JP2004052857A - Uniform load type screw-topped high pressure vessel - Google Patents

Uniform load type screw-topped high pressure vessel Download PDF

Info

Publication number
JP2004052857A
JP2004052857A JP2002209358A JP2002209358A JP2004052857A JP 2004052857 A JP2004052857 A JP 2004052857A JP 2002209358 A JP2002209358 A JP 2002209358A JP 2002209358 A JP2002209358 A JP 2002209358A JP 2004052857 A JP2004052857 A JP 2004052857A
Authority
JP
Japan
Prior art keywords
screw
container
pressure
gap
thread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002209358A
Other languages
Japanese (ja)
Inventor
Junichi Tsuchiya
土屋 純一
Makoto Akatsu
赤津 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002209358A priority Critical patent/JP2004052857A/en
Publication of JP2004052857A publication Critical patent/JP2004052857A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a screw-topped high pressure vessel reducing load concentration generated on a screw portion and having a long lifetime. <P>SOLUTION: In the screw-topped high pressure vessel having a vessel 2 and a screw top 3 screwing to an opening of the vessel 2, internal diameters of a female screw 5 are set to be constant and outer diameters of a male screw 6 are formed to be smaller quadratically along the inner direction of the vessel 2 beforehand, so as to quadratically widen a gap between the female screw 5 formed on the opening of the vessel 2 and the male screw 6 formed on the screw top 3 along the inner direction of the vessel 2 so that the male screw 6 engages with the female screw 5. Consequently, the total of a stretch of the female screw 5 and contraction of the male screw 6, which are caused by a predetermined inner pressure P of the vessel 2, is equalized to the gap formed beforehand. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ねじ蓋式高圧容器に関する。
【0002】
【従来の技術】
図6は、従来のねじ蓋式高圧容器の一例を示す断面図である。
【0003】
図6に示すように、ねじ蓋式高圧容器11は、容器12と、回転することにより容器12の開口部へねじ込む円盤状のねじ蓋13とを有しており、容器12の開口部の内側とねじ蓋13の外側が、互いに対向して噛合うようにねじ部14が形成される。又、詳細は図7において示すが、ねじ蓋式高圧容器11の内部を高圧の内圧Pで保てるように、容器12とねじ蓋13との間は、シール材等により密封される。
【0004】
図7は、図6のB部分を拡大して横向きにしたねじ部の断面と荷重分布を併せて示す図である。
【0005】
図7に示すように、ねじ蓋式高圧容器11のねじ部14は、容器12側のめねじ15とねじ蓋13側のおねじ16が全長に渡って平行ねじで形成されており、容器12にねじ蓋13をねじ込むことでねじ蓋式高圧容器11を閉鎖したとき、平行に形成されためねじ15とおねじ16は、ねじ部14の全長に渡って相互に噛合う。又、ねじ蓋13は、ねじ蓋式高圧容器11の内圧Pを保てるように、ねじ蓋13の、容器12の内壁と対向する部分に設けたリングシール7と、リングシール7をねじ蓋13の内側から支持するシール押さえリング8とを有している。一般的に高圧容器は、閉鎖状態で、所定の時間毎に、内圧を高圧と常圧とに繰返し維持しながら運転される。
【0006】
図7に示す荷重の分布は、上記構造を有するねじ蓋式高圧容器11において、容器12内部に内圧Pが負荷された場合のねじ部14の長さ方向の荷重を示したものであり、ねじ部14の均等間隔位置で荷重値を計測し、その荷重値を平均荷重に対する係数として、ねじ部14の長さ方向の分布を示したものである。
【0007】
図7に示すように、内圧Pによるねじ部14の荷重は、ねじ蓋13の内面に最も近いねじ山で最大となり、ねじ蓋13の外面に近づくにつれて2次関数的に減少している。このことより、ねじ蓋13の内面に最も近いねじ山の部分側で荷重集中が発生していることがわかる。
【0008】
【発明が解決しようとする課題】
ねじ蓋式高圧容器11の内部に高圧力が負荷されたとき、上記構造のねじ蓋式高圧容器11では、一様な分布の内圧Pが容器内面に加わり、ねじ蓋13の内面にも一様な分布の内圧Pが加わる。ねじ蓋13の内面に加えられた内圧Pをねじ蓋13と容器12で支えるため、容器12のめねじ15とねじ蓋13のおねじ16が全長に渡って相互に噛合ったねじ部14でその力を受けることとなる。
【0009】
容器12及びねじ蓋13が全く弾性変形をせずに、内圧Pをねじ部14で支えるのであれば、各ねじ山で荷重を受けるために、図7に示すような荷重集中が発生することはない。しかしながら、実際には、内圧Pを受けて、ねじ蓋13には圧縮力が発生し、同時に容器12には引張力が発生するため、ねじ蓋13の内面に近い部分、つまり、ねじ部14の最奥端に内圧Pによる最大の荷重集中が発生することとなる。図7の荷重分布図に示すように、ねじ部14の最奥端に平均荷重の4.819倍の荷重集中が発生する。この荷重の大きさと分布傾向は、ねじ部14の長さを長くしても改善することはなく、同様に、ねじ部14の最奥端に荷重集中が発生する。
【0010】
上述の荷重集中部分があるため、ねじ蓋式高圧容器11では、ねじ蓋13に内部から繰返し高圧力が作用すると、ねじ部14の荷重集中部分が、金属疲労により破断しやすくなり、ねじ蓋式高圧容器11の寿命が短くなる問題がある。後述する図5のグラフからも明らかなように、荷重集中が大きくなるほど、その荷重により発生する応力強さの振幅も大きくなり、許容繰り返し回数(寿命)が指数的に減少することとなる。つまり、荷重集中の大きさがねじ蓋式高圧容器11の寿命を大きく左右する。
【0011】
本発明は上記課題に鑑みなされたもので、ねじ部に発生する荷重集中を低減させ、寿命の長いねじ蓋式高圧容器を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決する本発明に係るねじ蓋式高圧容器は、容器と、前記容器の開口部へねじ込むねじ蓋とを有し、前記容器の開口部に形成されためねじと、前記めねじに噛合うように、前記ねじ蓋に形成されたおねじとの隙間を、前記容器の内側方向に沿って2次関数的に広くなるように、予め形成したことを特徴とする。
【0013】
