JP2004051928A - Optical material for light transmission, optical disk base, optical film, optical disk and photoconductive board - Google Patents

Optical material for light transmission, optical disk base, optical film, optical disk and photoconductive board Download PDF

Info

Publication number
JP2004051928A
JP2004051928A JP2002228010A JP2002228010A JP2004051928A JP 2004051928 A JP2004051928 A JP 2004051928A JP 2002228010 A JP2002228010 A JP 2002228010A JP 2002228010 A JP2002228010 A JP 2002228010A JP 2004051928 A JP2004051928 A JP 2004051928A
Authority
JP
Japan
Prior art keywords
copolymer
unit
optical
light transmission
optical material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002228010A
Other languages
Japanese (ja)
Other versions
JP4135430B2 (en
Inventor
Hideki Matsumoto
松本 英樹
Daisuke Sato
佐藤 大輔
Toru Yamanaka
山中 亨
Daisuke Yamamoto
山本 大介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002228010A priority Critical patent/JP4135430B2/en
Publication of JP2004051928A publication Critical patent/JP2004051928A/en
Application granted granted Critical
Publication of JP4135430B2 publication Critical patent/JP4135430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical material for light transmission having high transparency, heat resistance and flaw resistance and being especially useful as an optical film having highly optimized low birefringence (optical isotropy). <P>SOLUTION: The material consists of a copolymer having (i) an unsaturated alkyl carboxylate unit and (ii) a glutaric acid anhydride unit of formula (1) (wherein R<SP>1</SP>and R<SP>2</SP>may be the same or different and are each a hydrogen atom or a 1-5C alkyl group), a copolymer having (i) the alkyl ester unit, (ii) the anhydride unit of formula (1) and (iii) an unsaturated carboxylic acid unit, or a copolymer having (i) the alkyl ester unit, (ii) the anhydride unit, optionally (iii) the carboxylic acid unit and (iv) other vinyl type monomer unit(s) which has an absolute value of birefringence of 1.0×10<SP>-4</SP>or lower. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、透明性、耐熱性、耐傷性に優れ、とりわけ低複屈折率で光学等方性に優れる共重合体からなる光透過用光学材料に関する。
【0002】
【従来の技術】
近年、透明性樹脂は、従来の自動車部品、照明機器、電機部品等の通常の透明性が要求される成型材料としての用途だけでなく、光学レンズ、プリズム、ミラー、光ディスク、光ファイバー、液晶ディスプレイ用シート・フィルム、導光板などの、より高性能な光学材料にも幅広く使用されるようになってきた。
【0003】
これら光学材料用樹脂としては、従来より、ポリメタクリル酸メチル(以下PMMAと称する)やポリカーボネート(以下PCと称する)が主に用いられてきたが、PMMAは耐熱性が低いという問題があり、PCは光学的ひずみである複屈折率が大きく、成形物に光学的異方性が生じるという問題があった。
【0004】
特に、高度な光学性能が要求される光学樹脂用途の一例に光ディスクがある。レーザーを用いた光学記録は高密度な情報の記録、保存および再生が可能であるため、光ディスクの改良、開発は活発に進められている。光ディスクは透明な基板とその上にコートされた種々の記録媒体から、基本的に構成される。
【0005】
光ディスクにおける現状技術は、複屈折率が大きいPCを、成形条件を工夫することにより、複屈折率を抑えて光ディスクを成形している。このようにして得られた光ディスクは、複屈折率の許容限度が比較的緩やかなCD(コンパクトディスク)、低記録密度のDVD(デジタル多目的ディスク)やMO(磁気光学ディスク)等に幅広く用いられている。
【0006】
しかし、近年の記録情報の更なる高密度化は、使用するレーザーの短波長化および光学レンズ系の高NA(開口数)化を伴うものである。特にDVDにおいてはレーザー波長は350〜410nm程度の短波長光(ブルーレーザー)、NA値0.6以上の利用が検討され、分子中に芳香族基を含有するPCでは複屈折率が大きく、また短波長領域の光透過率が低下することから、使用の限界が指摘されている。またPCは表面硬度が低く耐傷性に劣るため、読み取りできなくなるといった問題点も抱えている。
【0007】
さらに、最近は、透明性樹脂の液晶表示装置のバックライト用導光板としての需要が増加している。バックライト用導光板とは、導光板の所定方向から入射した光線を伝搬、拡散させ、液晶セル側に出射させる作用を有するものである。バックライトの方式としては、液晶表示装置の薄型化の要請から、光源を導光板のエッジに配置したエッジライト方式が主に採用されている。この様なエッジライト方式では、導光板中の光透過距離が比較的長いので導光板中での光損失が多くなり、それを防止するため、導光板に使用される材料には高い光透過性が要求される。
【0008】
また、導光板は車搭載用のメーターパネル、操作パネル等のバックライト、テールランプ等のバック照明装置、カーナビゲーションシステムの液晶表示装置などの耐熱性の要求される用途にも多く使用されている。さらに、今後より均一な画像を表示できる液晶表示装置のために、導光板にもより高度な光学的に均一な複屈折率の小さな材料が要求されている。
【0009】
このため導光板に用いられる材料には高度な耐熱性と光透過性、低複屈折率性(光学的等方性)が要求される。
【0010】
このような状況に鑑み、上記問題点を解決する光学用透明樹脂として多環ノルボルネン系モノマーを用いた環状ポリオレフィン(以下COCと称する)が開発されている。これらは耐熱性、低複屈折率、短波長での光透過性を兼ね備えている。しかし、COCは製造時に重合触媒として遷移金属触媒が用いられるが、遷移金属が残存すると着色や透明性低下の原因になる。さらに、上記環状ポリオレフィンの製造には水添反応を行うことが必要であり、該水添反応にも遷移金属触媒が使用される。このため、遷移金属の残存による着色、透明性が低下するだけでなく、このような水添反応は製造コストの増大をきたす問題点があった。
【0011】
また、特開昭60−133004号公報や特開昭63−264613号公報には特定の6員環酸無水物単位および芳香族ビニル化合物単位を有する共重合体を用いる方法が開示されている。しかし、同公報に具体的に記載された共重合体も相当量の芳香族ビニル化合物基を含有するため、得られた複屈折率および短波長領域の光透過率は、近年の高度化する要求特性を十分に満たすことができないといった問題点があった。
【0012】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するためになされたものである。したがって本発明の目的は、優れた透明性、耐熱性、耐傷性を有し、さらに低複屈折性(光学的等方性)に極めて優れた光透過用光学材料を提供することにある。
【0013】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意検討した結果、不飽和カルボン酸アルキルエステル単位とグルタル酸無水物単位を有する特定の共重合体からなる材料が、優れた透明性、耐熱性、耐傷性を有し、さらに低複屈折性(光学的異方性)に極めて優れる光学用成形材料として有用であることを見出し、本発明に到達した。
【0014】
すなわち、本発明は、
[1](i)不飽和カルボン酸アルキルエステル単位、(ii)下記一般式(1)
【0015】
【化4】

