JP2004053317A - Relative position detector of pipe in pipe line - Google Patents

Relative position detector of pipe in pipe line Download PDF

Info

Publication number
JP2004053317A
JP2004053317A JP2002208585A JP2002208585A JP2004053317A JP 2004053317 A JP2004053317 A JP 2004053317A JP 2002208585 A JP2002208585 A JP 2002208585A JP 2002208585 A JP2002208585 A JP 2002208585A JP 2004053317 A JP2004053317 A JP 2004053317A
Authority
JP
Japan
Prior art keywords
pipe
cylinder
bending cylinder
bending
relative position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002208585A
Other languages
Japanese (ja)
Other versions
JP3902748B2 (en
Inventor
Shintaro Ikeda
池 田 信太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victaulic Company of Japan Ltd
Original Assignee
Victaulic Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victaulic Company of Japan Ltd filed Critical Victaulic Company of Japan Ltd
Priority to JP2002208585A priority Critical patent/JP3902748B2/en
Publication of JP2004053317A publication Critical patent/JP2004053317A/en
Application granted granted Critical
Publication of JP3902748B2 publication Critical patent/JP3902748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To previously prevent a fracture of a connection part of buried pipes and a leakage of a liquid from the connection part without digging out the buried pipes. <P>SOLUTION: This detector comprises first and second curved cylinders 5 and 6 disposed on one and the other end sides of a flexible pipe joint 4 for connecting pipes to each other, a measuring instrument 9 having a pair of detection parts 20a and 20b, a connection pipe 21 for connecting the first and second cylinders 5 and 6 to one detection part 20a, a connection pipe 22 for connecting the first and second cylinders 5 and 6 to the other detection part 20b, a connection pipe for connecting the first and second cylinders 5 and 6 to each other, and a flowing medium 23 housed in a conduit and comprising liquids of two kinds, different in specific gravity, and insoluble in each other. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、地中に埋設した配管ラインにおける配管の沈下の検出や地上または地中に配置した配管ラインにおける配管の2点間の上下位置の検出に適した配管の相対位置検出装置に関する。
【0002】
【従来の技術】
造成地等に埋設される下水道や上水道の配管ラインは、配管同士を可撓管継手を介して連結することで構成される。地中に埋設した配管ラインに地震等の地盤変動による不等の変曲が発生すると、配管ラインの一部の配管に変動が生じるが、配管ラインの変動量は可撓管継手の可撓性で吸収されるので、変動した配管と可撓管継手の接続部の破断や接続部からの流体の漏洩は生じない。
【0003】