上記課題を解決する本発明に係るねじ蓋式高圧容器は、前記隙間とするため、前記めねじの内径を一定とし、前記おねじの外径を、前記容器の内側方向に沿って2次関数的に小さくしたことを特徴とする。
【0014】
上記課題を解決する本発明に係るねじ蓋式高圧容器は、前記容器の所定の内圧による前記おねじ及び前記めねじにかかる荷重が、前記めねじと前記おねじの噛合う全長に渡って均一に分散されるように、前記隙間を設定したことを特徴とする。
【0015】
上記課題を解決する本発明に係るねじ蓋式高圧容器は、前記容器の所定の内圧による、前記めねじの長さ方向の伸びと前記おねじの長さ方向の縮みの和が、前記めねじと前記おねじの噛合う全長に渡って、予め形成した前記隙間と等しくなるようにしたことを特徴とする。
【0016】
上記課題を解決する本発明に係るねじ蓋式高圧容器は、前記隙間を表す2次関数が次式となることを特徴とする。
δ=(σN0/(2×E×L)+σB0/(2×E×L))×X
ここで、δは前記めねじと前記おねじの長さ方向の隙間、σN0は前記容器の内圧による前記めねじの最奥端での軸方向引張応力、σB0は前記容器の内圧による前記おねじの最奥端での軸方向圧縮応力、Xは前記めねじ及び前記おねじの基端位置からの距離、Eは前記めねじのヤング率、Eは前記おねじのヤング率、Lはめねじ及びおねじの長さである。
なお、前記めねじのヤング率Eと前記おねじのヤング率Eが等しい場合(E=E=E)、上式は次式の通りとなる。
δ=(σN0+σB0)×X/(2×E×L)
【0017】
【発明の実施の形態】
ねじ蓋式高圧容器として機能するためには、容器及びねじ蓋のねじ部が、互いにねじとして機能する必要が有り、そのためには、最低限ねじ山のピッチ及びフランク角(ねじ山の半角)が互いに同一であることが必要である。更に、容器及びねじ蓋のねじ部に発生する荷重集中を低減するには、容器及びねじ蓋の弾性変形を考慮したねじ部の構造にする必要がある。
【0018】
上記要求を満たす構造とするために、本発明では、ねじ山のピッチ、フランク角が同一であるおねじ、めねじを用いることで、ねじとしての機能を損なうことなく、更に、おねじとめねじのねじ山同士の隙間を、容器及びねじ蓋の弾性変形に応じた隙間にすることで、一部のねじ山に荷重集中させることなく、ねじ部の長さ方向に均一な荷重分散ができる構造とした。
【0019】
具体的には、ねじ山の位置によるおねじ、めねじの応力及びその応力による弾性変形を考慮し、おねじとめねじのねじ山同士の噛合面において、予めその位置での応力によるめねじの伸び、おねじの縮みを考慮した隙間を形成しておき、ねじに外力(例えば、容器の内圧等)がかかるとき、その外力による応力により生じためねじの伸びとおねじの縮みの和と、予め形成された隙間が、めねじとおねじの噛合う全長に渡って等しくなるようにした。
【0020】
詳細は図1において説明するが、本発明では、めねじとおねじのねじ山同士の噛合面の隙間を、容器の内側方向に沿って2次関数的に広くすることで、外力による応力により生じためねじの伸びとおねじの縮みの和と、予め形成された隙間が等しくなるものとした。
【0021】
上記構造とした理由を、本発明に係る実施形態の一例を示す図1乃至図4と数式を用いて説明する。
なお、本発明は、図に示す実施例のみに限定されるものではない。又、計算結果の数字が小さくなるのを避けるため、長さの単位としてmを使用せずmmを用いた。
【0022】
図1は、本発明に係る実施形態の一例を示すねじ蓋式高圧容器のねじ部の断面図である。
これは、図6に示した従来のねじ蓋式高圧容器11のB部分に相当する。
【0023】
本発明に係るねじ蓋式高圧容器1は、図6に示した従来のねじ蓋式高圧容器11と同等の構成であり、容器2と、回転することにより容器2の開口部へねじ込む円盤状のねじ蓋3とを有しており、容器2の開口部の内側とねじ蓋3の外側が、互いに対向して噛合うようにねじ部4が形成される。又、図4において図示しているが、ねじ蓋式高圧容器1の内部を高圧の内圧Pで保てるように、ねじ蓋3の、容器2の内壁と対向する部分に設けたリングシール7と、リングシール7をねじ蓋3の内側から支持するシール押さえリング8とを有している。
【0024】
本発明では、図1に示すねじ部4において、容器2側に形成されためねじ5の内径を一定とし、めねじ5に噛合うように形成されたねじ蓋3側のおねじ6の外径を、容器2の内側方向に沿って2次関数的に小さくして構成することで、めねじとおねじのねじ山同士の噛合面の隙間を、容器の内側方向に沿って2次関数的に広くした。上記おねじ6を有するねじ蓋3を、めねじ5を有する容器2にねじ込むことで、ねじ蓋式高圧容器1を閉鎖する。
【0025】
上記構造を解りやすくするために、図1において、めねじの山谷の軌跡5a及びおねじの山谷の軌跡6aを一点鎖線で図示した。図1から解るように、同一の内径を有するめねじ5に対して、おねじ6の外径が容器2の内側方向に沿って減少し、それにともなって、めねじとおねじのねじ山同士の噛合面の隙間が、容器2の内側方向に沿って広くなる。
【0026】
ここで、上記構造とした説明となる数式を導くため、数式に必要な部分の記号を図1において定義する。ねじ部4の全長をL、ねじ部4の基端位置をL、ねじ部4の先端位置をL、めねじ5及びおねじ6のねじ山のピッチ長さをp、フランク角(ねじ山の半角)をαとする。又、上記構造のねじ部4において、基端位置Lから距離Xの位置Lでの、長さ方向(軸方向)のめねじ5とおねじ6のねじ山同士の隙間をδ、直径方向のめねじ5とおねじ6のねじ山同士の隙間をδとし、ねじ蓋3に働く内圧Pにより、容器2側に生じる軸方向引張応力をσ、ねじ蓋3に生じる軸方向圧縮応力をσ、軸方向引張応力σによるめねじ5側の伸び代をΔN、軸方向圧縮応力をσによるおねじ6側の縮み代をΔBとする。上記記号と図2、図3を用いて、δ、δ、σ、σ、ΔN、ΔBを求める。
【0027】
図2は、内圧Pの荷重を受け、全部のねじ山が同じように噛合った状態を示すねじ部の断面図である。
又、図3は、図2におけるA部分の拡大断面図である。
【0028】
ねじ蓋式高圧容器1に内圧Pが働き、上記構造のねじ部4において、どのねじ山にも同じ荷重が加わると仮定すると、めねじ5側の長さ方向の軸方向引張応力σは直線的に変化し、ねじ部4の基端位置Lにおいて0となり、ねじ部4の先端位置Lでは、
σN0=P×π×(D/2)/A=(π×P×D/4)/A
となる。ここでσN0はねじ部4の先端位置Lにおけるσの値、Aは容器2のめねじ5の断面積、πは円周率、Dは容器2の内径である。この式より、任意の位置Lでの軸方向引張応力σは、
σ=σN0×(X/L)
となる。
【0029】
一方、おねじ6側の長さ方向の軸方向圧縮応力σも直線的に変化し、ねじ部4の基端位置Lで0となり、ねじ部4の先端位置Lでは、
σB0=(π×P×D/4)/A
となる。ここでσB0はねじ部4の基端位置Lでのσの値、Aはねじ蓋3のおねじ6の断面積である。この式より、任意の位置Lでの軸方向圧縮応力σは、
σ=σB0×(X/L)
となる。
【0030】
任意の位置Lでの、位置L〜L間のめねじ5の伸び、つまり、隙間として必要となる長さ方向の伸び代ΔNは、
ΔN=∫σ×(1/E)dx=∫σN0×(X/L)×(1/E)dx
=(σN0×X)/(2×E×L)
となる。ここでEはめねじ5(容器2)のヤング率である。
【0031】
同様に、任意の位置Lでの、位置L〜L間のおねじ6の縮み、つまり、隙間として必要となる長さ方向の縮み代ΔBは、
ΔB=(σB0×X)/(2×E×L)
となる。ここでEはおねじ6(ねじ蓋3)のヤング率である。
【0032】
上記式より、めねじ6側の伸び代ΔNとおねじ6側の縮み代ΔBの合計、即ち、必要となる長さ方向の隙間δ
δ=ΔN+ΔB
=(σN0/(2×E×L)+σB0/(2×E×L))×X
となる。E=E=Eである(めねじ及びおねじのヤング率が同じ)場合、上式は次式の通りとなる。
δ=ΔN+ΔB=X×(σN0+σB0)/(2×E×L)
上記式から解るように、(σN0/(2×E×L)+σB0/(2×E×L))、又は(σN0+σB0)/(2×E×L)は一定であることから、長さ方向の隙間δとねじ部4の基端位置Lからの距離Xとの関係は、Xの2乗に比例し、2次関数となることがわかる。
【0033】
又、図3に示すように、めねじ5とおねじ6のピッチpとフランク角αが等しい場合、長さ方向の隙間δ=ΔN+ΔBは、フランク角αに比例する直径方向(長さ方向に垂直な方向)の隙間δを生じることになる。この直径方向の隙間δは、
