Inspection method of microorganism
WO2008104680A2 (en) Medium for detecting and/or identifying bacteria
JPS6156098A (en) Detection reagent and method of anti-bacterial active substance
AU2013294867B2 (en) Method of detecting OXA-048 carbapenemase producing bacteria
JP2004501654A (en) Nutrient mixtures and procedures for the identification of gram-negative bacteria and the initial counts
JPS60500557A (en) Microbiological test methods and equipment
JP5086246B2 (en) Reaction medium for Vibrio bacteria
JPH01201161A (en) Assay method and kit for body liquor
JP5189722B2 (en) Compositions and methods for target microbial detection in samples
EP2981619A1 (en) Use of at least one chromogenic and/or fluorogenic phosphatase substrate for the detection and/or enumeration of enterobacteria in a sample
US20120225449A1 (en) Method and appraratus utilizing enzyme substrates producing slow diffusing fluorescent product appearances and chromogens, and use in combination with fast diffusing product appearances
WO2008156462A1 (en) Device and method for the detection and enumeration of multiple groups of microorganisms
AU1263892A (en) Measurement of bacterial co2 production in an isolated fluorophore by monitoring an absorbance regulated change of fluorescence