また、地上または地中に配置される配管ラインは、配管同士を管継手を介して連結することで構成される。地上または地中に配置した配管ラインに外圧または内圧が加えられると、配管ラインの一部の配管が傾斜してしまうことがある。
【0004】
【発明が解決しようとする課題】
下水道や上水道の配管ラインにおいて、配管ラインの変動に伴う配管の沈下量が所定範囲内であれば、配管と可撓管継手の接続部や配管の接続部の破断や接続部からの流体の漏洩は生じないが、配管の沈下量が所定値を越えた大きい量になると、可撓管継手や配管が破損し、場合によっては、重大な災害の原因となる可能性がある。
【0005】
また、下水道の配管ラインにおいては、配管ラインを流れる下水は重力の作用で流れるので、下水の流れ方向に配管が傾斜している場合には問題はないが、配管が下水の流れ方向に逆らう方向に傾斜している場合には、配管を流れる下水に滞留が生じ、配管に沿って下水が効率よく流れないことになる。
【0006】
本発明は、上記した点を考慮してなされたもので、地中に埋設した配管の沈下量や地上または地中に配置した配管の傾斜量を地上に配置した計測装置で遠隔監視し、配管の接続部の破断や接続部からの流体の漏洩を未然に防ぐことを可能にする配管の相対位置検出装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の配管の相対位置検出装置は、配管を可撓管継手を介して連結した配管ラインにおいて、可撓管継手の一端側に配置された第1湾曲シリンダと、可撓管継手の他端側に配置された第2湾曲シリンダと、一対の検出部を有する計測装置と、第1湾曲シリンダおよび第2湾曲シリンダと一方の検出部を接続する接続管と、第1湾曲シリンダと第2湾曲シリンダと他方の検出部を接続する接続管と、第1湾曲シリンダと第2湾曲シリンダを接続する接続管と、管路内に収容された比重が異なる2種類の液体でかつ相方が溶け合わない液体の流動媒体とを有し、計測装置の検出部の流動媒体の相対高さの差により配管の沈下量を監視することで、配管を掘り起こすことなく沈下した配管の接続部の破断や接続部からの流体の漏洩を未然に防ぐことを可能にする。
【0008】
本発明の配管の相対位置検出装置は、配管を連結した配管ラインにおいて、配管の一端側に配置された第1湾曲シリンダと、配管の他端側に配置された第2湾曲シリンダと、一対の検出部を有する計測装置と、第1湾曲シリンダおよび第2湾曲シリンダと一方の検出部を接続する接続管と、第1湾曲シリンダと第2湾曲シリンダと他方の検出部を接続する接続管と、第1湾曲シリンダと第2湾曲シリンダを接続する接続管と、管路内に収容された比重が異なる2種類の液体でかつ相方が溶け合わない液体の流動媒体とを有し、計測装置の検出部の流動媒体の相対高さの差により配管の傾斜量の変動を監視することで、配管を流れる下水の滞留を検出することができる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら説明する。
図1は本発明による配管の相対位置検出装置の全体図、図2は本発明による配管の相対位置検出装置の使用状態を示す図、図3は本発明による配管の相対位置検出装置を下水配管ラインの可撓管継手に取り付けた状態を示す図である。
【0010】
本発明の配管の相対位置検出装置1は、図1ないし図3に示すように、地中に埋設される配管ライン2の配管3,3を連結する可撓管継手4の一端側に配置された第1湾曲シリンダ5と、可撓管継手4の他端側に配置された第2湾曲シリンダ6と、図2に示す地面7上または図3に示す地中に区画された弁室8に設置された計測装置9とを有する。
【0011】
第1湾曲シリンダ5は、図1に示すように、可撓管継手4の外周面を囲むように形成された一対の半円状湾曲シリンダ部5a,5bを有する。湾曲シリンダ5は、単一のリングまたはU字形であってもよい。第2湾曲シリンダ6も、第1湾曲シリンダ5と同一構成であり、可撓管継手4の外周面を囲むように形成された一対の半円状湾曲シリンダ部6a,6bを有する。湾曲シリンダ6は、単一のリングまたはU字形であってもよい。
【0012】
第1湾曲シリンダ5の半円状湾曲シリンダ部5aの一端側(下端側)と第2湾曲シリンダ6の半円状湾曲シリンダ部6aの一端側(下端側)は、ゴムホースのような可撓接続管10により接続される。可撓接続管10は、両端に接続具11,11を設けた2つの接続管10a,10bにより構成される。一方の接続管10aは、半円状湾曲シリンダ部5aと半円状湾曲シリンダ部5bの中間に位置する接続装置12aと半円状湾曲シリンダ部5aの一端側とを接続し、他方の接続管10bは、半円状湾曲シリンダ部6aの一端側と接続装置12aを接続する。
【0013】
同様に、第1湾曲シリンダ5の半円状湾曲シリンダ部5bの一端側(下端側)と第2湾曲シリンダ6の半円状湾曲シリンダ部6bの一端側(下端側)は、ゴムホースのような可撓接続管13により接続される。可撓接続管13は、両端に接続具14,14を設けた2つの接続管13a,13bにより構成される。一方の接続管13aは、半円状湾曲シリンダ部5bの一端側と接続装置12aを接続し、他方の接続管13bは、半円状湾曲シリンダ部6bの一端側と接続装置12aを接続する。
【0014】
また、第1湾曲シリンダ5の半円状湾曲シリンダ部5aの他端側(上端側)と第2湾曲シリンダ6の半円状湾曲シリンダ部6aの他端側(上端側)は、ゴムホースのような可撓接続管15により接続される。可撓接続管15は、両端に接続具16,16を設けた2つの接続管15a,15bにより構成される。一方の接続管15aは、半円状湾曲シリンダ部5aの他端側と接続装置12bを接続し、他方の接続管15bは、半円状湾曲シリンダ部6aの他端側と接続装置12bを接続する。