δ=δ×cotα={X×(σN0+σB0)/(2×E×L)}×cotαとなる。上記関係式も、cotαが一定であることから、直径方向の隙間δとねじ部4の基端位置Lからの距離Xとの関係は、Xの2乗に比例し、2次関数となることがわかる。つまり、ねじ部4の長さ方向に対して、長さ方向の隙間δとともに直径方向の隙間δも、ねじ部4の基端位置Lからの距離Xの2乗に比例して大きくなり、距離Xの2次関数となる。
【0034】
従って、上記関係式により、本発明では、容器2に内圧Pが働いたとき、ねじ部4での荷重集中を防いで、荷重を分散させることができるおねじ、めねじのねじ山同士の適切な隙間として、容器2のめねじ5に対し、同一ピッチp及び同一フランク角αのねじ蓋3のおねじ6を、予めねじ部4の長さ方向の隙間δを有し、ねじ部4の直径方向の隙間δだけねじ山の半径を小さくするように加工した。
【0035】
ねじ部4が上記構造を有するため、適切な長さ方向の隙間δ及び直径方向の隙間δを形成することで、高圧運転時に、その内圧Pによるめねじ5及びおねじ6にかかる荷重が、めねじ5とおねじ6の噛合う全長に渡って均一に分散されるように、ねじ蓋式高圧容器1を構成することができる。従って、本発明に係るねじ蓋式高圧容器1を用いた場合、容器2に圧力を加えていくと、設定された所定の内圧Pで、予め形成した長さ方向の隙間δと内圧Pによる実際のめねじ5の伸びΔNとおねじ6の縮みΔBとの和が等しくなり、めねじ5とおねじ6の全部のねじ山が均一に噛合うとともに、その内圧Pによる荷重が、めねじ5とおねじ6の噛合う全長に渡って均一に分散される。
【0036】
上記構造のおねじ6の場合、直径方向の隙間δがおねじ6の各ねじ山で異なるため、めねじ5とおねじ6との各ねじ山の噛合面にて、どのように荷重を受けているかが問題となる。例えば、直径方向の隙間δがねじ山のピッチpと比較して大きい場合、互いに荷重を受ける面積が小さくなるとともに、互いにねじ山の山頂に近い部分で荷重を受けざるを得ず、ねじ山自体にかかる荷重が、ねじ山の山頂に偏ったモーメント力として働くこととなる。その場合、ねじ山自体の剛性が、そのモーメント力に耐えきれず、ねじ山若しくはねじ部が破断されるおそれもある。
【0037】
しかしながら、逆に直径方向の隙間δが、ねじ山のピッチpに較べて十分小さければ、ねじ山の高さに対する直径方向の隙間δも十分小さいため、互いに荷重を受ける面積が各々のねじ山において同等と考えられ、各々のねじ山同士にかかる荷重も同等と考えられ、ねじ部4での荷重分布は一様とみなせる。この場合、各々のねじ山自体の剛性もほぼ同等と考えられる。
【0038】
上記状態を検証するため、一例として、E=2×10N/mm、L=300mm、σB0=200N/mm、σN0=100N/mm、α=30°、p=15mmとし、又、X=Lとした場合を計算してみる。この場合、直径方向の隙間δは、
δ=L×(σB0+σN0)×cotα/(2×E)
=300×(200+100)×cot30°/(2×2×10
=0.398mm
となる。ねじ山のピッチp=15mmであるため、
δ/p=0.389/15=0.026
となり、直径方向の隙間δはねじ山のピッチpに対して十分小さいため、ねじ部4での荷重分布は一様とみなせる。
【0039】
図4は、本発明に係る実施形態の一例であるねじ蓋式高圧容器のねじ部の断面と荷重分布を併せて示す図である。
【0040】
図4に示す荷重の分布も、図7にて示した荷重の分布と同様に、上記構造を有するねじ蓋式高圧容器1において、容器2内部に内圧Pが負荷された場合のねじ部4の長さ方向の荷重を示したものであり、ねじ部4の均等間隔位置で荷重値を計測し、その荷重値を平均荷重に対する係数として、ねじ部4の長さ方向の分布を示したものである。ここでは、図7に示す従来のねじ蓋式高圧容器11と比較するため、従来と同一の条件にて測定した。
【0041】
図4に示すように、上記構造を有するねじ蓋式高圧容器1では、ねじ部4の全長に渡って平均荷重レベルで均一に荷重を負担することとなり、局部への荷重の集中を防ぎ、ピーク部の荷重を減少させることができる。又、従来のねじ蓋式高圧容器11と比較した場合、最大の荷重が約1/5となることがわかる。
【0042】
図5は、高圧容器に発生する内部応力の大きさと応力発生の許容繰返し数の関係を示すグラフであり、日本高圧力技術協会等により公表されている周知のものである。
このグラフは、使用温度350℃におけるヤング率E350=1.73×10N/mmの高圧容器を用いたものである。なお、表示する数値の大きさの都合により、長さの単位としてmmを使用する。
【0043】
図5のグラフにおいて、従来のねじ蓋式高圧容器11の装置と、本発明に係るねじ蓋式高圧容器1の装置における荷重による発生応力を比較すると、従来装置では発生応力振幅が686N/mm(70kgf/mm)、発生応力の許容繰返し数が1000回であるのに対して、本発明に係る装置では発生応力振幅が196N/mm(20kgf/mm)レベル以下まで大幅に減少し、発生応力の許容繰返し数が10=10000000回となり、装置の寿命を飛躍的に延ばせることがわかる。
【0044】
【発明の効果】
請求項1又は請求項2に係る発明によれば、容器と、前記容器の開口部へねじ込むねじ蓋とを有し、前記容器の開口部に形成されためねじと、前記めねじに噛合うように、前記ねじ蓋に形成されたおねじとの隙間を、前記容器の内側方向に沿って2次関数的に広くなるように、予め形成したので、ねじ部にかかる荷重をねじ部の長さ方向に均一に負担できるため、荷重集中を防ぎ、金属疲労を低減して、ねじ部の寿命を延ばすことができる。又、ねじの長さを短く、コンパクトに構成することもでき、ねじの長さが同じであれば、従来の平行ねじと比較して、ピーク部の荷重が1/5程度になり、金属疲労しにくい設計域とすることができ、装置の寿命を飛躍的に延ばすことができる。
【0045】
請求項3乃至請求項5に係る発明によれば、前記容器の所定の内圧による前記おねじ及び前記めねじにかかる荷重が、前記めねじと前記おねじの噛合う全長に渡って均一に分散されるように、前記隙間を設定したので、容器の所定の内圧に対するねじ部での荷重を、ねじ部の長さ方向に均一に負担できるため、所定の内圧における荷重集中を防ぎ、金属疲労を低減して、ねじ部の寿命を延ばすことができる。
【図面の簡単な説明】
【図1】本発明に係る実施形態の一例を示すねじ蓋式高圧容器のねじ部の断面図である。
【図2】内圧Pの荷重を受け、全部のねじ山が同じように噛合った状態を示すねじ部の断面図である。
【図3】図2におけるA部分の拡大断面図である。
【図4】本発明に係る実施形態の一例であるねじ蓋式高圧容器のねじ部の断面と荷重分布を併せて示す図である。
【図5】高圧容器に生じる応力の強さと発生応力の許容繰返し数との関係を示すグラフである。
【図6】従来のねじ蓋式高圧容器の一例を示す断面図である。
【図7】図6のB部分を拡大して横向きにしたねじ部の断面と荷重分布を併せて示す図である。
【符号の説明】
1  ねじ蓋式高圧容器
2  容器
3  ねじ蓋
4  ねじ部
5  めねじ
6  おねじ
7  リングシール
8  シール押えリング
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a screw cap type high pressure vessel.
[0002]
[Prior art]
FIG. 6 is a sectional view showing an example of a conventional screw cap type high pressure container.
[0003]
As shown in FIG. 6, the screw-lid high-pressure container 11 has a container 12 and a disk-shaped screw lid 13 that is screwed into an opening of the container 12 by rotating. The screw portion 14 is formed so that the outside of the screw cover 13 and the screw cover 13 face each other and mesh with each other. Although details are shown in FIG. 7, between the container 12 and the screw lid 13 is sealed with a sealing material or the like so that the inside of the screw lid type high pressure container 11 can be maintained at a high internal pressure P.