Figure 2004051928
【0016】
(上記式中、R、Rは、同一または相異なる水素原子または炭素数1〜5のアルキル基を表す。)
で表されるグルタル酸無水物単位を有する共重合体若しくは上記(i)、(ii)の単位に(iii)不飽和カルボン酸単位を有する共重合体又は上記(i)、(ii)単位もしくは上記(i)、(ii)、(iii)の単位にさらに(iv)その他のビニル系単量体単位を有する共重合体であって、かつ複屈折率の絶対値が1.0×10−4以下である共重合体からなる光透過用光学材料、
[2]前記共重合体中の(ii)グルタル酸無水物単位の含有量が5〜60重量%である上記[1}記載の光学透過材料、
[3]前記共重合体の鉛筆硬度が4H以上であることを特徴とする[1]または2記載の光透過用光学材料、
[4]前記共重合体のガラス転移温度が120℃以上であることを特徴とする[1]ないし[3]のいずれか記載の光透過用光学材料。
[5]前記不飽和カルボン酸単位(iii)は、下記一般式(2)で表される構造を有する[1]ないし[4]のいずれか記載の光透過用光学材料、
【0017】
【化5】
Figure 2004051928
【0018】
(ただし、Rは水素又は炭素数1〜5のアルキル基を表す)
[6]前記不飽和カルボン酸アルキルエステル単位(i)は、下記一般式(3)で表される構造を有する[1]ないし[5]のいずれか1項に記載の光透過用光学材料、
【0019】
【化6】
Figure 2004051928
【0020】
(ただし、Rは水素又は炭素数1〜5のアルキル基を表し、Rは炭素数1〜6の脂肪族若しくは脂環式炭化水素基又は1個以上炭素数以下の数の水酸基若しくはハロゲンで置換された炭素数1〜6の脂肪族若しくは脂環式炭化水素基を示す)
[7]前記共重合体が不飽和カルボン酸単量体および不飽和カルボン酸アルキルエステル単量体を含む単量体混合物を重合して原重合体(A)を得、次いでこの原重合体(A)を加熱し、脱水及び/又は脱アルコール反応により製造されるものである[1]ないし[6]のいずれか1項に記載の光透過用光学材料。
[8][1]ないし[7]のいずれか1項に記載の光透過用光学材料からなる光ディスク基板、
[9][1]ないし[7]のいずれか1項に記載の光透過用光学材料からなる光学フィルム、
[10][1]ないし[7]のいずれか1項に記載の光透過用光学材料からなる0.01〜0.6mm厚の保護層を有し、該保護層を通してレーザー光により情報記録が読みとられる構造を有する光ディスク、および
[11][1]ないし[7]のいずれか1項に記載の光透過用光学材料からなる導光板である。
【0021】
【発明の実施の形態】
以下、本発明の光透過用光学材料について具体的に説明する。
【0022】
本発明の光透過用光学材料は、(i)不飽和カルボン酸アルキルエステル系単量体、(ii)下記一般式(1)
【0023】
【化7】
Figure 2004051928
【0024】
(上記式中、R、Rは、同一または相異なる水素原子または炭素数1〜5のアルキル基を表す。)
で表されるグルタル酸無水物単位を有する共重合体若しくは上記単位に(iii)不飽和カルボン酸単位を有する共重合体又は上記(i)、(ii)単位もしくは上記(i)、(ii)、(iii)の単位にさらに(iv)その他のビニル系単量体単位を有する共重合体からなることを特徴とするものである。
【0025】
また、本発明で用いられる共重合体は複屈折率の絶対値が1.0×10−4以下である必要があり、好ましくは0.7×10−4以下、最も好ましくは0.5×10−4以下である。複屈折率の下限としては、特に制限はなく、理想的な複屈折率は0であるが、通常、0.01×10−4以上である。
【0026】
尚、ここでいう複屈折率の絶対値とは、流延法により得られる100±5μm厚の無配向フィルムをそのガラス転移温度で1.5倍に一軸延伸したものをASTM D542に準じて23℃、405nmでのリターデーションを測定し、厚みで除して求めた複屈折率の絶対値である。
【0027】
本発明に用いる上記共重合体の製造方法は上記複屈折率を有する限り特に制限はないが、基本的には以下に示す方法により製造することができる。すなわち、後の加熱工程により上記一般式(1)で表されるグルタル酸無水物単位(ii)を与える不飽和カルボン酸単量体及び不飽和カルボン酸アルキルエステル単量体と、前記その他のビニル系単量体単位(iv)を含む場合には該単位を与えるビニル系単量体とを共重合させ、原重合体(A)とした後、かかる原重合体(A)を適当な触媒の存在下あるいは非存在下で加熱し(イ)脱アルコール及び/又は(ロ)脱水による分子内環化反応を行わせることにより製造することができる。この場合、典型的には、原重合体(A)を加熱することにより2単位の不飽和カルボン酸単位(iii)のカルボキシル基が脱水されて、あるいは、隣接する不飽和カルボン酸単位(iii)と不飽和カルボン酸アルキルエステル単位(i)からアルコールの脱離により1単位の前記グルタル酸無水物単位(ii)が生成される。
【0028】
この際に用いられる不飽和カルボン酸単量体としては下記一般式(4)
【0029】
【化8】
Figure 2004051928
【0030】
(ただし、Rは水素又は炭素数1〜5のアルキル基を表す)
で表される化合物、マレイン酸、及びさらには無水マレイン酸の加水分解物などが好ましく挙げられるが、特に熱安定性が優れる点でアクリル酸、メタクリル酸が好ましく、より好ましくはメタクリル酸である。これらはその1種または2種以上用いることができる。なお、上記一般式(4)で表される不飽和カルボン酸単量体は、共重合すると上記一般式(2)で表される構造の不飽和カルボン酸単位を与える。
【0031】
また不飽和カルボン酸アルキルエステル系単量体としては、下記一般式(5)で表されるものを好ましく挙げることができる。
【0032】
【化9】
Figure 2004051928
【0033】
(ただし、Rは水素又は炭素数1〜5のアルキル基を表し、Rは炭素数1〜6の脂肪族若しくは脂環式炭化水素基又は1個以上炭素数以下の数の水酸基若しくはハロゲンで置換された炭素数1〜6の脂肪族若しくは脂環式炭化水素基を示す)
これらのうち、炭素数1〜6の脂肪族若しくは脂環式炭化水素基又は置換基を有する該炭化水素基を持つアクリル酸エステルおよび/またはメタクリル酸エステルが特に好適である。なお、上記一般式(5)で表される不飽和カルボン酸アルキルエステル単量体は、共重合すると上記一般式(3)で表される構造の不飽和カルボン酸アルキルエステル単位を与える。
【0034】
不飽和カルボン酸アルキルエステル単量体の好ましい具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−へキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6−ペンタヒドロキシヘキシルおよび(メタ)アクリル酸2,3,4,5−テトラヒドロキシペンチルなどが挙げられ、なかでもメタクリル酸メチルが最も好ましく用いられる。これらはその1種または2種以上を用いることができる。
【0035】
また、本発明で用いる共重合体(A)の製造においては、共重合体の複屈折率が本発明の範囲内となれば、その他のビニル系単量体を用いてもかまわない。その他のビニル系単量体の好ましい具体例としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリルなどのシアン化ビニル系単量体、アリルグリシジルエーテル、無水マレイン酸、無水イタコン酸、N−メチルマレイミド、N−エチルマレイミド、N−シクロヘキシルマレイミド、アクリルアミド、メタクリルアミド、N−メチルアクリルアミド、ブトキシメチルアクリルアミド、N−プロピルメタクリルアミド、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸シクロヘキシルアミノエチル、N−ビニルジエチルアミン、N−アセチルビニルアミン、アリルアミン、メタアリルアミン、N−メチルアリルアミン、2−イソプロペニル−オキサゾリン、2−ビニル−オキサゾリン、2−アクロイル−オキサゾリンおよび2−スチリル−オキサゾリンなどを挙げることができ、これらは単独ないし2種以上を用いることができる。なお、スチレン、α−メチルスチレン、o−メチルスチレン、p−メチルスチレン、o−エチルスチレン、p−エチルスチレンおよびp−t−ブチルスチレン、p−グリシジルスチレン、p−アミノスチレンなどの芳香族ビニル系単量体、N−フェニルマレイミド、メタクリル酸フェニルアミノエチルなどのような芳香環を含む単量体の使用は一般に複屈折率を増大させる方向にあるため、使用しないことが好ましく、使用する場合には共重合体(B)の複屈折率が本発明範囲内となる使用量にとどめることが必要である。
【0036】
原重合体(A)の重合方法については、基本的にはラジカル重合による、塊状重合、溶液重合、懸濁重合、乳化重合等の公知の重合方法を用いることができるが、不純物がより少ない点で溶液重合、塊状重合、懸濁重合が特に好ましい。
【0037】
また、原重合体(A)を90℃以下の重合温度で製造することが、加熱処理後の無色透明性の面で好ましく、より好ましい重合温度は80℃以下であり、特に好ましくは70℃以下である。また、重合温度の下限は、重合が進行する温度であれば、特に制限はないが、重合速度を考慮した生産性の面から、通常50℃以上、好ましくは60℃以上である。また重合時間は、必要な重合率を得るのに十分な時間であれば特に制限はないが、生産効率の点から60〜360分間の範囲が好ましく、90〜180分間の範囲が特に好ましい。
【0038】
本発明において、原重合体(A)の製造時に用いられるこれらの単量体混合物の好ましい割合は、該単量体混合物を100重量%として、不飽和カルボン酸系単量体が15〜50重量%、より好ましくは20〜45重量%、不飽和カルボン酸アルキルエステル系単量体は好ましくは50〜85重量%、より好ましくは55〜80重量%、これらに共重合可能な他のビニル系単量体を用いる場合、その好ましい割合は0〜35重量%である。
【0039】
不飽和カルボン酸系単量体量が15重量%未満の場合には、原重合体(A)の加熱による上記一般式(1)で表されるグルタル酸無水物単位の生成量が少なくなり、耐熱性向上効果が小さくなる傾向がある。一方、不飽和カルボン酸系単量体量が50重量%を超える場合には、原重合体(A)の加熱による環化反応後に、不飽和カルボン酸単位が多量に残存する傾向があり、無色透明性、滞留安定性が低下する傾向がある。
【0040】
本発明における原重合体(A)を加熱し、(イ)脱水および/または(ロ)脱アルコールにより分子内環化反応を行いグルタル酸無水物単位を含有する共重合体を製造する方法は、特に制限はないが、ベントを有する加熱した押出機に通して製造する方法や窒素気流中または真空下で加熱脱揮できる装置内で製造する方法が好ましい。なお、上記の方法により加熱脱揮する温度は、(イ)脱水および/または(ロ)脱アルコールにより分子内環化反応が生じる温度であれば特に限定されないが、好ましくは180〜300℃の範囲、特に200〜280℃の範囲が好ましい。また、この際の加熱脱揮する時間も特に限定されず、所望する共重合組成に応じて適宜設定可能であるが、通常、1分間〜60分間の範囲が好ましい。
【0041】
さらに本発明では、原重合体(A)を上記方法等により加熱する際にグルタル酸無水物への環化反応を促進させる触媒として、酸、アルカリ、塩化合物の1種以上を添加することができる。その添加量は特に制限はなく、原重合体(A)100重量部に対し、0.01〜1重量部程度が適当である。また、これら酸、アルカリ、塩化合物の種類についても特に制限はなく、酸触媒としては、塩酸、硫酸、p−トルエンスルホン酸、リン酸、亜リン酸、フェニルホスホン酸、リン酸メチル等が挙げられる。塩基性触媒としては、金属水酸化物、アミン類、イミン類、アルカリ金属誘導体、アルコキシド類、水酸化アンモニウム塩等が挙げられる。さらに、塩系触媒としては、酢酸金属塩、ステアリン酸金属塩、炭酸金属塩等が挙げられる。これら触媒は本発明の目的を損なわない範囲で1種または2種以上添加することができる。
【0042】
本発明に使用される共重合体中の前記一般式(1)で表されるグルタル酸無水物単位の含有量は、本発明の範囲内の複屈折率とするためには共重合体中5〜60重量%であることが好ましく、より好ましくは5〜50重量%であり、さらに好ましくは10〜45重量%であり、とりわけ20〜40重量%であることが最も好ましい。グルタル酸無水物単位が5重量%未満である場合、耐熱性向上効果が小さく、また十分な低複屈折率が得られない傾向がある。なお、該グルタル酸無水物単位の定量には、一般に赤外分光光度計が用いられる。グルタル酸無水物単位は、1800cm−1及び1760cm−1の吸収が特徴的であり、不飽和カルボン酸単位(1700cm−1)や不飽和カルボン酸アルキルエステル単位(1730cm−1)から区別することができる。
【0043】
また、本発明で用いるの共重合体中に含有される不飽和カルボン酸単位量は0〜10重量%、より好ましくは0〜5重量%である。さらに、不飽和カルボン酸単位を実質的に含まないことが、無色透明性の点において最も好ましい。不飽和カルボン酸単位が10重量%を超える場合には、無色透明性、滞留安定性が低下する傾向がある。また不飽和カルボン酸アルキルエステル系単量体は好ましくは40〜95重量%、より好ましくは50〜95重量%、さらに好ましくは55〜90重量%であり、とりわけ60〜80重量%が好ましい。共重合可能な他のビニル系単量体は好ましくは0〜35重量%である。なお、本発明で用いるの共重合体中に含有される各成分の定量には、上記した赤外分光光度計による方法とともに、H−NMRによる方法を使用することができる。例えば、グルタル酸無水物単位、メタクリル酸、メタクリル酸メチルからなる共重合体の場合、スペクトルの帰属を、0.5〜1.5ppmのピークがメタクリル酸、メタクリル酸メチルおよびグルタル酸無水物環化合物のα−メチル基の水素、1.6〜2.1ppmのピークはポリマー主鎖のメチレン基の水素、3.5ppmのピークはメタクリル酸メチルのカルボン酸エステル(−COOCH)の水素、12.4ppmのピークはメタクリル酸のカルボン酸の水素と、スペクトルの積分比から共重合体組成を決定することができる。
【0044】
上記組成を有する共重合体は、前述したように、原重合体(A)を加熱脱揮する温度、時間等を適宜設定して製造することにより得ることができる。
【0045】
また、このような共重合体の極限粘度に特に制限はないが、ウベローデ型粘度系でジメチルホルムアミド溶液、30℃で測定した極限粘度が0.1〜0.7dl/gであることが好ましく、より好ましくは0.3〜0.6dl/gである。
【0046】
また、本発明で用いる共重合体は、ガラス転移温度が120℃以上と優れた耐熱性を有し、好ましい態様においては130℃以上の極めて優れた耐熱性を有する。上限については光透過材料として用い得る限り特に制限はないが、160℃程度のものをも得ることができる。尚、ここでいうガラス転移温度とは、示差走査熱量計(Perkin Elmer社製DSC−7型)を用いて測定したガラス転移温度(Tg)である。
【0047】
また、本発明で用いる共重合体は、特異的に表面硬度(鉛筆硬度)が高く耐傷性に優れることを見出した。そのため、特にレーザー光が透過し、精密な情報記録を読みとる光ディスクの基板あるいは保護層のベース材料として適している。本発明で好ましい態様、特にグルタル酸無水物単位の含有量が好ましい範囲にある共重合体においては鉛筆硬度として4H以上の表面硬度を有し、特に好ましい態様においては5H以上である。なお、鉛筆硬度は、共重合体をガラス転移温度+100℃でプレス成形して得た50mm×50mm×0.5mmの成形品を用い、JIS−K−5401に準じて測定した。
【0048】
本発明で用いる共重合体は、好ましい態様において全光線透過率(共重合体をガラス転移温度+100℃でプレス成形して得た50mm×50mm×0.5mmの成形品を用い、JIS−K−6714に従い測定した全光線透過率)は85%以上であり、より好ましい態様においては88%以上、特に好ましい態様においては90%以上の優れた光透過性を有するのでかかる共重合体からなる材料は、光学材料として十分な性能を発揮することが可能である。また、短波長領域である350〜410nm波長の紫外光の透過性も好ましい態様においては85%以上、特に好ましい態様においては88%以上と優れている。この領域の波長での光透過性は、光ディスクに用いた場合に、短波長レーザー光による書き込み、読み取りに必要であるが、本発明で用いる共重合体からなる光透過用光学材料は光ディスクに用いる場合に優れた性能を発揮することが可能である。なお、短波長領域の紫外光の透過性は紫外可視分光光度計により測定できる。
本発明の光透過用光学材料は上記共重合体からなるものであるが、さらに、本発明の目的を損なわない範囲でヒンダードフェノール系、ベンゾトリアゾール系、ベンゾフェノン系、ベンゾエート系、およびシアノアクリレート系の紫外線吸収剤および酸化防止剤、高級脂肪酸や酸エステル系および酸アミド系、さらに高級アルコールなどの滑剤および可塑剤、モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステラアマイドおよびエチレンワックスなどの離型剤、亜リン酸塩、次亜リン酸塩などの着色防止剤、ハロゲン系難燃剤、リン系やシリコーン系の非ハロゲン系難燃剤、核剤、アミン系、スルホン酸系、ポリエーテル系などの帯電防止剤、顔料などの着色剤などの添加剤を任意に含有させることができる。特に光ディスク基板あるいは保護膜に用いた場合には、使用されるレーザー光の波長領域に光吸収のない添加剤が好ましい。
【0049】
かかる添加剤は公知の方法により配合することが可能であり、例えば本発明で用いる共重合体およびその他の必要な添加剤を予備混合して、またはせずに押出機などに供給して180〜350℃で溶融混練することが可能である。
【0050】
以上説明したように、本発明の光透過用光学材料は優れた耐熱性、透明性等の特性を併せ持ち、特に低複屈折率(光学的等方性)で、耐傷性に優れる。従って、本発明の光透過用光学材料は特に低複屈折率を要求される用途に好適に使用することができる。
【0051】
具体的には、コンパクトディスク(CD、CD−ROM等)、ミニディスク(MD)、DVD等の各種光ディスク基板、液晶ディスプレイ(LCD)基板、液晶表示装置のバックライト用導光板、メーターパネル、操作パネル等のバックライト、テールランプ等の照明装置、偏光フィルム、位相差フィルム、光拡散フィルム、タッチパネル用導光フィルム、視野角拡大フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上フィルム、およびこれらの基板、フィルム、その他の保護層等の各種光学フィルム、プリズム、ピックアップレンズ、光学フィルタ、光ファイバー等が挙げられる。
【0052】
中でも、光ディスクの信号読み取り用レーザーの入光面を保護するフィルムとして好適であり、とりわけ本発明の光透過用光学材料は上記の優れた特性に加えて、短波長光(ブルーレーザー)領域での光透過性にも優れることから、更なる高記録密度化が検討されている該短波長光を利用したDVDのような光ディスクにおいて、その短波長信号読み取り用レーザーの入光面を保護する保護層(好ましくは0.01〜0.6mmの厚さを有する)として好適に使用することができる。
【0053】
また、優れた耐熱性と透明性、および低複屈折率(光学的等方性)から液晶表示装置のバックライト用やメーターパネル、操作パネル等のバックライト、テールランプ等の照明装置などの導光板として好適に使用することができる。
【0054】
【実施例】
以下、実施例により本発明の構成、効果をさらに具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。各実施例の記述に先立ち、実施例で採用した各種物性の測定方法を記載する。
【0055】
(1)ガラス転移温度(Tg)
示差走査熱量計(Perkin Elmer社製DSC−7型)を用い、窒素雰囲気下、20℃/minの昇温速度で測定した。
【0056】
(2)H−NMR
日本電子(株)製400MHz核磁気共鳴装置(NMR)を用いて、重ジメチルスルホキシド溶媒に溶解した各サンプルの測定を行った。
【0057】
(3)極限粘度
得られた共重合体をジメチルホルムアミドを溶媒として、30℃での極限粘度を測定した。
【0058】
(4)全光線透過率
ガラス転移温度+100℃でプレス成形して得た50mm×50mm×0.5mmの成形品のについて、JIS−K−5401に従い、東洋精機(株)製直読ヘイズメーターを用いて、23℃での全光線透過率(%)を測定し、透明性を評価した。
【0059】
(5)短波長領域の光透過率
島津製作所製紫外可視分光光度計(UV−1600PC)を用いて、上記(4)でプレス成形して得た50mm×50mm×0.5mmの成形品の360、405nmにおける透過率を測定した。
【0060】
(6)複屈折率
流延法により得た約100μm(100±5μm)の無配向フィルムを、そのガラス転移温度で1.5倍に一軸延伸したフィルムをASTM D542に準じて、エリプソメーター(大塚電子株式会社製、LCDセルギャップ検査装置 RETS−1100)を用いて23℃で、レーザー光をフィルムサンプル面に対して90°の角度で照射し、透過光の405nmでのリターデーション(Re)を測定した。また、ミツトヨ製デジマティックインジケーターを用いて、上記延伸フィルムの23℃での厚み(d)を測定し、これらを基に下記式により複屈折率(Δn)を算出した。
【0061】
Δn=Re(nm)/d(nm)
(7)鉛筆硬度
上記(4)でプレス成形して得た50mm×50mm×0.5mmの成形品の鉛筆硬度をJIS−K−5401に準じて測定した。
【0062】
[実施例1]  グルタル酸無水物単位含有共重合体の製造
(1)原重合体(A−1)の製造
容量が5リットルで、バッフルおよびファウドラ型撹拌翼を備えたステンレス製オートクレーブに、メタクリル酸メチル/アクリルアミド共重合体系懸濁剤(以下の方法で調整した。メタクリル酸メチル20重量部、アクリルアミド80重量部、過硫酸カリウム0.3重量部、イオン交換水1500重量部を反応器中に仕込み反応器中を窒素ガスで置換しながら70℃に保つ。反応は単量体が完全に、重合体に転化するまで続け、アクリル酸メチルとアクリルアミド共重合体の水溶液として得る。得られた水溶液を懸濁剤として使用した)0.05部をイオン交換水165部に溶解した溶液を供給し、400rpmで撹拌し、系内を窒素ガスで置換した。次に、下記混合物質を反応系を撹拌しながら添加し、70℃に昇温した。内温が70℃に達した時点を重合開始として、180分間保ち、重合を終了した。以降、通常の方法に従い、反応系の冷却、ポリマーの分離、洗浄、乾燥を行い、ビーズ状の原重合体(A−1)を得た。この原重合体(A−1)の重合率は98%であった。
メタクリル酸            30重量部
メタクリル酸メチル         70重量部
t−ドデシルメルカプタン       0.6重量部
2,2’−アゾビスイソブチロニトリル 0.4重量部
(2)共重合体(B−1)
(1)によって得られたビーズ状原重合体(A−1)を、角型真空定温乾燥器(ヤマト科学(株)製DP−32型)を用いて250℃、2.6kPaに減圧し、30分間真空加熱処理を行い、グルタル酸無水物単位を含有する共重合体(B−1)を得た。得られた共重合体(B−1)を赤外分光光度計用いて分析した結果、1800cm−1及び1760cm−1に吸収ピークが確認され、この共重合体(B−2)中にグルタル酸無水物単位が形成していることを確認した。また、この共重合体を重ジメチルスルホキシドに溶解させ、室温(23℃)にてH−NMRを測定し、スペクトルの帰属を、0.5〜1.5ppmのピークがメタクリル酸、メタクリル酸メチルおよびグルタル酸無水物環化合物のα−メチル基の水素、1.6〜2.1ppmのピークはポリマー主鎖のメチレン基の水素、3.5ppmのピークはメタクリル酸メチルのカルボン酸エステル(−COOCH)の水素、12.4ppmのピークはメタクリル酸のカルボン酸の水素とした。スペクトルの積分比から共重合体組成を決定したところ、メタクリル酸メチル(MAA)単位76重量%、グルタル酸無水物(GAH)単位20重量%、メタクリル酸(MAA)単位4重量%であった。また、この共重合体(B−1)の極限粘度は0.47dl/gであり、Tgは151℃であった。
【0063】
上記共重合体について各種物性を測定した。尚、複屈折率測定用延伸フィルムは、上記樹脂の20重量%THF溶液を調製し、流延法により未配向フィルムを得、この未配向フィルムを各樹脂のガラス転移温度で1.5倍に一軸延伸し、延伸フィルムを作製した。測定した各種物性を表1に示した。
【0064】
[実施例2]
実施例1と同様の原重合体(A−1)を用いて実施例1(2)と同様の製造方法で280℃、30分間真空加熱処理を行い、共重合体(B−2)を得た。この共重合体(B−2)を赤外分光光度計用いて分析した結果、1800cm−1及び1760cm−1に吸収ピークが確認され、この共重合体(B−2)中にグルタル酸無水物単位が形成していることを確認した。また、この共重合体を重ジメチルスルホキシドに溶解させ、室温(23℃)にてH−NMRを測定し、スペクトルの積分比から共重合体組成を決定したところ、メタクリル酸メチル単位73重量%、グルタル酸無水物単位27重量%、メタクリル酸単位は0%で検出されなかった。また、この共重合体(B−2)の極限粘度は0.418dl/gであり、Tgは153℃であった。得られた共重合体(B−2)について実施例1と同様に各種物性を測定した。測定した各種物性を表1に示した。
【0065】
[実施例3]