【0015】
同様に、第1湾曲シリンダ5の半円状湾曲シリンダ部5bの他端側(上端側)と第2湾曲シリンダ6の半円状湾曲シリンダ部6bの他端側(上端側)は、ゴムホースのような可撓接続管17により接続される。可撓接続管17は、両端に接続具18,18を設けた2つの接続管17a,17bにより構成される。一方の接続管17aは、半円状湾曲シリンダ部5bの他端側と接続装置12bを接続し、他方の接続管17bは、半円状湾曲シリンダ部6bの他端側と接続装置12bを接続する。
【0016】
したがって、第1湾曲シリンダ5と第2湾曲シリンダ6は、一端側を可撓接続管10,13を介して接続され、他端側を可撓接続管15,17を介して接続されることで流体通路を構成する。
【0017】
計測装置9は、2つの同一構成の透明シリンダ20a,20bと、これら透明シリンダ20a,20bの間に位置する沈下量目盛20cを有する。沈下量目盛20cは、列設した透明シリンダ20a,20bの液面を読み取る。透明シリンダ20aは、可撓接続管21を介して第1湾曲シリンダ5の半円状湾曲シリンダ部5bと第2湾曲シリンダ6の半円状湾曲シリンダ部6bを接続する可撓接続管17に連通するように接続装置12bを接続される。透明シリンダ20bは、可撓接続管22を介して第1湾曲シリンダ5の半円状湾曲シリンダ部5aと第2湾曲シリンダ6の半円状湾曲シリンダ部6aを接続する可撓接続管15に連通するように接続装置12bを接続される。
【0018】
さらに、第1湾曲シリンダ5と第2湾曲シリンダ6と計測装置9を通る流体通路には、比重が異なる2種類の液体でかつ相方が溶け合わない液体の流動媒体23が収容される。流動媒体23は、たとえば、水と水に不溶な灯油である。灯油は水に比べて比重が軽いので、作動媒体23を流体通路に入れた時、比重の軽い灯油24と比重の重い水25に分離されている。
【0019】
本発明による配管の相対位置検出装置1は、図3に示すように、地中に埋設された下水道配管ライン2の配管3,3を連結する可撓管継手4に取り付けた場合に、地中に埋設した配管ラインに地震等の地盤変動による不等の変曲が発生すると、配管ラインの一部の配管に変動が生じ、配管3に沈下量δが発生する。
【0020】
配管3に沈下量δが発生すると、作動媒体23の2つの液体の比重の差により、比重の重い液体25が第1湾曲シリンダ5から第2湾曲シリンダ6に流れ込み、これに伴って、透明シリンダ20aと透明シリンダ20bの比重の軽い液体24の液面に高さの差が発生する。透明シリンダ20aと透明シリンダ20bの比重の軽い液体24の液面差ΔHにより配管3の沈下量δを検出することができる。
【0021】
つぎに、本発明による配管の相対位置検出装置1の作用を説明する。
第1湾曲シリンダ5を配管ライン2の地盤沈下が予想される場所に位置する配管3に近い可撓管継手4の一端側に可撓管継手4を囲むように取り付ける。同様に、第2湾曲シリンダ6を同じ可撓管継手4の他端側に可撓管継手4を囲むように取り付ける。そして、計測装置9を配管ライン2の配管3から離れた地上の適当位置に作業員に目視できるように設置する。
【0022】
つぎに、計測装置9と第1湾曲シリンダ5と第2湾曲シリンダ6を結ぶ流体通路に管路内に収容された比重が異なる2種類の液体でかつ相方が溶け合わない液体の流動媒体23を入れる。この作動媒体23は予め流体通路に入れておいてもよい、作動媒体23の量は、計測装置9の透明シリンダ20a,20bの比重の軽い液体24の液面が沈下量目盛20cに読みとれる範囲内になるように調整される。これにより、配管の相対位置検出装置1の可撓管継手4への取り付けが完了する。
【0023】
下水道配管ライン2の配管3,3は、通常の手段で地中に埋設される。下水道配管ライン2の配管3,3は埋設した状態では、埋設した配管3は設計通りに配置されており、配管には上下方向に移動する沈下現象が発生していない。そのため、埋設した配管3,3と配管3,3の間に位置する可撓管継手4は、図4に示すように、同一高さ水準にある。すなわち、第1湾曲シリンダ5と第2湾曲シリンダ6の比重の重い液体25の液面は、同一高さ水準にあり、計測装置9の透明シリンダ20a,20bの液面も同一高さ水準にある。
【0024】
地中に埋設した下水道配管ライン2に地盤沈下が発生すると、地盤沈下が発生した場所に近い配管3が、図3に示すように、沈下量δだけ沈下する。配管3が沈下すると、沈下した配管3に接続された可撓管継手4も変位する。
【0025】
変位した可撓管継手4には軸線方向に間隔をおいて第1湾曲シリンダ5と第2湾曲シリンダ6が取り付けられているので、図5に示すように、流体通路の作動媒体23は、液体24と液体25の比重の差により、比重の重い液体25が第1湾曲シリンダ5から第2湾曲シリンダ6に流れ込み、第1湾曲シリンダ5と第2湾曲シリンダ6との間に比重の重い液体25の液面差eが生じる。
【0026】
流体通路に液体25の液面差eが発生すると、透明シリンダ20aの液体24の液面と透明シリンダ20bの液体24の液面との間に液面差ΔHを生じて安定する。この液面差ΔHから配管3の沈下量δが検出できる。
【0027】
液面差ΔHから配管3の沈下量δの算出は次のようにして行われる。
液体25の比重をγ 、液体24の比重をγ 、液体25の液面差をe、液体24の液面差をΔH、湾曲シリンダの内断面積をS 、透明シリンダの内断面積をS とすると、
【数1】