[0004]
FIG. 7 is a diagram showing, together with the cross section and load distribution of the threaded portion obtained by enlarging the portion B in FIG.
[0005]
As shown in FIG. 7, the screw portion 14 of the screw-lid high-pressure container 11 has a female screw 15 on the container 12 side and a male screw 16 on the screw lid 13 formed by parallel threads over the entire length. When the screw lid type high pressure vessel 11 is closed by screwing the screw lid 13 into the screw hole, the screw 15 and the male screw 16 are meshed with each other over the entire length of the screw portion 14 because they are formed in parallel. The screw cover 13 is provided with a ring seal 7 provided on a portion of the screw cover 13 facing the inner wall of the container 12 so as to maintain the internal pressure P of the screw cover type high-pressure container 11, and a ring seal 7 formed on the screw cover 13. And a seal holding ring 8 supported from the inside. Generally, a high-pressure container is operated in a closed state while repeatedly maintaining an internal pressure at a high pressure and a normal pressure at predetermined intervals.
[0006]
The load distribution shown in FIG. 7 shows the load in the length direction of the screw portion 14 when the internal pressure P is applied inside the container 12 in the screw-lid high-pressure container 11 having the above structure. The load value is measured at an evenly spaced position of the portion 14, and the load value is used as a coefficient with respect to the average load to show the distribution in the length direction of the screw portion 14.
[0007]
As shown in FIG. 7, the load on the screw portion 14 due to the internal pressure P is maximum at the screw thread closest to the inner surface of the screw cap 13, and decreases quadratically as the screw cap 13 approaches the outer surface of the screw cap 13. From this, it can be seen that load concentration occurs on the side of the screw thread closest to the inner surface of the screw lid 13.
[0008]
[Problems to be solved by the invention]
When a high pressure is applied to the inside of the screw-cap high-pressure container 11, in the screw-cap high-pressure container 11 having the above-described structure, a uniform distribution of the internal pressure P is applied to the inner surface of the container, and the inner surface of the screw cap 13 is also uniformly applied. The internal pressure P having a suitable distribution is applied. Since the internal pressure P applied to the inner surface of the screw cap 13 is supported by the screw cap 13 and the container 12, the internal thread 15 of the container 12 and the external thread 16 of the screw cap 13 are engaged with each other over the entire length by a screw portion 14. You will receive that power.
[0009]
If the container 12 and the screw lid 13 do not undergo any elastic deformation and the internal pressure P is supported by the screw portion 14, since the load is received by each screw thread, the load concentration as shown in FIG. Absent. However, in practice, a compression force is generated in the screw cap 13 due to the internal pressure P, and a tensile force is generated in the container 12 at the same time. The maximum load concentration due to the internal pressure P occurs at the innermost end. As shown in the load distribution diagram of FIG. 7, a load concentration of 4.819 times the average load occurs at the innermost end of the screw portion 14. The magnitude and distribution tendency of the load do not improve even if the length of the screw portion 14 is increased. Similarly, a load concentration occurs at the innermost end of the screw portion 14.