単量体混合物としてメタクリル酸15重量部、メタクリル酸メチル85重量部を用いた以外は、実施例1と同様の製造方法で原重合体(A−3)を97%の重合率で得、これを用いて実施例1(2)と同様の製造方法で250℃、2時間真空加熱処理を行い、共重合体(B−3)を得た。この共重合体(B−3)を赤外分光光度計用いて分析した結果、1800cm−1及び1760cm−1に吸収ピークが確認され、この共重合体(B−3)中にグルタル酸無水物単位が形成していることを確認した。また、この共重合体を重ジメチルスルホキシドに溶解させ、室温(23℃)にてH−NMRを測定し、スペクトルの積分比から共重合体組成を決定したところ、メタクリル酸メチル単位85重量%、グルタル酸無水物単位15重量%、メタクリル酸単位は0%で検出されなかった。また、この共重合体(B−3)の極限粘度は0.41dl/gであり、Tgは135℃であった。得られた共重合体(B−3)について実施例1と同様に各種物性を測定した。測定した各種物性を表1に示した。
【0066】
[比較例1]
単量体混合物としてメタクリル酸30重量部、メタクリル酸メチル50重量部、スチレン20重量部を用いた以外は、実施例1と同様の製造方法で原重合体(A−1−1)を97%の重合率で得、これを用いて実施例1(2)と同様の製造方法で共重合体(B−1−1)を得た。この共重合体(B−1−1)を赤外分光光度計用いて分析した結果、1800cm−1及び1760cm−1に吸収ピークが確認され、この共重合体(B−1−1)中にグルタル酸無水物単位が形成していることを確認した。また、この共重合体を重ジメチルスルホキシドに溶解させ、室温(23℃)にてH−NMRを測定し、共重合体組成を決定したところ、メタクリル酸メチル単位55重量%、グルタル酸無水物単位20重量%、スチレン(ST)単位21重量%、メタクリル酸単位4重量%であった。また、この共重合体(B−1−1)の極限粘度は0.47dl/gであり、Tgは148℃であった。
【0067】
得られた共重合体(B−1−1)について実施例1と同様に各種物性を測定した。測定した各種物性を表1に示した。
【0068】
[比較例2、3]
ポリメタクリル酸メチル樹脂(住友化学製スミペックスMG)、ポリカーボネート樹脂(帝人化成製AD5503)を用いて同様の物性測定を行った。尚、複屈折率測定用延伸フィルムは、上記樹脂の20重量%クロロホルム溶液を調製し、流延法により未配向フィルムを得、この未配向フィルムを各樹脂のガラス転移温度で1.5倍に一軸延伸し、延伸フィルムを作製した。測定した各種物性を表1に示した。
【0069】
【表1】
Figure 2004051928
【0070】
表1の実施例1〜3および比較例1〜3の結果より、本発明の共重合体は耐熱性、光透過性に優れ、また、短波長光の透過率にも優れることがわかる。さらに、低複屈折性(光学的等方性)に極めて優れ、表面硬度が高く、優れた耐傷性を有する光透過用光学材料を提供することができる。
【0071】
一方、比較例1に示したように共重合体中にスチレン単位が存在すると複屈折率が大きくなり、光学的等方性に劣る。また、短波長光の透過率および、表面硬度も不十分であることがわかる。さらに、比較例2および、3に示したようにPMMA樹脂では耐熱性が不十分であり、またPC樹脂では複屈折率、短波長光の透過率が十分でなく、高度な光学特性が得られないし、表面硬度にも劣ることがわかる。
【0072】
〔実施例4〕
実施例1記載の共重合体B−1をディスク用成形機(J40ELIII−DK;日本製鋼所社製)に供し、5インチ(12.7mm直径)×0.6mm厚のディスク型成形品を作成した。エリプソメーター(大塚電子株式会社製、LCDセルギャップ検査装置 RETS−1100)で23℃、405nmでの透過光の複屈折率を測定した。その結果、0.6×10−4であり、ディスク型成形品においても、極めて優れた光学等方性を示すことがわかる。
【0073】
〔実施例5〕
比較例3記載のポリカーボネートをディスク用成形機(J40ELIII−DK;日本製鋼所社製)に供し、5インチ(12.7mm直径)×0.6mm厚のディスク型基板を作成し、この上に日立(株)製真空蒸着装置にてアルミニウムの反射膜を蒸着した。その上に、流延法により作成した実施例1記載の共重合体B−1のフィルム(80μm)厚)をこれを20μm厚の感圧性接着シート(日東電工社製、DA−8310)を介して貼り合わせ、実施例1記載の共重合体B−1の光透過保護層を有する光ディスクサンプルを作成した。エリプソメーター(大塚電子株式会社製、LCDセルギャップ検査装置 RETS−1100)で23℃、405nmのレーザー光を光ディスクサンプル面に対して30°の角度で照射し、その反射光のレタデーションを測定した結果、1.1nmであった。
【0074】
〔比較例4〕
光透過保護層をポリカーボネート樹脂(帝人化成製AD5503)の流延法により作成したフィルム(80μm)厚)に変更した以外は実施例5と同様に光ディスクサンプルを作成した。エリプソメーター(大塚電子株式会社製、LCDセルギャップ検査装置 RETS−1100)で23℃、405nmのレーザー光を光ディスクサンプル面に対して30°の角度で照射し、その反射光のレタデーションを測定した結果、10.5nmであった。
【0075】
実施例5および比較例4の比較から、本発明の共重合体の光透過保護層を有する光ディスクは優れた低複屈折特性であることがわかる。
【0076】
〔実施例6〕
実施例1記載の共重合体A−1を射出成形し、200mm×120mm×3mmの成形品を作成し、さらに図1に示す断面模式図のように拡散シート(3)、導光板(1)、反射シート(4)から成る導光板を作成し、これに光源(2)、リフレクター(5)を設置して導光性の確認を行った。その結果、透明性、導光性に優れ、導光板として有用であることがわかった。
【0077】
【発明の効果】
以上説明したように、本発明の共重合体からなる光透過用光学材料は、高度な透明性、耐熱性、耐傷性を有し、とりわけ低複屈折性(光学的等方性)に極めて優れる。
【図面の簡単な説明】
【図1】実施例6で作製した導光板の側面断面図である。
【符号の説明】
1・・・導光板
2・・・光源
3・・・拡散シート
4・・・反射シート
5・・・リフレクター[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light transmitting optical material comprising a copolymer having excellent transparency, heat resistance, and scratch resistance, and particularly having a low birefringence and excellent optical isotropy.
[0002]
[Prior art]
In recent years, transparent resins have been used not only as molding materials for conventional automobile parts, lighting equipment, electrical parts, etc., which require ordinary transparency, but also for optical lenses, prisms, mirrors, optical disks, optical fibers, and liquid crystal displays. It has been widely used for higher performance optical materials such as sheets and films and light guide plates.
[0003]
As these resins for optical materials, polymethyl methacrylate (hereinafter referred to as PMMA) and polycarbonate (hereinafter referred to as PC) have been mainly used. However, PMMA has a problem of low heat resistance. Has a problem that the birefringence, which is an optical strain, is large, and the molded product has optical anisotropy.
[0004]
In particular, an optical disk is an example of an optical resin application requiring high optical performance. Since optical recording using a laser enables recording, storage and reproduction of high-density information, improvement and development of optical disks are being actively promoted. An optical disk is basically composed of a transparent substrate and various recording media coated thereon.
[0005]
The current state of the art in optical discs is to mold PCs having a large birefringence index by suppressing the birefringence index by devising molding conditions. The optical disk obtained in this manner is widely used for CDs (compact disks) having a relatively moderate birefringence limit, DVDs (digital versatile disks) with low recording density, MOs (magneto-optical disks), and the like. I have.
[0006]
However, further increase in the density of recorded information in recent years is accompanied by shortening the wavelength of a laser used and increasing the NA (numerical aperture) of an optical lens system. In particular, for DVDs, use of short wavelength light (blue laser) with a laser wavelength of about 350 to 410 nm and NA value of 0.6 or more has been studied. PC containing an aromatic group in the molecule has a large birefringence, Since the light transmittance in the short wavelength region is reduced, a limitation in use has been pointed out. In addition, PC has a problem that it cannot be read due to low surface hardness and poor scratch resistance.
[0007]
Further, recently, the demand for a light guide plate for a backlight of a liquid crystal display device made of a transparent resin has been increasing. The light guide plate for a backlight has a function of propagating, diffusing, and emitting a light beam incident from a predetermined direction of the light guide plate to the liquid crystal cell side. As a backlight system, an edge light system in which a light source is arranged at an edge of a light guide plate is mainly used in view of a demand for a thin liquid crystal display device. In such an edge light method, since the light transmission distance in the light guide plate is relatively long, light loss in the light guide plate increases, and in order to prevent the loss, the material used for the light guide plate has a high light transmittance. Is required.
[0008]
Further, the light guide plate is often used for applications requiring heat resistance, such as a back light for a meter panel and an operation panel for a vehicle, a back lighting device such as a tail lamp, and a liquid crystal display device for a car navigation system. Furthermore, for a liquid crystal display device capable of displaying a more uniform image in the future, a higher optically uniform material having a small birefringence is required for the light guide plate.
[0009]
For this reason, materials used for the light guide plate are required to have high heat resistance, high light transmittance, and low birefringence (optical isotropy).
[0010]
In view of such a situation, a cyclic polyolefin (hereinafter referred to as COC) using a polycyclic norbornene-based monomer has been developed as an optical transparent resin that solves the above problems. These have heat resistance, low birefringence, and light transmittance at a short wavelength. However, a transition metal catalyst is used as a polymerization catalyst at the time of production of COC. However, if the transition metal remains, it causes coloring and a decrease in transparency. Further, the production of the cyclic polyolefin requires a hydrogenation reaction, and a transition metal catalyst is also used in the hydrogenation reaction. For this reason, not only the coloring and the transparency due to the remaining transition metal are reduced, but also such a hydrogenation reaction has a problem that the production cost is increased.
[0011]
JP-A-60-133004 and JP-A-63-264613 disclose a method using a copolymer having a specific 6-membered cyclic anhydride unit and an aromatic vinyl compound unit. However, since the copolymer specifically described in the publication also contains a considerable amount of an aromatic vinyl compound group, the obtained birefringence and light transmittance in a short wavelength region are required to be improved in recent years. There is a problem that the characteristics cannot be sufficiently satisfied.
[0012]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems. Accordingly, an object of the present invention is to provide an optical material for light transmission which has excellent transparency, heat resistance, and scratch resistance, and is also extremely excellent in low birefringence (optical isotropy).
[0013]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, a material comprising a specific copolymer having an unsaturated carboxylic acid alkyl ester unit and a glutaric anhydride unit has excellent transparency and heat resistance. The present invention has been found to be useful as an optical molding material having excellent scratch resistance and extremely low birefringence (optical anisotropy).
[0014]
That is, the present invention
[1] (i) an unsaturated carboxylic acid alkyl ester unit, (ii) the following general formula (1)
[0015]
Embedded image
Figure 2004051928
[0016]
(In the above formula, R 1 , R 2 Represents the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms. )
Or a copolymer having an unsaturated carboxylic acid unit in the unit (i) or (ii) or a unit having the unsaturated carboxylic acid unit or a unit (i) or (ii) A copolymer having (iv) another vinyl monomer unit in addition to the units (i), (ii) and (iii), and having an absolute value of birefringence of 1.0 × 10 -4 An optical material for light transmission comprising the following copolymer,
[2] The optically transparent material according to [1] above, wherein the content of (ii) glutaric anhydride unit in the copolymer is 5 to 60% by weight.
[3] The optical material for light transmission according to [1] or [2], wherein the copolymer has a pencil hardness of 4H or more.
[4] The optical material for light transmission according to any one of [1] to [3], wherein the glass transition temperature of the copolymer is 120 ° C. or higher.
[5] The optical material for light transmission according to any one of [1] to [4], wherein the unsaturated carboxylic acid unit (iii) has a structure represented by the following general formula (2):
[0017]
Embedded image
Figure 2004051928
[0018]
(However, R 3 Represents hydrogen or an alkyl group having 1 to 5 carbon atoms)
[6] The optical material for light transmission according to any one of [1] to [5], wherein the unsaturated carboxylic acid alkyl ester unit (i) has a structure represented by the following general formula (3):
[0019]
Embedded image
Figure 2004051928
[0020]
(However, R 4 Represents hydrogen or an alkyl group having 1 to 5 carbon atoms; 5 Represents an aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms or an aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms substituted with a hydroxyl group having 1 or more carbon atoms or less or a halogen. )
[7] The copolymer is obtained by polymerizing a monomer mixture containing an unsaturated carboxylic acid monomer and an unsaturated carboxylic acid alkyl ester monomer to obtain a raw polymer (A). The optical material for light transmission according to any one of [1] to [6], wherein A) is produced by heating A) and performing a dehydration and / or dealcoholation reaction.
[8] An optical disk substrate made of the optical material for light transmission according to any one of [1] to [7],
[9] An optical film comprising the optical material for light transmission according to any one of [1] to [7],
[10] A protective layer of the optical material for light transmission according to any one of [1] to [7], having a thickness of 0.01 to 0.6 mm, through which information can be recorded by laser light. An optical disc having a readable structure, and