Figure 2004053317
この時、液体24の液面変化量はa=bとなり、その量は
【数2】
Figure 2004053317
よって、ΔHから沈下量δを読み取ることができる。
【0028】
一例として、作動媒体23を水と灯油の2つの液体とし、S=Sとした場合、水の比重γ=1.0、灯油の比重γ=0.8とし、配管の沈下量δを100mmとすると、計測装置の地上の読みΔHは、
【数3】
Figure 2004053317
また、地上での計測方法として、ΔHを読み取る以外に、透明シリンダ20aの液体24の液面と透明シリンダ20bの液体24がΔH=0になるまで液体24を抜き取り、その抜き取り量(V)からδを計算する方法もある。
【0029】
【数4】
Figure 2004053317
図6は本発明の他の実施の形態を示し、この実施の形態においては、配管3.3同士を管継手4で連結した配管ラインの特定の配管3aの軸線方向一端側と他端側に距離Lをおいて第1湾曲シリンダ5と第2湾曲シリンダ6を取り付ける。この場合、計測装置9の透明シリンダ20a,20bの液面差ΔHにより配管の2点間の上下方向の相対位置と配管の傾斜角θを検出できる。このように、計測装置9を配管ラインから遠隔の場所に設置することにより、配管ラインの配管の傾斜勾配θを遠隔監視することができる。
【0030】
【発明の効果】
以上説明したように、本発明によれば、地中に埋設した配管の沈下量や地上または地中に配置した配管の傾斜勾配量を地上に配置した計測装置で遠隔監視でき、地中に埋設した配管を掘り起こすことなく配管の接続部の破断や接続部からの流体の漏洩を未然に防ぐことを可能にする。
【図面の簡単な説明】
【図1】本発明による配管の相対位置検出装置の全体図。
【図2】本発明による配管の相対位置検出装置の使用状態を示す図。
【図3】本発明による配管の相対位置検出装置を下水配管ラインの可撓管継手に取り付けた状態を示す図。
【図4】本発明による配管の相対位置検出装置の配管が正常位置にある時の図。
【図5】本発明による配管の相対位置検出装置の配管が沈下位置にある時の図。
【図6】本発明による配管の相対位置検出装置の他の実施の形態を示す図。
【符号の説明】
1 相対位置検出装置
2 配管ライン
3 配管
4 可撓管継手
5 第1湾曲シリンダ
6 第2湾曲シリンダ6
9 計測装置
20a,20b 透明シリンダ
23 作動媒体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pipe relative position detecting device suitable for detecting settlement of a pipe in a pipe line buried underground or detecting the vertical position between two points of a pipe in a pipe line arranged on the ground or in the ground.
[0002]
[Prior art]
A sewer or water supply pipe line buried in a construction site or the like is configured by connecting pipes via a flexible pipe joint. When unequal inflection occurs due to ground deformation such as an earthquake in a pipe line buried underground, some pipes in the pipe line will fluctuate. Therefore, there is no breakage of the connecting portion between the fluctuating pipe and the flexible pipe joint or leakage of fluid from the connecting portion.
[0003]
In addition, a pipe line arranged on the ground or underground is configured by connecting pipes via pipe joints. When an external pressure or an internal pressure is applied to a pipe line arranged on the ground or underground, a part of the pipe line may be inclined.
[0004]
[Problems to be solved by the invention]
In a sewage or water supply pipeline, if the sinking amount of the piping due to the fluctuation of the piping line is within a predetermined range, the connection between the piping and the flexible pipe joint, the breakage of the connection of the piping, or the leakage of fluid from the connection However, when the sinking amount of the pipe exceeds a predetermined value, the flexible pipe joint and the pipe may be damaged, and in some cases, a serious disaster may be caused.
[0005]
In addition, in a sewer pipe line, since the sewage flowing through the pipe line flows by the action of gravity, there is no problem if the pipe is inclined in the sewage flow direction, but the pipe runs in the direction opposite to the sewage flow direction. If it is inclined, the sewage flowing through the pipe will remain, and the sewage will not flow efficiently along the pipe.
[0006]
The present invention has been made in view of the above points, and remotely monitors the sinking amount of pipes buried underground and the inclination amount of pipes placed on the ground or underground with a measuring device placed on the ground, It is an object of the present invention to provide a relative position detection device for pipes, which can prevent breakage of a connection portion and leakage of fluid from the connection portion.
[0007]
[Means for Solving the Problems]
A pipe relative position detecting device according to the present invention includes a first bending cylinder disposed on one end side of a flexible pipe joint in a pipe line connecting the pipes via a flexible pipe joint, and a second end of the flexible pipe joint. A second bending cylinder disposed on the side, a measuring device having a pair of detecting sections, a connecting pipe connecting the first bending cylinder and the second bending cylinder to one of the detecting sections, a first bending cylinder and a second bending section A connecting pipe connecting the cylinder and the other detecting section, a connecting pipe connecting the first bending cylinder and the second bending cylinder, and two kinds of liquids having different specific gravities accommodated in the pipe and not being compatible with each other It has a liquid flowing medium and monitors the sinking amount of the pipe based on the difference in the relative height of the flowing medium at the detection unit of the measuring device. To prevent fluid leakage from To enable the.
[0008]
A pipe relative position detecting device according to the present invention includes, in a pipe line connecting pipes, a first curved cylinder disposed at one end of the pipe, a second curved cylinder disposed at the other end of the pipe, A measuring device having a detecting unit, a connecting pipe connecting the first bending cylinder and the second bending cylinder to one detecting unit, a connecting pipe connecting the first bending cylinder, the second bending cylinder, and the other detecting unit, A connecting pipe for connecting the first bending cylinder and the second bending cylinder, and a fluid medium of two kinds of liquids having different specific gravities and incompatible with each other, which are accommodated in the pipe, and detected by a measuring device. By monitoring the change in the amount of inclination of the pipe based on the difference in the relative height of the fluid medium in the section, it is possible to detect the sewage flowing through the pipe.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 is an overall view of a pipe relative position detecting device according to the present invention, FIG. 2 is a diagram showing a use state of the pipe relative position detecting device according to the present invention, and FIG. It is a figure which shows the state attached to the flexible pipe joint of the line.
[0010]
As shown in FIGS. 1 to 3, the relative position detection device 1 for pipes of the present invention is disposed at one end of a flexible pipe joint 4 that connects the pipes 3 and 3 of a pipe line 2 buried underground. The first bending cylinder 5, the second bending cylinder 6 disposed on the other end side of the flexible pipe joint 4, and the valve chamber 8 partitioned on the ground 7 shown in FIG. 2 or in the ground shown in FIG. And a measuring device 9 installed.
[0011]