[0010]
Because of the above-mentioned load concentrated portion, in the screw cap type high pressure vessel 11, when high pressure is repeatedly applied to the screw cap 13 from the inside, the load concentrated portion of the screw portion 14 is easily broken by metal fatigue, and the screw cap type There is a problem that the life of the high-pressure vessel 11 is shortened. As will be apparent from the graph of FIG. 5 described later, as the load concentration increases, the amplitude of the stress intensity generated by the load increases, and the allowable number of repetitions (life) decreases exponentially. That is, the size of the load concentration greatly affects the life of the screw-lid high-pressure container 11.
[0011]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a screw-lid high-pressure container that reduces the load concentration generated in a screw portion and has a long life.
[0012]
[Means for Solving the Problems]
A screw-lid high-pressure container according to the present invention that solves the above-mentioned problems has a container, a screw lid that is screwed into an opening of the container, and a screw formed in the opening of the container and a female screw that meshes with the female screw. It is characterized in that a gap between the screw cap and the male screw is formed in advance so as to fit in a quadratic function along the inside of the container.
[0013]
The screw-top high-pressure container according to the present invention that solves the above-mentioned problem has a constant inner diameter of the female screw and an outer diameter of the external thread along the inward direction of the container, as a quadratic function. It is characterized by being made smaller in size.
[0014]
The screw lid type high-pressure container according to the present invention that solves the above-mentioned problems has a structure in which a load applied to the male screw and the female screw by a predetermined internal pressure of the container is uniform over the entire length of the mesh between the female screw and the male screw. The gap is set so as to be dispersed in the gap.
[0015]
The screw-type high-pressure container according to the present invention that solves the above-mentioned problems is characterized in that, according to a predetermined internal pressure of the container, the sum of the lengthwise elongation of the female screw and the contraction of the male screw in the longitudinal direction is smaller than that of the female screw. Over the entire length of engagement between the male screw and the male screw, the gap is made equal to the gap formed in advance.
[0016]
A screw-top high-pressure container according to the present invention that solves the above-mentioned problem is characterized in that a quadratic function representing the gap is expressed by the following expression.
δ L = (σ N0 / (2 × E N × L) + σ B0 / (2 × E B × L)) × X 2
Here, δ L is a gap in the length direction of the female screw and the male screw, σ N0 is an axial tensile stress at the innermost end of the female screw due to the internal pressure of the container, and σ B0 is a value according to the internal pressure of the container. axial compressive stress at the deepest end of the external thread, X is the distance from the proximal position of the female screw and the male screw, E N is the Young's modulus of the female screw, E B is the Young's modulus of the external thread , L are the lengths of the internal and external threads.
In the case the Young's modulus E B of the Young's modulus E N of the internal thread the external thread are equal (E N = E B = E ), the above equation is as follows.
δ L = (σ N0 + σ B0 ) × X 2 / (2 × E × L)
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to function as a screw-cap high-pressure vessel, the thread of the vessel and the screw cap need to function as a screw with each other. For this purpose, the minimum pitch and flank angle of the thread (half angle of the thread) are required. They must be identical to each other. Furthermore, in order to reduce the load concentration generated on the screw portion of the container and the screw cap, it is necessary to adopt a screw structure in consideration of the elastic deformation of the container and the screw cover.
[0018]
In order to achieve a structure that satisfies the above requirements, in the present invention, by using a male screw and a female screw having the same thread pitch and flank angle, without impairing the function as a screw, furthermore, a male screw and a female screw By making the gap between the threads of the thread according to the elastic deformation of the container and the screw lid, the load can be evenly distributed in the length direction of the screw part without concentrating the load on some threads. And
[0019]
Specifically, in consideration of the stress of the external thread and the internal thread due to the position of the thread and the elastic deformation due to the stress, the meshing surface of the external thread and the internal thread due to the stress at the position in advance at the meshing surface between the threads of the external thread and the internal thread is considered. A gap is formed in consideration of elongation and shrinkage of the male screw. When an external force (for example, internal pressure of a container) is applied to the screw, the gap is generated by the stress due to the external force. The gap formed was made equal over the entire length of the engagement between the female screw and the male screw.
[0020]
Although the details will be described with reference to FIG. 1, in the present invention, the gap between the meshing surfaces of the threads of the internal thread and the external thread is increased quadratically along the inner side of the container, so that the gap caused by the external force is generated. Therefore, the sum of the elongation of the screw and the shrinkage of the male screw is equal to the gap formed in advance.
[0021]
The reason for the above structure will be described with reference to FIGS. 1 to 4 showing an example of the embodiment according to the present invention and mathematical expressions.
Note that the present invention is not limited to only the embodiment shown in the drawings. Further, in order to avoid the numerical value of the calculation result becoming small, mm was used as a unit of length instead of m.
[0022]
FIG. 1 is a cross-sectional view of a screw portion of a screw-lid high-pressure container showing an example of an embodiment according to the present invention.
This corresponds to the portion B of the conventional screw cap type high pressure vessel 11 shown in FIG.
[0023]
The screw-cap-type high-pressure container 1 according to the present invention has the same configuration as the conventional screw-cap-type high-pressure container 11 shown in FIG. 6, and includes a container 2 and a disc-shaped high-pressure container that is screwed into an opening of the container 2 by rotating. A screw portion 4 is formed such that the inside of the opening of the container 2 and the outside of the screw cover 3 face each other and mesh with each other. Further, as shown in FIG. 4, a ring seal 7 provided on a portion of the screw lid 3 facing the inner wall of the container 2 so as to maintain the inside of the screw lid type high pressure container 1 at a high internal pressure P, A seal holding ring 8 for supporting the ring seal 7 from the inside of the screw cap 3 is provided.
[0024]
In the present invention, in the screw portion 4 shown in FIG. 1, the inner diameter of the screw 5 formed on the container 2 side is constant, and the outer diameter of the male screw 6 on the screw lid 3 side formed to mesh with the female screw 5. Is reduced in a quadratic function along the inward direction of the container 2 so that the gap between the meshing surfaces of the threads of the female screw and the external thread is quadratically defined along the inward direction of the container. Widened. The screw lid 3 having the male screw 6 is screwed into the container 2 having the female screw 5 to close the screw lid type high-pressure container 1.
[0025]
In FIG. 1, the trajectory 5a of the ridge and valley of the female thread and the trajectory 6a of the valley and valley of the male thread are shown by dashed lines in FIG. As can be seen from FIG. 1, for an internal thread 5 having the same internal diameter, the external diameter of the external thread 6 decreases along the inward direction of the container 2, and accordingly, the external threads of the internal thread and the external thread The gap between the engagement surfaces increases along the inside of the container 2.