[11] A light guide plate made of the optical material for light transmission according to any one of [1] to [7].
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the optical material for light transmission of the present invention will be specifically described.
[0022]
The optical material for light transmission according to the present invention includes (i) an unsaturated carboxylic acid alkyl ester-based monomer,
[0023]
Embedded image
Figure 2004051928
[0024]
(In the above formula, R 1 , R 2 Represents the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms. )
Or a copolymer having an unsaturated carboxylic acid unit (iii) or a unit (i) or (ii) or a unit (i) or (ii) , (Iii) further comprising (iv) a copolymer having another vinyl monomer unit.
[0025]
The absolute value of the birefringence of the copolymer used in the present invention is 1.0 × 10 -4 Must be less than or equal to, preferably 0.7 × 10 -4 Or less, most preferably 0.5 × 10 -4 It is as follows. The lower limit of the birefringence is not particularly limited, and the ideal birefringence is 0, but usually 0.01 × 10 -4 That is all.
[0026]
Here, the absolute value of the birefringence is defined as a value obtained by uniaxially stretching a non-oriented film having a thickness of 100 ± 5 μm obtained by a casting method 1.5 times at a glass transition temperature according to ASTM D542. It is the absolute value of the birefringence determined by measuring the retardation at 405 nm and dividing by the thickness.
[0027]
The method for producing the copolymer used in the present invention is not particularly limited as long as it has the above-mentioned birefringence, but can be basically produced by the following method. That is, an unsaturated carboxylic acid monomer and an unsaturated carboxylic acid alkyl ester monomer that give the glutaric anhydride unit (ii) represented by the general formula (1) in a subsequent heating step, In the case of containing a monomer unit (iv), the monomer unit is copolymerized with a vinyl monomer giving the unit to form a raw polymer (A), and then the raw polymer (A) is treated with an appropriate catalyst. The compound can be produced by heating in the presence or absence of the compound and performing an intramolecular cyclization reaction by (a) dealcoholization and / or (b) dehydration. In this case, typically, the carboxyl group of two unsaturated carboxylic acid units (iii) is dehydrated by heating the raw polymer (A), or the adjacent unsaturated carboxylic acid units (iii) And one unit of the glutaric anhydride unit (ii) is produced by elimination of the alcohol from the unsaturated carboxylic acid alkyl ester unit (i).
[0028]
The unsaturated carboxylic acid monomer used in this case is represented by the following general formula (4)
[0029]
Embedded image
Figure 2004051928
[0030]
(However, R 3 Represents hydrogen or an alkyl group having 1 to 5 carbon atoms)
And maleic anhydride, and furthermore, a hydrolyzate of maleic anhydride, etc., are preferred. In particular, acrylic acid and methacrylic acid are preferable in terms of excellent thermal stability, and methacrylic acid is more preferable. These can be used alone or in combination of two or more. The unsaturated carboxylic acid monomer represented by the general formula (4) gives an unsaturated carboxylic acid unit having a structure represented by the general formula (2) when copolymerized.
[0031]
In addition, as the unsaturated carboxylic acid alkyl ester-based monomer, those represented by the following general formula (5) can be preferably exemplified.
[0032]
Embedded image
Figure 2004051928
[0033]
(However, R 4 Represents hydrogen or an alkyl group having 1 to 5 carbon atoms; 5 Represents an aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms or an aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms substituted with a hydroxyl group having 1 or more carbon atoms or less or a halogen. )
Among them, acrylates and / or methacrylates having an aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms or a hydrocarbon group having a substituent are particularly preferred. In addition, the unsaturated carboxylic acid alkyl ester monomer represented by the general formula (5) gives an unsaturated carboxylic acid alkyl ester unit having a structure represented by the general formula (3) when copolymerized.
[0034]
Preferred specific examples of the unsaturated carboxylic acid alkyl ester monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and (meth) acrylate. ) T-butyl acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate , 3-hydroxypropyl (meth) acrylate, 2,3,4,5,6-pentahydroxyhexyl (meth) acrylate, 2,3,4,5-tetrahydroxypentyl (meth) acrylate and the like. Of these, methyl methacrylate is most preferably used. One or more of these can be used.
[0035]
In the production of the copolymer (A) used in the present invention, other vinyl monomers may be used as long as the birefringence of the copolymer falls within the range of the present invention. Preferred specific examples of other vinyl monomers include acrylonitrile, methacrylonitrile, vinyl cyanide monomers such as ethacrylonitrile, allyl glycidyl ether, maleic anhydride, itaconic anhydride, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, acrylamide, methacrylamide, N-methylacrylamide, butoxymethylacrylamide, N-propylmethacrylamide, aminoethyl acrylate, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, ethyl methacrylate Aminopropyl, cyclohexylaminoethyl methacrylate, N-vinyldiethylamine, N-acetylvinylamine, allylamine, methallylamine, N-methylallylamine, 2-iso Ropeniru - oxazoline, 2-vinyl - oxazoline, 2-acryloyl - oxazoline and 2-styryl - like can be mentioned oxazoline, it alone to can be used two or more kinds. In addition, aromatic vinyl such as styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, o-ethylstyrene, p-ethylstyrene and pt-butylstyrene, p-glycidylstyrene, and p-aminostyrene The use of a monomer containing an aromatic ring such as a system monomer, N-phenylmaleimide, or phenylaminoethyl methacrylate generally tends to increase the birefringence. It is necessary that the amount used is such that the birefringence of the copolymer (B) falls within the range of the present invention.
[0036]
As the polymerization method of the raw polymer (A), a known polymerization method such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization or the like can be basically used by radical polymerization. Solution polymerization, bulk polymerization and suspension polymerization are particularly preferred.
[0037]
Further, it is preferable to produce the raw polymer (A) at a polymerization temperature of 90 ° C. or lower from the viewpoint of colorless and transparent after the heat treatment, and a more preferable polymerization temperature is 80 ° C. or lower, particularly preferably 70 ° C. or lower. It is. The lower limit of the polymerization temperature is not particularly limited as long as the polymerization proceeds, but is usually 50 ° C. or higher, preferably 60 ° C. or higher from the viewpoint of productivity in consideration of the polymerization rate. The polymerization time is not particularly limited as long as it is a time sufficient to obtain a required polymerization rate, but is preferably in the range of 60 to 360 minutes, particularly preferably 90 to 180 minutes from the viewpoint of production efficiency.
[0038]
In the present invention, a preferable ratio of the monomer mixture used in the production of the raw polymer (A) is 15 to 50% by weight of the unsaturated carboxylic acid monomer based on 100% by weight of the monomer mixture. %, More preferably 20 to 45% by weight, and the unsaturated carboxylic acid alkyl ester-based monomer is preferably 50 to 85% by weight, more preferably 55 to 80% by weight, and other vinyl monomers copolymerizable therewith. When a monomer is used, its preferable ratio is 0 to 35% by weight.
[0039]
When the amount of the unsaturated carboxylic acid-based monomer is less than 15% by weight, the amount of the glutaric anhydride unit represented by the general formula (1) by heating the raw polymer (A) is reduced, The effect of improving heat resistance tends to decrease. On the other hand, when the amount of the unsaturated carboxylic acid monomer exceeds 50% by weight, a large amount of unsaturated carboxylic acid units tends to remain after the cyclization reaction of the raw polymer (A) by heating, and Transparency and retention stability tend to decrease.
[0040]
A method for producing a copolymer containing a glutaric anhydride unit by heating the raw polymer (A) in the present invention and performing (a) an intramolecular cyclization reaction by dehydration and / or (b) dealcoholation to produce a copolymer containing glutaric anhydride units Although there is no particular limitation, a method of producing through a heated extruder having a vent or a method of producing in a device which can be heated and devolatilized in a nitrogen stream or under vacuum is preferable. The temperature for devolatilization by heating according to the above method is not particularly limited as long as the temperature at which an intramolecular cyclization reaction occurs by (a) dehydration and / or (b) dealcoholation, but is preferably in the range of 180 to 300 ° C. And particularly preferably in the range of 200 to 280 ° C. In addition, the time for heat devolatilization at this time is not particularly limited, and can be appropriately set depending on a desired copolymer composition, but is usually preferably in a range of 1 minute to 60 minutes.
[0041]
Further, in the present invention, when the raw polymer (A) is heated by the above method or the like, one or more kinds of acids, alkalis, and salt compounds may be added as a catalyst for promoting a cyclization reaction to glutaric anhydride. it can. The addition amount is not particularly limited, and is suitably about 0.01 to 1 part by weight based on 100 parts by weight of the raw polymer (A). There are no particular restrictions on the type of these acids, alkalis, and salt compounds. Examples of the acid catalyst include hydrochloric acid, sulfuric acid, p-toluenesulfonic acid, phosphoric acid, phosphorous acid, phenylphosphonic acid, and methyl phosphate. Can be Examples of the basic catalyst include metal hydroxides, amines, imines, alkali metal derivatives, alkoxides, and ammonium hydroxide salts. Further, examples of the salt-based catalyst include metal acetate, metal stearate, and metal carbonate. One or more of these catalysts can be added as long as the object of the present invention is not impaired.
[0042]
The content of the glutaric anhydride unit represented by the above general formula (1) in the copolymer used in the present invention is preferably 5% in order to obtain a birefringence within the range of the present invention. It is preferably from 60 to 60% by weight, more preferably from 5 to 50% by weight, still more preferably from 10 to 45% by weight, and most preferably from 20 to 40% by weight. When the glutaric anhydride unit is less than 5% by weight, the effect of improving heat resistance is small, and a sufficiently low birefringence tends not to be obtained. In addition, an infrared spectrophotometer is generally used for the quantification of the glutaric anhydride unit. Glutaric anhydride unit is 1800cm -1 And 1760cm -1 Of unsaturated carboxylic acid units (1700 cm -1 ) And unsaturated carboxylic acid alkyl ester units (1730 cm -1 ).