As shown in FIG. 1, the first curved cylinder 5 has a pair of semicircular curved cylinder portions 5 a and 5 b formed so as to surround the outer peripheral surface of the flexible pipe joint 4. The curved cylinder 5 may be a single ring or a U-shape. The second bending cylinder 6 also has the same configuration as the first bending cylinder 5, and has a pair of semicircular bending cylinder portions 6a and 6b formed so as to surround the outer peripheral surface of the flexible pipe joint 4. The curved cylinder 6 may be a single ring or U-shaped.
[0012]
One end (lower end) of the semicircular curved cylinder portion 5a of the first curved cylinder 5 and one end (lower end) of the semicircular curved cylinder portion 6a of the second curved cylinder 6 are connected flexibly like a rubber hose. Connected by tube 10. The flexible connection pipe 10 is composed of two connection pipes 10a and 10b provided with connection tools 11 and 11 at both ends. One connecting pipe 10a connects the connecting device 12a located in the middle between the semicircular curved cylinder 5a and the semicircular curved cylinder 5b to one end of the semicircular curved cylinder 5a, and the other connecting pipe 10a. 10b connects one end side of the semicircular curved cylinder portion 6a to the connection device 12a.
[0013]
Similarly, one end (lower end) of the semicircular curved cylinder portion 5b of the first curved cylinder 5 and one end (lower end) of the semicircular curved cylinder portion 6b of the second curved cylinder 6 are like rubber hoses. They are connected by a flexible connection tube 13. The flexible connection pipe 13 is composed of two connection pipes 13a and 13b provided with connection tools 14 and 14 at both ends. One connecting pipe 13a connects one end of the semicircular curved cylinder 5b to the connecting device 12a, and the other connecting pipe 13b connects one end of the semicircular curved cylinder 6b to the connecting device 12a.
[0014]
The other end (upper end) of the semicircular curved cylinder portion 5a of the first curved cylinder 5 and the other end (upper end) of the semicircular curved cylinder portion 6a of the second curved cylinder 6 are like rubber hoses. Are connected by a flexible connection tube 15. The flexible connection pipe 15 is composed of two connection pipes 15a and 15b provided with connection tools 16 and 16 at both ends. One connecting pipe 15a connects the other end of the semicircular curved cylinder 5a to the connecting device 12b, and the other connecting pipe 15b connects the other end of the semicircular curved cylinder 6a to the connecting device 12b. I do.
[0015]
Similarly, the other end (upper end) of the semicircular curved cylinder portion 5b of the first curved cylinder 5 and the other end (upper end) of the semicircular curved cylinder portion 6b of the second curved cylinder 6 are connected to a rubber hose. It is connected by such a flexible connection pipe 17. The flexible connecting pipe 17 is composed of two connecting pipes 17a and 17b provided with connecting tools 18 and 18 at both ends. One connecting pipe 17a connects the other end of the semicircular curved cylinder 5b to the connecting device 12b, and the other connecting pipe 17b connects the other end of the semicircular curved cylinder 6b to the connecting device 12b. I do.
[0016]
Therefore, the first bending cylinder 5 and the second bending cylinder 6 are connected at one end via the flexible connection pipes 10 and 13 and at the other end via the flexible connection pipes 15 and 17. Construct a fluid passage.
[0017]
The measuring device 9 has two transparent cylinders 20a and 20b having the same configuration, and a settlement scale 20c located between the transparent cylinders 20a and 20b. The subsidence amount scale 20c reads the liquid level of the transparent cylinders 20a and 20b arranged in a line. The transparent cylinder 20a communicates with the flexible connection pipe 17 connecting the semicircular curved cylinder portion 5b of the first curved cylinder 5 and the semicircular curved cylinder portion 6b of the second curved cylinder 6 via the flexible connection tube 21. The connection device 12b is connected in such a manner as described above. The transparent cylinder 20b communicates with the flexible connection pipe 15 connecting the semicircular curved cylinder part 5a of the first curved cylinder 5 and the semicircular curved cylinder part 6a of the second curved cylinder 6 via the flexible connection pipe 22. The connection device 12b is connected in such a manner as described above.
[0018]
Further, a fluid passage that passes through the first curved cylinder 5, the second curved cylinder 6, and the measuring device 9 accommodates a fluid medium 23 of two kinds of liquids having different specific gravities and incompatible with each other. The fluid medium 23 is, for example, water and water-insoluble kerosene. Since the specific gravity of kerosene is lower than that of water, when the working medium 23 is put into the fluid passage, it is separated into kerosene 24 having a lower specific gravity and water 25 having a higher specific gravity.
[0019]
As shown in FIG. 3, the pipe relative position detecting device 1 according to the present invention, when attached to a flexible pipe joint 4 connecting pipes 3 and 3 of a sewer pipe line 2 buried underground, When the inequality inflection occurs due to ground fluctuation such as an earthquake in a piping line buried in a pipe, a fluctuation occurs in a part of the piping line, and a sinking amount δ occurs in the piping 3.
[0020]
When the settlement amount δ occurs in the pipe 3, the liquid 25 having a high specific gravity flows from the first curved cylinder 5 to the second curved cylinder 6 due to a difference in specific gravity between the two liquids of the working medium 23, and accordingly, the transparent cylinder 25 A difference in height occurs between the liquid surface 20a and the transparent cylinder 20b of the liquid 24 having a low specific gravity. The settlement amount δ of the pipe 3 can be detected from the liquid level difference ΔH of the liquid 24 having a low specific gravity between the transparent cylinder 20a and the transparent cylinder 20b.
[0021]
Next, the operation of the pipe relative position detecting device 1 according to the present invention will be described.
The first bending cylinder 5 is attached to one end side of the flexible pipe joint 4 near the pipe 3 located at a place where the ground subsidence of the pipe line 2 is expected so as to surround the flexible pipe joint 4. Similarly, the second bending cylinder 6 is attached to the other end of the same flexible pipe joint 4 so as to surround the flexible pipe joint 4. Then, the measuring device 9 is installed at an appropriate position on the ground away from the pipe 3 of the pipe line 2 so as to be visible to an operator.