[0026]
Here, in order to derive a mathematical expression for explanation having the above structure, symbols required for the mathematical expression are defined in FIG. The total length of the screw portion 4 is L, the base position of the screw portion 4 is L 0 , the distal end position of the screw portion 4 is L M , the pitch of the thread of the female screw 5 and the male screw 6 is p, and the flank angle (screw (Half angle of a mountain) is α. Further, the threaded portion 4 of the structure, at the position L X distance X from the base end position L 0, the gap of the thread between the female thread 5 Tooneji 6 [delta] L of the longitudinal (axial), diameter the clearance of the thread between the direction of the female screw 5 Tooneji 6 and [delta] D, the internal pressure P acting on the screw cap 3, the axial compressive stress generated in the axial direction tensile stress generated in the container 2 side sigma N, the screw cap 3 Σ B , ΔN represents the extension allowance on the female screw 5 side due to the axial tensile stress σ N, and ΔB represents the shrinkage allowance on the male screw 6 side due to the axial compressive stress σ B. Δ L , δ D , σ N , σ B , ΔN, ΔB are obtained using the above symbols and FIGS. 2 and 3.
[0027]
FIG. 2 is a cross-sectional view of the threaded portion showing a state where all the threads are engaged in the same manner under the load of the internal pressure P.
FIG. 3 is an enlarged sectional view of a portion A in FIG.
[0028]
Assuming that the internal pressure P acts on the screw cap type high-pressure vessel 1 and the same load is applied to all the threads in the screw portion 4 having the above structure, the longitudinal tensile stress σ N in the length direction of the female screw 5 is linear. At the base position L 0 of the screw portion 4 and becomes 0 at the base position L M of the screw portion 4.
σ N0 = P × π × ( D / 2) 2 / A N = (π × P × D 2/4) / A N
It becomes. Here sigma N0 values of sigma N in end position L M of the threaded portion 4, A N is the cross-sectional area of the internal thread 5 of the container 2, [pi is circle ratio, D is is the inner diameter of the container 2. From this equation, the axial tensile stress σ N at any position L X is
σ N = σ N0 × (X / L)
It becomes.
[0029]
On the other hand, the axial compressive stress sigma B in the length direction of the male screw 6 side changes linearly, the tip position L M at the proximal position L 0 of the screw portion 4 0, threaded portion 4,
σ B0 = (π × P × D 2/4) / A B
It becomes. Here sigma B0 value of sigma B at proximal position L 0 of the threaded portion 4, A B is the cross-sectional area of the external thread 6 of the screw cap 3. From this equation, the axial compressive stress σ B at any position L X is
σ B = σ B0 × (X / L)
It becomes.
[0030]
At an arbitrary position L X, elongation of the internal thread 5 between the positions L 0 ~L X, i.e., elongation allowance ΔN longitudinal needed as clearance,
ΔN = ∫σ N × (1 / E N ) dx = ∫σ N0 × (X / L) × (1 / E N ) dx
= (Σ N0 × X 2 ) / (2 × E N × L)
It becomes. Where E N is the Young's modulus of the female screw 5 (vessel 2).
[0031]
Similarly, at any position L X, shrinkage of the external thread 6 between the positions L 0 ~L X, that is, contraction potential ΔB longitudinal needed as clearance,
ΔB = (σ B0 × X 2 ) / (2 × E B × L)
It becomes. Here is a Young's modulus of E B Waoneji 6 (screw cap 3).
[0032]
From the above equation, the sum of the extension allowance ΔN on the female screw 6 side and the contraction allowance ΔB on the male screw 6 side, that is, the required clearance δ L in the length direction is δ L = ΔN + ΔB.
= (Σ N0 / (2 × E N × L) + σ B0 / (2 × E B × L)) × X 2
It becomes. If E is N = E B = E (internal thread and external thread of the Young's modulus is the same), the above equation is as follows.
δ L = ΔN + ΔB = X 2 × (σ N0 + σ B0 ) / (2 × E × L)
As can be seen from the above expression, (σ N0 / (2 × E N × L) + σ B0 / (2 × E B × L)) or (σ N0 + σ B0 ) / (2 × E × L) is constant. since there, the relationship between the distance X from the proximal position L 0 in the longitudinal direction of the gap [delta] L and the threaded portion 4 is proportional to the square of the X, it can be seen that a quadratic function.
[0033]
As shown in FIG. 3, when the pitch p of the female screw 5 and the male screw 6 is equal to the flank angle α, the gap δ L = ΔN + ΔB in the length direction is in the diameter direction (in the length direction) proportional to the flank angle α. It will produce a gap [delta] D of the vertical direction). This diametric gap δ D is
the δ D = δ L × cotα = {X 2 × (σ N0 + σ B0) / (2 × E × L)} × cotα. Above relationship also, since cotα is constant, the relationship between the distance X from the proximal position L 0 of the diametral clearance [delta] D and the threaded portion 4, in proportion to the square of X, and a quadratic function It turns out that it becomes. That is, with respect to the longitudinal direction of the threaded portion 4, also the gap [delta] D in the diameter direction with the length direction of the gap [delta] L, increases in proportion to the square of the distance X from the proximal position L 0 of the screw portion 4 And a quadratic function of the distance X.
[0034]
Therefore, according to the above relational expression, in the present invention, when the internal pressure P acts on the container 2, it is possible to prevent the concentration of the load on the screw portion 4 and to disperse the load. as a gap relative to the internal thread 5 of the container 2, the same pitch p and the male screw 6 of the screw cap 3 of the same flank angle alpha, advance a gap [delta] L of the longitudinal direction of the threaded portion 4, the screw portion 4 was processed so as to reduce the radius of only thread diameter direction of the gap [delta] D.
[0035]
Since the threaded portion 4 has the above structure, by forming a gap [delta] L and diameter direction of the gap [delta] D of suitable length direction, at the time of high pressure operation, the load applied to the internal thread 5 and the external thread 6 by the pressure P However, the screw-lid high-pressure vessel 1 can be configured so that the screw cap-type high-pressure container 1 is uniformly dispersed over the entire length of the engagement between the female screw 5 and the male screw 6. Therefore, when using a screw-cap high-pressure vessel 1 according to the present invention, when gradually applying pressure to the container 2, at a predetermined internal pressure P set, due to the gap [delta] L and the internal pressure P in the longitudinal direction of the preformed The sum of the actual elongation ΔN of the female screw 5 and the shrinkage ΔB of the male screw 6 becomes equal, all the threads of the female screw 5 and the male screw 6 are uniformly meshed, and the load due to the internal pressure P is reduced by the internal screw P and the male screw 5. It is evenly distributed over the entire length of the screw 6 meshing.