[0043]
The amount of unsaturated carboxylic acid units contained in the copolymer used in the present invention is 0 to 10% by weight, more preferably 0 to 5% by weight. Further, it is most preferable that the composition does not substantially contain an unsaturated carboxylic acid unit from the viewpoint of colorless transparency. When the amount of the unsaturated carboxylic acid unit exceeds 10% by weight, the colorless transparency and the retention stability tend to decrease. The content of the unsaturated carboxylic acid alkyl ester monomer is preferably 40 to 95% by weight, more preferably 50 to 95% by weight, further preferably 55 to 90% by weight, and particularly preferably 60 to 80% by weight. The other copolymerizable vinyl monomer is preferably from 0 to 35% by weight. The quantification of each component contained in the copolymer used in the present invention, together with the method using the infrared spectrophotometer described above, 1 A method based on H-NMR can be used. For example, in the case of a copolymer consisting of glutaric anhydride units, methacrylic acid and methyl methacrylate, the peak of 0.5 to 1.5 ppm is assigned to a spectrum, and the peak of 0.5 to 1.5 ppm is methacrylic acid, methyl methacrylate and a glutaric anhydride ring compound. , A peak at 1.6 to 2.1 ppm is a hydrogen of a methylene group in the polymer main chain, and a peak at 3.5 ppm is a carboxylic acid ester of methyl methacrylate (—COOCH). 3 The hydrogen of 12.4 ppm can determine the copolymer composition from the hydrogen of carboxylic acid of methacrylic acid and the integral ratio of the spectrum.
[0044]
As described above, the copolymer having the above composition can be obtained by appropriately setting the temperature, time and the like for heating and devolatilizing the raw polymer (A).
[0045]
The intrinsic viscosity of such a copolymer is not particularly limited, but the intrinsic viscosity measured at 30 ° C. in a dimethylformamide solution in an Ubbelohde type viscosity system is preferably 0.1 to 0.7 dl / g, More preferably, it is 0.3 to 0.6 dl / g.
[0046]
In addition, the copolymer used in the present invention has excellent heat resistance such as a glass transition temperature of 120 ° C. or higher, and in a preferred embodiment, has extremely excellent heat resistance of 130 ° C. or higher. The upper limit is not particularly limited as long as it can be used as a light transmitting material, but a material having a temperature of about 160 ° C. can also be obtained. In addition, the glass transition temperature mentioned here is a glass transition temperature (Tg) measured using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer).
[0047]
Further, it has been found that the copolymer used in the present invention has specifically high surface hardness (pencil hardness) and excellent scratch resistance. Therefore, it is particularly suitable as a base material of a substrate or a protective layer of an optical disk through which laser light is transmitted and which can read precise information recording. In a preferred embodiment of the present invention, a copolymer having a glutaric anhydride unit content in a preferred range has a surface hardness of 4H or more as a pencil hardness, and 5H or more in a particularly preferred embodiment. The pencil hardness was measured according to JIS-K-5401 using a molded product of 50 mm × 50 mm × 0.5 mm obtained by press molding the copolymer at a glass transition temperature of + 100 ° C.
[0048]
In a preferred embodiment, the copolymer used in the present invention uses a molded article of 50 mm × 50 mm × 0.5 mm obtained by press-molding the copolymer at a glass transition temperature of + 100 ° C. according to JIS-K- (Total light transmittance measured according to 6714) is 85% or more, more preferably 88% or more in a more preferred embodiment, and 90% or more in a particularly preferred embodiment. It is possible to exhibit sufficient performance as an optical material. Further, the transmittance of ultraviolet light having a wavelength of 350 to 410 nm, which is a short wavelength region, is as excellent as 85% or more in a preferred embodiment, and 88% or more in a particularly preferred embodiment. Light transmittance at wavelengths in this region is necessary for writing and reading with short-wavelength laser light when used for optical discs, but the optical transmission optical material made of the copolymer used in the present invention is used for optical discs. In such cases, it is possible to exhibit excellent performance. The transmittance of ultraviolet light in a short wavelength region can be measured by an ultraviolet-visible spectrophotometer.
Although the optical material for light transmission of the present invention is composed of the above-mentioned copolymer, further, a hindered phenol-based, benzotriazole-based, benzophenone-based, benzoate-based, and cyanoacrylate-based material within a range that does not impair the object of the present invention. UV absorbers and antioxidants, higher fatty acids and acid esters and acid amides, as well as lubricants and plasticizers such as higher alcohols, montanic acid and its salts, its esters, its half esters, stearyl alcohol, stella amide and ethylene Release agents such as waxes, coloring inhibitors such as phosphites and hypophosphites, halogen-based flame retardants, phosphorus-based and silicone-based non-halogen-based flame retardants, nucleating agents, amine-based, sulfonic-acid-based, Optional addition of additives such as antistatic agents such as polyethers and coloring agents such as pigments It can be. In particular, when used for an optical disk substrate or a protective film, an additive that does not absorb light in the wavelength region of the laser light used is preferable.
[0049]
Such additives can be compounded by a known method. For example, the copolymer used in the present invention and other necessary additives are premixed or supplied to an extruder or the like without or with 180 to 180. Melting and kneading at 350 ° C. is possible.
[0050]
As described above, the optical material for light transmission of the present invention has both excellent properties such as heat resistance and transparency, and particularly has a low birefringence (optical isotropy) and excellent scratch resistance. Therefore, the optical material for light transmission of the present invention can be suitably used particularly for applications requiring a low birefringence.
[0051]
Specifically, various types of optical disk substrates such as compact disks (CD, CD-ROM, etc.), mini disks (MD), DVDs, etc., liquid crystal display (LCD) substrates, light guide plates for liquid crystal display backlights, meter panels, operation panels Backlights such as panels, lighting devices such as tail lamps, polarizing films, retardation films, light diffusion films, light guide films for touch panels, viewing angle widening films, reflection films, antireflection films, antiglare films, brightness enhancement films, and Examples include various optical films such as these substrates, films, and other protective layers, prisms, pickup lenses, optical filters, and optical fibers.
[0052]
Above all, it is suitable as a film for protecting the light entrance surface of a signal reading laser of an optical disk. In particular, the optical material for light transmission of the present invention has, in addition to the above-mentioned excellent properties, a short wavelength light (blue laser) region. A protective layer for protecting the light-entering surface of a laser for reading a short-wavelength signal in an optical disk such as a DVD using the short-wavelength light, for which higher recording density is being studied because of its excellent light transmittance. (Preferably having a thickness of 0.01 to 0.6 mm).
[0053]
In addition, due to its excellent heat resistance and transparency, and low birefringence (optical isotropy), it is used for backlights of liquid crystal display devices, backlights for meter panels and operation panels, and light guide plates for lighting devices such as tail lamps. Can be suitably used.
[0054]
【Example】
Hereinafter, the configuration and effects of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples. Prior to the description of each example, methods for measuring various physical properties adopted in the examples will be described.
[0055]
(1) Glass transition temperature (Tg)
Using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer), the measurement was performed at a heating rate of 20 ° C./min in a nitrogen atmosphere.
[0056]
(2) 1 H-NMR
Each sample dissolved in a heavy dimethyl sulfoxide solvent was measured using a 400 MHz nuclear magnetic resonance apparatus (NMR) manufactured by JEOL Ltd.
[0057]
(3) Intrinsic viscosity
The intrinsic viscosity of the obtained copolymer at 30 ° C. was measured using dimethylformamide as a solvent.
[0058]
(4) Total light transmittance
A molded product of 50 mm × 50 mm × 0.5 mm obtained by press molding at a glass transition temperature of + 100 ° C. was subjected to a total reading at 23 ° C. using a direct-reading haze meter manufactured by Toyo Seiki Co., Ltd. in accordance with JIS-K-5401. The light transmittance (%) was measured to evaluate the transparency.
[0059]
(5) Light transmittance in short wavelength region
The transmittance at 360 and 405 nm of the 50 mm × 50 mm × 0.5 mm molded product obtained by press molding in the above (4) was measured using an ultraviolet-visible spectrophotometer (UV-1600PC) manufactured by Shimadzu Corporation.
[0060]
(6) Birefringence
An ellipsometer (manufactured by Otsuka Electronics Co., Ltd., manufactured by Otsuka Electronics Co., Ltd.) was prepared by uniaxially stretching a non-oriented film of about 100 μm (100 ± 5 μm) obtained by the casting method to 1.5 times the glass transition temperature according to ASTM D542. Using a cell gap inspection apparatus (RETS-1100), a laser beam was irradiated at an angle of 90 ° to the film sample surface at 23 ° C., and the retardation (Re) of the transmitted light at 405 nm was measured. Further, the thickness (d) at 23 ° C. of the stretched film was measured using a Digimatic indicator manufactured by Mitutoyo, and the birefringence (Δn) was calculated from the following formula based on these values.
[0061]
Δn = Re (nm) / d (nm)
(7) Pencil hardness
The pencil hardness of a 50 mm × 50 mm × 0.5 mm molded product obtained by press molding in the above (4) was measured according to JIS-K-5401.
[0062]
[Example 1] Production of copolymer containing glutaric anhydride unit
(1) Production of raw polymer (A-1)
In a stainless steel autoclave having a capacity of 5 liters and equipped with a baffle and a Faudra type stirring blade, a methyl methacrylate / acrylamide copolymer suspension (prepared by the following method: 20 parts by weight of methyl methacrylate, 80 parts by weight of acrylamide) , 0.3 parts by weight of potassium persulfate and 1500 parts by weight of ion-exchanged water were charged into a reactor and the temperature of the reactor was maintained at 70 ° C. while replacing the reactor with nitrogen gas. To obtain a solution of methyl acrylate and acrylamide copolymer as an aqueous solution. The obtained aqueous solution was used as a suspending agent. A solution of 0.05 part in 165 parts of ion-exchanged water was supplied and stirred at 400 rpm. Then, the inside of the system was replaced with nitrogen gas. Next, the following mixture was added while stirring the reaction system, and the temperature was raised to 70 ° C. The time when the internal temperature reached 70 ° C. was defined as the start of polymerization, and was maintained for 180 minutes to complete the polymerization. Thereafter, the reaction system was cooled, the polymer was separated, washed, and dried according to a usual method, to obtain a beaded raw polymer (A-1). The polymerization rate of this base polymer (A-1) was 98%.