[0022]
Next, in the fluid passage connecting the measuring device 9, the first curved cylinder 5 and the second curved cylinder 6, a fluid medium 23 of two kinds of liquids having different specific gravities and incompatible with each other is accommodated. Put in. The working medium 23 may be put in the fluid passage in advance. The amount of the working medium 23 is within a range in which the liquid surface of the liquid 24 having a low specific gravity of the transparent cylinders 20a and 20b of the measuring device 9 can be read on the settlement amount scale 20c. Adjusted to be within. Thereby, the attachment of the relative position detecting device 1 of the pipe to the flexible pipe joint 4 is completed.
[0023]
The pipes 3 and 3 of the sewer pipe line 2 are buried underground by ordinary means. When the pipes 3 and 3 of the sewer pipe line 2 are buried, the buried pipe 3 is arranged as designed, and the pipe does not have a sinking phenomenon of moving vertically. Therefore, the flexible pipe joints 4 located between the buried pipes 3 and 3 and the pipes 3 and 3 are at the same height level as shown in FIG. That is, the liquid surface of the liquid 25 having a high specific gravity between the first bending cylinder 5 and the second bending cylinder 6 is at the same height level, and the liquid surfaces of the transparent cylinders 20a and 20b of the measuring device 9 are also at the same height level. .
[0024]
When land subsidence occurs in the sewer pipe line 2 buried underground, the pipe 3 near the place where the ground subsidence occurs sinks by the amount of settlement δ as shown in FIG. When the pipe 3 sinks, the flexible pipe joint 4 connected to the sink pipe 3 is also displaced.
[0025]
Since the first bending cylinder 5 and the second bending cylinder 6 are attached to the displaced flexible pipe joint 4 at an interval in the axial direction, as shown in FIG. Due to the difference between the specific gravity of the liquid 24 and the liquid 25, the liquid 25 having a high specific gravity flows from the first bending cylinder 5 into the second bending cylinder 6, and the liquid 25 having a high specific gravity flows between the first bending cylinder 5 and the second bending cylinder 6. The liquid level difference e occurs.
[0026]
When the liquid level difference e of the liquid 25 occurs in the fluid passage, a liquid level difference ΔH is generated between the liquid level of the liquid 24 in the transparent cylinder 20a and the liquid level of the liquid 24 in the transparent cylinder 20b, and the liquid is stabilized. From the liquid level difference ΔH, the settlement amount δ of the pipe 3 can be detected.
[0027]
The calculation of the settlement amount δ of the pipe 3 from the liquid level difference ΔH is performed as follows.
The specific gravity of the liquid 25 is γ 1 , the specific gravity of the liquid 24 is γ 2 , the liquid level difference of the liquid 25 is e, the liquid level difference of the liquid 24 is ΔH, the internal cross-sectional area of the curved cylinder is S 1 , and the internal cross-sectional area of the transparent cylinder is a When S 2,
(Equation 1)
Figure 2004053317
At this time, the liquid level change amount of the liquid 24 is a = b, and the amount is expressed by the following equation.
Figure 2004053317
Therefore, the settlement amount δ can be read from ΔH.
[0028]
As an example, when the working medium 23 is two liquids of water and kerosene and S 1 = S 2 , the specific gravity of water γ 1 = 1.0, the specific gravity of kerosene γ 2 = 0.8, and the sinking amount of the pipe Assuming that δ is 100 mm, the ground reading ΔH of the measuring device is
[Equation 3]
Figure 2004053317
As a measurement method on the ground, in addition to reading ΔH, the liquid 24 is extracted until the liquid level of the liquid 24 in the transparent cylinder 20a and the liquid 24 in the transparent cylinder 20b become ΔH = 0, and the amount of extraction (V) There is also a method of calculating δ.
[0029]
(Equation 4)
Figure 2004053317
FIG. 6 shows another embodiment of the present invention. In this embodiment, a specific pipe 3a in a pipe line in which pipes 3.3 are connected to each other by a pipe joint 4 is provided at one end and the other end in the axial direction of a specific pipe 3a. The first bending cylinder 5 and the second bending cylinder 6 are attached at a distance L. In this case, the vertical relative position between two points of the pipe and the inclination angle θ of the pipe can be detected from the liquid level difference ΔH between the transparent cylinders 20a and 20b of the measuring device 9. In this manner, by installing the measuring device 9 at a location remote from the piping line, the inclination gradient θ of the piping in the piping line can be remotely monitored.
[0030]
【The invention's effect】
As described above, according to the present invention, the amount of settlement of a pipe buried underground or the amount of inclination of a pipe laid on the ground or underground can be remotely monitored by a measuring device arranged on the ground, and the buried underground. It is possible to prevent breakage of a connection portion of a pipe and leakage of fluid from the connection portion without excavating the pipe.
[Brief description of the drawings]
FIG. 1 is an overall view of a piping relative position detecting device according to the present invention.
FIG. 2 is a diagram showing a use state of the pipe relative position detecting device according to the present invention.
FIG. 3 is a diagram showing a state in which the pipe relative position detecting device according to the present invention is attached to a flexible pipe joint of a sewage pipe line.
FIG. 4 is a view when the pipe of the pipe relative position detecting device according to the present invention is at a normal position.
FIG. 5 is a view when the pipe of the pipe relative position detecting device according to the present invention is at the sinking position.
FIG. 6 is a diagram showing another embodiment of the piping relative position detecting device according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Relative position detecting device 2 Piping line 3 Piping 4 Flexible pipe joint 5 First bending cylinder 6 Second bending cylinder 6
9 Measuring devices 20a, 20b Transparent cylinder 23 Working medium