[0036]
If the male screw 6 of the structure, differ at the meshing surface of each thread of the female screw 5 Tooneji 6, how under a load in the thread diameter direction of the gap [delta] D Gaoneji 6 Is a problem. For example, when larger than the pitch p of the diameter direction of the gap [delta] D screw mountain, with the area receiving the load becomes smaller with each other, inevitably subjected to a load at a portion near the summit of the threads to one another, the threads The load applied to itself acts as a moment force biased toward the crest of the thread. In this case, the rigidity of the thread itself cannot withstand the moment force, and the thread or the thread may be broken.
[0037]
However, the gap [delta] D of the diameter direction conversely, if sufficiently small compared to the pitch p of the thread, since the gap [delta] D in the diameter direction with respect to the height of the thread is also sufficiently small, each area receive the load from each other screws The loads are considered to be equal in the ridges, and the loads applied to the respective threads are also considered to be the same, and the load distribution in the screw portion 4 can be regarded as uniform. In this case, the stiffness of each thread itself is considered to be substantially equal.
[0038]
In order to verify the above state, as one example, E = 2 × 10 5 N / mm 2 , L = 300 mm, σ B0 = 200 N / mm 2 , σ N0 = 100 N / mm 2 , α = 30 °, and p = 15 mm. , And the case where X = L is calculated. In this case, the radial gap δ D is
δ D = L × (σ B0 + σ N0 ) × cotα / (2 × E)
= 300 × (200 + 100) × cot 30 ° / (2 × 2 × 10 5 )
= 0.398mm
It becomes. Since the pitch p of the thread is 15 mm,
δ D /p=0.389/15=0.026
Next, since the gap [delta] D of the diameter direction sufficiently small with respect to the pitch p of the thread, the load distribution of a screw portion 4 can be regarded as uniform.
[0039]
FIG. 4 is a diagram showing both the cross section and the load distribution of the screw portion of the screw-lid high-pressure container which is an example of the embodiment according to the present invention.
[0040]
The load distribution shown in FIG. 4 is also similar to the load distribution shown in FIG. 7, in the screw cap type high-pressure container 1 having the above structure, when the internal pressure P is applied inside the container 2. It shows the load in the length direction, the load value is measured at evenly spaced positions of the screw portion 4, and the load value is used as a coefficient with respect to the average load, and the distribution in the length direction of the screw portion 4 is shown. is there. Here, in order to compare with the conventional screw lid type high pressure vessel 11 shown in FIG. 7, the measurement was performed under the same conditions as the conventional one.
[0041]
As shown in FIG. 4, in the screw-top high-pressure container 1 having the above-described structure, the load is uniformly applied at the average load level over the entire length of the screw portion 4, preventing the concentration of the load on the local portion and preventing the peak from being concentrated. The load on the part can be reduced. Also, it can be seen that the maximum load is about 1/5 as compared with the conventional screw-cap high-pressure container 11.
[0042]
FIG. 5 is a graph showing the relationship between the magnitude of the internal stress generated in the high-pressure vessel and the allowable number of repetitions of the stress generation, and is a well-known one published by the Japan High Pressure Technology Association or the like.
This graph uses a high-pressure container having a Young's modulus E 350 of 1.73 × 10 5 N / mm 2 at a use temperature of 350 ° C. It should be noted that mm is used as a unit of length depending on the size of the numerical value to be displayed.
[0043]
In the graph of FIG. 5, when the stress generated by the load in the conventional screw-cap high-pressure container 11 and the screw-cap high-pressure container 1 according to the present invention is compared, the generated stress amplitude in the conventional device is 686 N / mm 2. (70 kgf / mm 2 ) and the allowable number of repetitions of the generated stress is 1,000, whereas in the apparatus according to the present invention, the generated stress amplitude is significantly reduced to a level of 196 N / mm 2 (20 kgf / mm 2 ) or less. It can be seen that the allowable number of repetitions of the generated stress is 10 7 = 10000000 times, and the life of the device can be significantly extended.
[0044]
【The invention's effect】
According to the first or second aspect of the invention, the container has a container and a screw cap screwed into the opening of the container, and is formed at the opening of the container so as to mesh with the female screw. Since the gap between the screw cap and the male screw is formed in advance so as to increase quadratically along the inside of the container, the load applied to the screw part is reduced by the length of the screw part. Since the load can be uniformly applied in the direction, load concentration can be prevented, metal fatigue can be reduced, and the life of the screw portion can be extended. Also, the screw length can be made shorter and compact, and if the screw length is the same, the load at the peak part is about 1/5 compared to the conventional parallel screw, and the metal fatigue It is possible to make the design area difficult to perform, and the life of the device can be greatly extended.
[0045]
According to the invention according to claims 3 to 5, the load applied to the male screw and the female screw due to the predetermined internal pressure of the container is evenly distributed over the entire length of the engagement between the female screw and the male screw. As described above, since the gap is set, the load on the screw portion with respect to the predetermined internal pressure of the container can be uniformly distributed in the length direction of the screw portion, so that the load concentration at the predetermined internal pressure is prevented, and metal fatigue is reduced. The length can be reduced and the life of the threaded portion can be extended.
[Brief description of the drawings]
FIG. 1 is a sectional view of a screw portion of a screw-top high-pressure container showing an example of an embodiment according to the present invention.
FIG. 2 is a cross-sectional view of a threaded portion showing a state in which a load of an internal pressure P is received and all threads are meshed in the same manner.
FIG. 3 is an enlarged sectional view of a portion A in FIG.
FIG. 4 is a diagram showing a cross section and a load distribution of a screw portion of a screw-top high-pressure container which is an example of an embodiment according to the present invention.
FIG. 5 is a graph showing a relationship between the intensity of stress generated in the high-pressure vessel and the allowable number of repetitions of the generated stress.
FIG. 6 is a cross-sectional view showing an example of a conventional screw cap type high pressure container.
FIG. 7 is a diagram showing a cross section and a load distribution of a screw portion in which a portion B in FIG. 6 is enlarged and turned sideways.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Screw lid type high pressure container 2 Container 3 Screw lid 4 Thread part 5 Female screw 6 Male screw 7 Ring seal 8 Seal holding ring

Claims (5)

容器と、前記容器の開口部へねじ込むねじ蓋とを有するねじ蓋式高圧容器において、
前記容器の開口部に形成されためねじと、前記めねじに噛合うように、前記ねじ蓋に形成されたおねじとの隙間を、前記容器の内側方向に沿って2次関数的に広くなるように、予め形成したことを特徴とするねじ蓋式高圧容器。
In a container, a screw-lid high-pressure container having a screw lid screwed into an opening of the container,
The gap formed between the screw formed in the opening of the container and the male screw formed in the screw cap so as to mesh with the female screw is increased quadratically along the inside direction of the container. Thus, a screw-lid high-pressure container characterized by being formed in advance.