Methacrylic acid 30 parts by weight
70 parts by weight of methyl methacrylate
0.6 parts by weight of t-dodecyl mercaptan
0.4 parts by weight of 2,2'-azobisisobutyronitrile
(2) Copolymer (B-1)
The beaded raw polymer (A-1) obtained by (1) was reduced to 250 ° C. and 2.6 kPa using a square vacuum constant temperature drier (DP-32 manufactured by Yamato Scientific Co., Ltd.). Vacuum heat treatment was performed for 30 minutes to obtain a copolymer (B-1) containing glutaric anhydride units. As a result of analyzing the obtained copolymer (B-1) using an infrared spectrophotometer, 1800 cm -1 And 1760cm -1 The absorption peak was confirmed in this, and it was confirmed that the glutaric anhydride unit was formed in this copolymer (B-2). Further, this copolymer was dissolved in heavy dimethyl sulfoxide, and the solution was dissolved at room temperature (23 ° C.). 1 H-NMR was measured, and the peak of 0.5 to 1.5 ppm was assigned to the spectrum, and the peak of 0.5 to 1.5 ppm was hydrogen of the α-methyl group of methacrylic acid, methyl methacrylate, and glutaric anhydride ring compound, and 1.6 to 2.1 ppm. Is a hydrogen of a methylene group in the polymer main chain, and a peak at 3.5 ppm is a carboxylic acid ester of methyl methacrylate (—COOCH). 3 ) Hydrogen, the peak at 12.4 ppm was hydrogen of carboxylic acid of methacrylic acid. The copolymer composition was determined from the integral ratio of the spectrum. As a result, it was 76% by weight of methyl methacrylate (MAA) unit, 20% by weight of glutaric anhydride (GAH) unit, and 4% by weight of methacrylic acid (MAA) unit. The intrinsic viscosity of the copolymer (B-1) was 0.47 dl / g, and Tg was 151 ° C.
[0063]
Various physical properties of the copolymer were measured. For the birefringence measurement stretched film, a 20% by weight THF solution of the above resin was prepared, and an unoriented film was obtained by a casting method. The unoriented film was made 1.5 times at the glass transition temperature of each resin. The film was uniaxially stretched to produce a stretched film. Table 1 shows various measured physical properties.
[0064]
[Example 2]
Using the same raw polymer (A-1) as in Example 1 and performing vacuum heating at 280 ° C. for 30 minutes in the same production method as in Example 1 (2), a copolymer (B-2) is obtained. Was. As a result of analyzing this copolymer (B-2) using an infrared spectrophotometer, 1800 cm -1 And 1760cm -1 The absorption peak was confirmed in this, and it was confirmed that the glutaric anhydride unit was formed in this copolymer (B-2). Further, this copolymer was dissolved in heavy dimethyl sulfoxide, and the solution was dissolved at room temperature (23 ° C.). 1 H-NMR was measured and the copolymer composition was determined from the integral ratio of the spectrum. As a result, 73% by weight of methyl methacrylate units, 27% by weight of glutaric anhydride units, and 0% of methacrylic acid units were not detected. The intrinsic viscosity of the copolymer (B-2) was 0.418 dl / g, and Tg was 153 ° C. Various physical properties were measured for the obtained copolymer (B-2) in the same manner as in Example 1. Table 1 shows various measured physical properties.
[0065]
[Example 3]
Except that 15 parts by weight of methacrylic acid and 85 parts by weight of methyl methacrylate were used as a monomer mixture, a raw polymer (A-3) was obtained at a polymerization rate of 97% by the same production method as in Example 1. Was used to carry out a vacuum heating treatment at 250 ° C. for 2 hours in the same manner as in Example 1 (2) to obtain a copolymer (B-3). As a result of analyzing this copolymer (B-3) using an infrared spectrophotometer, 1800 cm -1 And 1760cm -1 The absorption peak was confirmed in this, and it was confirmed that the glutaric anhydride unit was formed in this copolymer (B-3). Further, this copolymer was dissolved in heavy dimethyl sulfoxide, and the solution was dissolved at room temperature (23 ° C.). 1 H-NMR was measured, and the copolymer composition was determined from the integral ratio of the spectrum. As a result, 85% by weight of methyl methacrylate units, 15% by weight of glutaric anhydride units, and 0% of methacrylic acid units were not detected. The intrinsic viscosity of this copolymer (B-3) was 0.41 dl / g, and Tg was 135 ° C. Various physical properties were measured for the obtained copolymer (B-3) in the same manner as in Example 1. Table 1 shows various measured physical properties.
[0066]
[Comparative Example 1]
Except that 30 parts by weight of methacrylic acid, 50 parts by weight of methyl methacrylate, and 20 parts by weight of styrene were used as the monomer mixture, 97% of the raw polymer (A-1-1) was produced in the same production method as in Example 1. And a copolymer (B-1-1) was obtained by the same production method as in Example 1 (2). As a result of analyzing this copolymer (B-1-1) using an infrared spectrophotometer, 1800 cm -1 And 1760cm -1 The absorption peak was confirmed in this, and it was confirmed that the glutaric anhydride unit was formed in this copolymer (B-1-1). Further, this copolymer was dissolved in heavy dimethyl sulfoxide, and the solution was dissolved at room temperature (23 ° C.). 1 H-NMR was measured to determine the copolymer composition. As a result, methyl methacrylate unit was 55% by weight, glutaric anhydride unit was 20% by weight, styrene (ST) unit was 21% by weight, and methacrylic acid unit was 4% by weight. Was. The intrinsic viscosity of this copolymer (B-1-1) was 0.47 dl / g, and Tg was 148 ° C.
[0067]
Various physical properties of the obtained copolymer (B-1-1) were measured in the same manner as in Example 1. Table 1 shows various measured physical properties.
[0068]
[Comparative Examples 2 and 3]
The same physical properties were measured using a polymethyl methacrylate resin (Sumitomo Chemical Sumipex MG) and a polycarbonate resin (AD5503 manufactured by Teijin Chemicals). As a stretched film for birefringence measurement, a 20% by weight chloroform solution of the above resin was prepared, and an unoriented film was obtained by a casting method. This unoriented film was 1.5 times at the glass transition temperature of each resin. The film was uniaxially stretched to produce a stretched film. Table 1 shows various measured physical properties.
[0069]
[Table 1]
Figure 2004051928
[0070]
From the results of Examples 1 to 3 and Comparative Examples 1 to 3 in Table 1, it can be seen that the copolymer of the present invention is excellent in heat resistance and light transmittance, and also excellent in transmittance of short wavelength light. Further, it is possible to provide an optical material for light transmission having extremely low birefringence (optical isotropy), high surface hardness, and excellent scratch resistance.
[0071]
On the other hand, as shown in Comparative Example 1, when a styrene unit is present in the copolymer, the birefringence increases, and the optical isotropy is poor. In addition, it can be seen that the short-wavelength light transmittance and the surface hardness are insufficient. Furthermore, as shown in Comparative Examples 2 and 3, the heat resistance of the PMMA resin is insufficient, and the birefringence and the transmittance of short-wavelength light of the PC resin are not sufficient, so that high optical characteristics can be obtained. Further, it is understood that the surface hardness is also inferior.
[0072]
[Example 4]
The copolymer B-1 described in Example 1 was supplied to a disk molding machine (J40ELIII-DK; manufactured by Japan Steel Works, Ltd.) to produce a disk-shaped molded product of 5 inches (12.7 mm diameter) × 0.6 mm thick. did. The birefringence of transmitted light at 23 ° C. and 405 nm was measured with an ellipsometer (LCD cell gap inspection device RETS-1100 manufactured by Otsuka Electronics Co., Ltd.). As a result, 0.6 × 10 -4 Thus, it can be seen that the disk-shaped molded product also shows extremely excellent optical isotropy.
[0073]
[Example 5]
The polycarbonate described in Comparative Example 3 was supplied to a disk molding machine (J40ELIII-DK; manufactured by Japan Steel Works, Ltd.) to form a disk substrate of 5 inches (12.7 mm diameter) × 0.6 mm thick, and Hitachi was formed thereon. A reflective film of aluminum was deposited by a vacuum deposition device manufactured by Co., Ltd. A film (80 μm thick) of the copolymer B-1 described in Example 1 prepared by a casting method was further placed thereon via a pressure-sensitive adhesive sheet (DA-8310, manufactured by Nitto Denko Corporation) having a thickness of 20 μm. Then, an optical disc sample having a light transmission protective layer of the copolymer B-1 described in Example 1 was prepared. The result of irradiating a laser beam of 405 nm at 23 ° C. with an ellipsometer (LCD cell gap inspection device RETS-1100 manufactured by Otsuka Electronics Co., Ltd.) at an angle of 30 ° to the optical disk sample surface and measuring the retardation of the reflected light. , 1.1 nm.
[0074]
[Comparative Example 4]
An optical disc sample was prepared in the same manner as in Example 5, except that the light transmission protective layer was changed to a film (80 μm) formed by a casting method of a polycarbonate resin (AD5503 manufactured by Teijin Chemicals). The result of irradiating a laser beam of 405 nm at 23 ° C. with an ellipsometer (LCD cell gap inspection device RETS-1100 manufactured by Otsuka Electronics Co., Ltd.) at an angle of 30 ° to the optical disk sample surface and measuring the retardation of the reflected light. Was 10.5 nm.
[0075]
From a comparison between Example 5 and Comparative Example 4, it can be seen that the optical disk having the light transmission protective layer of the copolymer of the present invention has excellent low birefringence characteristics.
[0076]
[Example 6]
The copolymer A-1 described in Example 1 was injection-molded to form a molded product of 200 mm × 120 mm × 3 mm. Further, as shown in the schematic sectional view of FIG. 1, a diffusion sheet (3) and a light guide plate (1) Then, a light guide plate made of a reflection sheet (4) was prepared, and a light source (2) and a reflector (5) were installed on the light guide plate to confirm the light guide property. As a result, it turned out that it is excellent in transparency and light guide, and is useful as a light guide plate.
[0077]
【The invention's effect】
As described above, the optical material for light transmission comprising the copolymer of the present invention has high transparency, heat resistance, and scratch resistance, and is particularly excellent in low birefringence (optical isotropy). .
[Brief description of the drawings]
FIG. 1 is a side sectional view of a light guide plate manufactured in Example 6.
[Explanation of symbols]
1 ... Light guide plate
2. Light source
3 ... Diffusion sheet
4: Reflective sheet
5 ... Reflector