Claims (4)

配管を可撓管継手を介して連結した配管ラインにおいて、可撓管継手の一端側に配置された第1湾曲シリンダと、可撓管継手の他端側に配置された第2湾曲シリンダと、一対の検出部を有する計測装置と、第1湾曲シリンダおよび第2湾曲シリンダと一方の検出部を接続する接続管と、第1湾曲シリンダと第2湾曲シリンダと他方の検出部を接続する接続管と、第1湾曲シリンダと第2湾曲シリンダを接続する接続管と、管路内に収容された比重が異なる2種類の液体でかつ相方が溶け合わない液体の作動媒体とを有する配管の相対位置検出装置。In a piping line connecting pipes via a flexible pipe joint, a first curved cylinder disposed on one end side of the flexible pipe joint, and a second curved cylinder disposed on the other end side of the flexible pipe joint, A measuring device having a pair of detecting sections, a connecting pipe connecting the first bending cylinder and the second bending cylinder to one of the detecting sections, and a connecting pipe connecting the first bending cylinder, the second bending cylinder, and the other detecting section Relative position of a pipe having a connecting pipe connecting the first bending cylinder and the second bending cylinder, and a working medium of two kinds of liquids having different specific gravities and incompatible with each other, which are accommodated in the pipe. Detection device. 各湾曲シリンダは、2つの半円状管で形成されたことを特徴とする請求項1に記載の配管の相対位置検出装置。The apparatus according to claim 1, wherein each curved cylinder is formed by two semicircular tubes. 各湾曲シリンダは、単一のリングまたはU字形であることを特徴とする請求項1に記載の配管の相対位置検出装置。2. The apparatus according to claim 1, wherein each curved cylinder is a single ring or U-shaped. 配管を連結した配管ラインにおいて、配管の一端側に配置された第1湾曲シリンダと、配管の他端側に配置された第2湾曲シリンダと、一対の検出部を有する計測装置と、第1湾曲シリンダおよび第2湾曲シリンダと一方の検出部を接続する接続管と、第1湾曲シリンダと第2湾曲シリンダと他方の検出部を接続する接続管と、第1湾曲シリンダと第2湾曲シリンダを接続する接続管と、管路内に収容された比重が異なる2種類の液体でかつ相方が溶け合わない液体の流動媒体とを有する配管の相対位置検出装置。In a pipe line connecting pipes, a first bending cylinder disposed on one end side of the pipe, a second bending cylinder disposed on the other end side of the pipe, a measuring device having a pair of detection units, A connecting pipe connecting the cylinder and the second bending cylinder to one of the detecting units, a connecting pipe connecting the first bending cylinder, the second bending cylinder to the other detecting unit, and connecting the first bending cylinder to the second bending cylinder A relative position detecting device for a pipe having a connecting pipe to be connected and a fluid medium of two kinds of liquids contained in the pipe and having different specific gravities and incompatible with each other.
JP2002208585A 2002-07-17 2002-07-17 Piping relative position detector in piping line Expired - Lifetime JP3902748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208585A JP3902748B2 (en) 2002-07-17 2002-07-17 Piping relative position detector in piping line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208585A JP3902748B2 (en) 2002-07-17 2002-07-17 Piping relative position detector in piping line