請求項1記載のねじ蓋式高圧容器において、
前記隙間とするため、前記めねじの内径を一定とし、前記おねじの外径を、前記容器の内側方向に沿って2次関数的に小さくしたことを特徴とするねじ蓋式高圧容器。
The screw-lid high-pressure container according to claim 1,
A screw-lid high-pressure container characterized in that the internal diameter of the female screw is constant and the external diameter of the male screw is reduced in a quadratic function along the inside of the container in order to provide the gap.
請求項1又は請求項2記載のねじ蓋式高圧容器において、前記容器の所定の内圧による前記おねじ及び前記めねじにかかる荷重が、前記めねじと前記おねじの噛合う全長に渡って均一に分散されるように、前記隙間を設定したことを特徴とするねじ蓋式高圧容器。3. The screw-lid high-pressure container according to claim 1, wherein a load applied to the male screw and the female screw by a predetermined internal pressure of the container is uniform over the entire length of the engagement between the female screw and the male screw. The screw gap type high pressure vessel, wherein the gap is set so as to be dispersed in the container. 請求項3記載のねじ蓋式高圧容器において、
前記容器の所定の内圧による、前記めねじの長さ方向の伸びと前記おねじの長さ方向の縮みの和が、前記めねじと前記おねじの噛合う全長に渡って、予め形成した前記隙間と等しくなるようにしたことを特徴とするねじ蓋式高圧容器。
The screw-lid high-pressure container according to claim 3,
Due to a predetermined internal pressure of the container, the sum of the lengthwise elongation of the female screw and the contraction of the male screw in the lengthwise direction is formed in advance over the entire length of engagement of the female screw and the male screw. A screw-lid high-pressure container characterized by being equal to a gap.
請求項4記載のねじ蓋式高圧容器において、
前記隙間を表す2次関数が次式となることを特徴とするねじ蓋式高圧容器。
δ=(σN0/(2×E×L)+σB0/(2×E×L))×X
ここで、δは前記めねじと前記おねじの長さ方向の隙間、σN0は前記容器の内圧による前記めねじの最奥端での軸方向引張応力、σB0は前記容器の内圧による前記おねじの最奥端での軸方向圧縮応力、Xは前記めねじと前記おねじの噛合う基端位置からの距離、Eは前記めねじのヤング率、Eは前記おねじのヤング率、Lはめねじ及びおねじの長さである。
The screw-lid high-pressure container according to claim 4,
The quadratic function representing the gap is represented by the following equation.
δ L = (σ N0 / ( 2 × E N × L) + σ B0 / (2 × E B × L)) × X 2
Here, δ L is a gap in the length direction of the female screw and the male screw, σ N0 is an axial tensile stress at the innermost end of the female screw due to the internal pressure of the container, and σ B0 is a value according to the internal pressure of the container. axial compressive stress at the deepest end of the external thread, X is the distance from the meshing proximal position of the said internal thread the external thread, the E N Young's modulus of the internal thread, E B is the external thread Young's modulus, L is the length of the internal thread and the external thread.
JP2002209358A 2002-07-18 2002-07-18 Uniform load type screw-topped high pressure vessel Withdrawn JP2004052857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209358A JP2004052857A (en) 2002-07-18 2002-07-18 Uniform load type screw-topped high pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209358A JP2004052857A (en) 2002-07-18 2002-07-18 Uniform load type screw-topped high pressure vessel

Publications (1)

Publication Number Publication Date
JP2004052857A true JP2004052857A (en) 2004-02-19

Family

ID=31933224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209358A Withdrawn JP2004052857A (en) 2002-07-18 2002-07-18 Uniform load type screw-topped high pressure vessel

Country Status (1)

Country Link
JP (1) JP2004052857A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524518A (en) * 2008-05-27 2011-09-01 アレヴァ・エンセ Container for radioactive waste container with pressure-fitted lid
WO2022102478A1 (en) * 2020-11-10 2022-05-19 Jfeスチール株式会社 High-pressure gas container and method for manufacturing same
WO2022102479A1 (en) * 2020-11-10 2022-05-19 Jfeスチール株式会社 Threaded steel pipe and method for manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524518A (en) * 2008-05-27 2011-09-01 アレヴァ・エンセ Container for radioactive waste container with pressure-fitted lid
WO2022102478A1 (en) * 2020-11-10 2022-05-19 Jfeスチール株式会社 High-pressure gas container and method for manufacturing same
WO2022102479A1 (en) * 2020-11-10 2022-05-19 Jfeスチール株式会社 Threaded steel pipe and method for manufacturing same
JPWO2022102479A1 (en) * 2020-11-10 2022-05-19
JP7255752B2 (en) 2020-11-10 2023-04-11 Jfeスチール株式会社 Threaded steel pipe and its manufacturing method

Similar Documents

Publication Publication Date Title
US5722808A (en) Threaded fastener system
CN105443549B (en) Conical internal thread and threaded post connection structure
CN105443542B (en) Conical external screw thread and screw thread hole connection structure
CN105443546A (en) Tapered thread bolt body and tapered thread nut
US3487442A (en) Flexible thread systems for high pressure vessels and the like
US20130074622A1 (en) Roller screw
US20220145927A1 (en) Anti-loosening screw pair and anti-loosening screw component
US3901122A (en) Variable expansion compression nut and bolt assembly
JP2004052857A (en) Uniform load type screw-topped high pressure vessel
CN105443543B (en) Tapered thread auxiliary connection
US3886989A (en) Self-threading nut
EP4080071A1 (en) Loosening prevention device
CN207278674U (en) A kind of stop nut structure
CN201031850Y (en) Heptalateral ball anti-theft locknut
US20100014938A1 (en) Thread lock for a threaded connection
JP2007147070A (en) Planetary roller screw device
CN206600343U (en) Combination nut
CN102305233B (en) Locknut shim insert combination external member
US2569989A (en) Pressure stop nut
JP2003294144A (en) Screw-topped high pressure vessel
US20210010519A1 (en) Connection structure of internal thread of asymmetric bidirectional tapered thread in olive-like shape and traditional screw thread
US20210010526A1 (en) Connection structure of external thread of symmetric bidirectional tapered thread in olive-like shape and traditional screw thread
US20210025431A1 (en) Connection structure of dumbell-like shaped bidirectional tapered external thread having small left taper and large right taper and traditional thread
CN107830042A (en) It is a kind of can be with the nut of automatic tightening
US20210025429A1 (en) Connection structure of internal thread of symmetric bidirectional tapered thread in olive-like shape and traditional screw thread

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004