Claims (11)

(i)不飽和カルボン酸アルキルエステル単位、(ii)下記一般式(1)
Figure 2004051928
(上記式中、R、Rは、同一または相異なる水素原子または炭素数1〜5のアルキル基を表す。)
で表されるグルタル酸無水物単位を有する共重合体若しくは上記(i)、(ii)の単位に(iii)不飽和カルボン酸単位を有する共重合体又は上記(i)、(ii)単位もしくは上記(i)、(ii)、(iii)の単位にさらに(iv)その他のビニル系単量体単位を有する共重合体であって、かつ複屈折率の絶対値が1.0×10−4以下である共重合体からなる光透過用光学材料。
(I) an unsaturated carboxylic acid alkyl ester unit, (ii) the following general formula (1)
Figure 2004051928
(In the above formula, R 1 and R 2 represent the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms.)
Or a copolymer having an unsaturated carboxylic acid unit in the unit (i) or (ii) or a unit having the unsaturated carboxylic acid unit or a unit (i) or (ii) A copolymer having (iv) another vinyl monomer unit in addition to the units (i), (ii) and (iii), and having an absolute value of birefringence of 1.0 × 10 −. An optical material for transmitting light, comprising a copolymer of 4 or less.
前記共重合体中の(ii)グルタル酸無水物単位の含有量が5〜60重量%である請求項1記載の光透過用光学材料。The optical material for light transmission according to claim 1, wherein the content of (ii) glutaric anhydride unit in the copolymer is 5 to 60% by weight. 前記共重合体の鉛筆硬度が4H以上であることを特徴とする請求項1または2記載の光透過用光学材料。The optical material for light transmission according to claim 1, wherein the pencil hardness of the copolymer is 4H or more. 前記共重合体のガラス転移温度が120℃以上であることを特徴とする請求項1ないし3のいずれか記載の光透過用光学材料。4. The optical material for light transmission according to claim 1, wherein the glass transition temperature of the copolymer is 120 ° C. or higher. 前記不飽和カルボン酸単位(iii)は、下記一般式(2)で表される構造を有する請求項1ないし4のいずれか記載の光透過用光学材料。
Figure 2004051928
(ただし、Rは水素又は炭素数1〜5のアルキル基を表す)
The optical material for light transmission according to any one of claims 1 to 4, wherein the unsaturated carboxylic acid unit (iii) has a structure represented by the following general formula (2).
Figure 2004051928
(However, R 3 represents hydrogen or an alkyl group having 1 to 5 carbon atoms)
前記不飽和カルボン酸アルキルエステル単位(i)は、下記一般式(3)で表される構造を有する請求項1ないし5のいずれか1項に記載の光透過用光学材料。
Figure 2004051928
(ただし、Rは水素又は炭素数1〜5のアルキル基を表し、Rは炭素数1〜6の脂肪族若しくは脂環式炭化水素基又は1個以上炭素数以下の数の水酸基若しくはハロゲンで置換された炭素数1〜6の脂肪族若しくは脂環式炭化水素基を示す)
The optical material for light transmission according to any one of claims 1 to 5, wherein the unsaturated carboxylic acid alkyl ester unit (i) has a structure represented by the following general formula (3).
Figure 2004051928
(However, R 4 represents hydrogen or an alkyl group having 1 to 5 carbon atoms, and R 5 represents an aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group having 1 or more carbon atoms or less, or a halogen. Represents an aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms substituted with
前記共重合体が不飽和カルボン酸単量体および不飽和カルボン酸アルキルエステル単量体を含む単量体混合物を重合して原重合体(A)を得、次いでこの原重合体(A)を加熱し、脱水及び/又は脱アルコール反応により製造されるものである請求項1ないし6のいずれか1項に記載の光透過用光学材料。The copolymer is obtained by polymerizing a monomer mixture containing an unsaturated carboxylic acid monomer and an unsaturated carboxylic acid alkyl ester monomer to obtain a raw polymer (A). The optical material for light transmission according to any one of claims 1 to 6, wherein the optical material is produced by heating, and dehydration and / or dealcoholation reaction. 請求項1ないし7のいずれか1項に記載の光透過用光学材料からなる光ディスク基板。An optical disk substrate comprising the optical material for light transmission according to claim 1. 請求項1ないし7のいずれか1項に記載の光透過用光学材料からなる光学フィルム。An optical film comprising the optical material for light transmission according to any one of claims 1 to 7. 請求項1ないし7のいずれか1項に記載の光透過用光学材料からなる0.01〜0.6mm厚の保護層を有し、該保護層を通してレーザー光により情報記録が読みとられる構造を有する光ディスク。A structure having a protective layer made of the optical material for light transmission according to any one of claims 1 to 7 and having a thickness of 0.01 to 0.6 mm, through which information can be read by laser light through the protective layer. Optical disk having. 請求項1ないし7のいずれか1項に記載の光透過用光学材料からなる導光板。A light guide plate comprising the optical material for light transmission according to claim 1.
JP2002228010A 2002-05-31 2002-08-05 Optical disc substrate Expired - Fee Related JP4135430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228010A JP4135430B2 (en) 2002-05-31 2002-08-05 Optical disc substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002160806 2002-05-31
JP2002228010A JP4135430B2 (en) 2002-05-31 2002-08-05 Optical disc substrate