Publications (2)

Publication Number Publication Date
JP2004053317A true JP2004053317A (en) 2004-02-19
JP3902748B2 JP3902748B2 (en) 2007-04-11

Family

ID=31932690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208585A Expired - Lifetime JP3902748B2 (en) 2002-07-17 2002-07-17 Piping relative position detector in piping line

Country Status (1)

Country Link
JP (1) JP3902748B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300567A (en) * 2005-04-15 2006-11-02 Nippon Steel Corp Pressure conversion type detection device
KR20170115100A (en) 2015-02-13 2017-10-16 니혼 빅토릭 가부시끼가이샤 Behavior Investigation and Behavior Investigation Method of Flexible Flexible Tubular Joint
KR20190084974A (en) 2016-11-18 2019-07-17 니혼 빅토릭 가부시끼가이샤 Expansion pipe fitting with elbow
KR20190087541A (en) 2016-11-30 2019-07-24 니혼 빅토릭 가부시끼가이샤 Eccentric Free Applicable Fittings and Eccentric Free Applicable Fittings
CN114964144A (en) * 2022-03-31 2022-08-30 中国一冶集团有限公司 Underground pipe group disaster monitoring and early warning structure and control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118919A (en) * 1982-01-07 1983-07-15 Nippon Steel Corp Measuring method of level
JPS5995410A (en) * 1982-11-24 1984-06-01 Ishikawajima Harima Heavy Ind Co Ltd Measuring device for deformation in foundation of structure
JPH05188080A (en) * 1992-01-13 1993-07-27 Nok Corp Operating fluid and sensor structure using this operating fluid
JPH06221851A (en) * 1993-01-27 1994-08-12 Yasuhiko Takahashi Method and device for measuring gradient of pipeline

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118919A (en) * 1982-01-07 1983-07-15 Nippon Steel Corp Measuring method of level
JPS5995410A (en) * 1982-11-24 1984-06-01 Ishikawajima Harima Heavy Ind Co Ltd Measuring device for deformation in foundation of structure
JPH05188080A (en) * 1992-01-13 1993-07-27 Nok Corp Operating fluid and sensor structure using this operating fluid
JPH06221851A (en) * 1993-01-27 1994-08-12 Yasuhiko Takahashi Method and device for measuring gradient of pipeline

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300567A (en) * 2005-04-15 2006-11-02 Nippon Steel Corp Pressure conversion type detection device
JP4664723B2 (en) * 2005-04-15 2011-04-06 新日本製鐵株式会社 Pressure conversion detector
KR20170115100A (en) 2015-02-13 2017-10-16 니혼 빅토릭 가부시끼가이샤 Behavior Investigation and Behavior Investigation Method of Flexible Flexible Tubular Joint
US10359267B2 (en) 2015-02-13 2019-07-23 The Victaulic Company Of Japan Limited Behavior inspection apparatus and behavior inspection method for extensible flexible pipe joint
KR20190084974A (en) 2016-11-18 2019-07-17 니혼 빅토릭 가부시끼가이샤 Expansion pipe fitting with elbow
US11092270B2 (en) 2016-11-18 2021-08-17 The Victaulic Company Of Japan Limited Elbow-equipped expansion joint
KR20190087541A (en) 2016-11-30 2019-07-24 니혼 빅토릭 가부시끼가이샤 Eccentric Free Applicable Fittings and Eccentric Free Applicable Fittings
US11149884B2 (en) 2016-11-30 2021-10-19 The Victaulic Company Of Japan Limited Eccentric universal joint mechanism and eccentric universal joint
CN114964144A (en) * 2022-03-31 2022-08-30 中国一冶集团有限公司 Underground pipe group disaster monitoring and early warning structure and control method
CN114964144B (en) * 2022-03-31 2023-05-16 中国一冶集团有限公司 Underground pipe cluster disaster monitoring and early warning structure and control method

Also Published As

Publication number Publication date
JP3902748B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
US5590981A (en) Double-containment underground piping system
FR2805042B1 (en) NON-INTRUSIVE METHOD AND DEVICE FOR CHARACTERIZING THE DISTURBANCE OF A FLUID WITHIN A PIPELINE
EP0549680A1 (en) Hydrostatic testing apparatus.
FR2844576B1 (en) METHOD AND DEVICE FOR MONITORING THE HOLDING OF A FLEXIBLE PIPELINE AT A TERMINAL END
JP2004053317A (en) Relative position detector of pipe in pipe line
KR101794789B1 (en) OIL LEAK DETECTING DEVICE USING VOCs FROM OIL IN THE TUBE WELL
JP6806357B2 (en) Sewage measurement system
JP3999180B2 (en) Piping relative position detector
KR100556058B1 (en) dreg sludge height and flow rate measurement system using pressure gauge and sewage water level and velocity gauge
CN209385794U (en) A kind of device for preventing underground piping surrounding medium from collapsing
JPH10504901A (en) METHOD OF MONITORING SEALING OF PIPELINES, especially SEWAGE PIPELINE SYSTEMS AND APPARATUS FOR IMPLEMENTING THE METHOD
JP4098041B2 (en) Structure relative position detector
CN210194654U (en) Deep basal pit well point dewatering construction equipment
JP2014035321A (en) Optical fiber application liquid level measurement device
US10465855B2 (en) Drip riser and method of operation
KR20120060984A (en) Full pipe flowmeter
KR102460155B1 (en) Smart valve chamber
CN214273966U (en) Special calibrating device of immersible pump
JP3272651B2 (en) Inspection method of buried piping
KR101201451B1 (en) Site calibration apparatus of partially full pipe flowmeter
JP2000283400A (en) Method of specifying range of water leakage flowing into gas conduit
CN211922943U (en) Pipe culvert silting early warning structure
CN211450054U (en) Underground pipeline detects camera and puts in device
JP2004300788A (en) Method and apparatus for measuring inclination of pipeline
KR20040009611A (en) Leakage sensing and monitoring system of water supply and drainage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070104

R150 Certificate of patent or registration of utility model

Ref document number: 3902748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term