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007287043A Division JP4858410B2 (en) 2002-05-31 2007-11-05 Light guide plate
JP2007287042A Division JP4656123B2 (en) 2002-05-31 2007-11-05 optical disk

Publications (2)

Publication Number Publication Date
JP2004051928A true JP2004051928A (en) 2004-02-19
JP4135430B2 JP4135430B2 (en) 2008-08-20

Family

ID=31949215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228010A Expired - Fee Related JP4135430B2 (en) 2002-05-31 2002-08-05 Optical disc substrate

Country Status (1)

Country Link
JP (1) JP4135430B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326613A (en) * 2004-05-14 2005-11-24 Toray Ind Inc Prism sheet
JP2005331728A (en) * 2004-05-20 2005-12-02 Toray Ind Inc Optical functional film and surface light source
JP2006257263A (en) * 2005-03-17 2006-09-28 Toray Ind Inc Acrylic resin composition and method for producing the same
US8865299B2 (en) 2007-12-20 2014-10-21 Lg Chem, Ltd. Multi-layered acrylic retardation film and fabrication method thereof
KR101529370B1 (en) * 2012-12-21 2015-06-17 주식회사 엘지화학 Acryl copolymer having excellent thermal resistance, resin composition comprising the same, manufacturing method thereof and opticla film comprising thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326613A (en) * 2004-05-14 2005-11-24 Toray Ind Inc Prism sheet
JP2005331728A (en) * 2004-05-20 2005-12-02 Toray Ind Inc Optical functional film and surface light source
JP2006257263A (en) * 2005-03-17 2006-09-28 Toray Ind Inc Acrylic resin composition and method for producing the same
US8865299B2 (en) 2007-12-20 2014-10-21 Lg Chem, Ltd. Multi-layered acrylic retardation film and fabrication method thereof
KR101529370B1 (en) * 2012-12-21 2015-06-17 주식회사 엘지화학 Acryl copolymer having excellent thermal resistance, resin composition comprising the same, manufacturing method thereof and opticla film comprising thereof

Also Published As

Publication number Publication date
JP4135430B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP2006241263A (en) Method for producing acrylic resin composition film
US7348387B2 (en) Thermoplastic polymer, process for producing the same, and molded article
KR20050116139A (en) Thermoplastic resin composition, molded article, and film
JP2006283013A (en) Acrylic resin film for optical use
JP2008074918A (en) Acrylic resin film for optical use
JP2006206881A (en) Acrylic resin film and its production method
JP4135430B2 (en) Optical disc substrate
JP4858410B2 (en) Light guide plate
JP3870670B2 (en) Non-birefringent pickup lens resin composition and pickup lens using the same
JP2010078892A (en) Retardation film and method for manufacturing the same
JP4656123B2 (en) optical disk
JP4273794B2 (en) Thermoplastic polymer, process for producing the same, and molded article
JP2008239741A (en) Acrylic resin film and method for producing the same
JP2004204208A (en) Non-birefringent optical resin composition and optical element given by using the resin composition
JP2010100746A (en) Optical film and method for manufacturing the same
JP3870715B2 (en) Non-birefringent pickup lens resin composition and pickup lens using the same
JP2009052025A (en) Thermoplastic resin film, optical film, and polarization plate
JP2000044614A (en) Production of nonbirefringent optical resin and optical element using resin obtained by the production
JP4337378B2 (en) Thermoplastic resin composition, production method and molded article
JP2005314541A (en) Resin composition for optical use, method for producing the same and optical element produced by using the same
JP4890961B2 (en) Optical resin
JP2004315798A (en) Manufacturing method of thermoplastic copolymer
JP2006233122A (en) Resin for optical element and optical element using the same
JP2008230030A (en) Method of forming thermoplastic resin film
JP2004204018A (en) Optical resin composition and optical element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees