JP2004051837A - Polypropylene resin composition - Google Patents

Polypropylene resin composition Download PDF

Info

Publication number
JP2004051837A
JP2004051837A JP2002212774A JP2002212774A JP2004051837A JP 2004051837 A JP2004051837 A JP 2004051837A JP 2002212774 A JP2002212774 A JP 2002212774A JP 2002212774 A JP2002212774 A JP 2002212774A JP 2004051837 A JP2004051837 A JP 2004051837A
Authority
JP
Japan
Prior art keywords
polypropylene
resin composition
island
based resin
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002212774A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakagawa
中川 博之
Haruyasu Mizutani
水谷 治靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2002212774A priority Critical patent/JP2004051837A/en
Publication of JP2004051837A publication Critical patent/JP2004051837A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polypropylene resin composition which hardly produces blister, whitening crack, etc., in a stress-concentrated part, has broad design latitude and excellent in scratch resistance. <P>SOLUTION: An island dispersion 12 composed of a flexible component having a lower hardness than a hard component is dispersed in a matrix 11 composed of the hard component mainly composed of polypropylene. The island dispersion 12 has a flat shape with the major axis and minor axis, and is dispersed in the matrix 11 such that the minor axis direction generally agrees with the thickness direction of the polypropylene resin composition 1. When the length in the major axis direction of the island dispersion 12 is A and the length in the minor axis direction is B, the relation is given by the expression: 1.3≤A/B≤10. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【技術分野】
本発明は,硬質成分と軟質成分とよりなるポリプロピレン系樹脂組成物に関する。
【0002】
【従来技術】
従来,設計自由度の高い材料として,ポリプロピレン系樹脂組成物が広く用いられている。しかし,製品使用環境において,引っ張りや屈曲などによる応力集中が生じることがあり,その際に傷がつくことがある。
すなわち,図7に示すごとく,ポリプロピレン系樹脂組成物90において点900を中心とした応力91が加わることで,図8に示すごとく,クラック,白化,膨れ傷901が生じ,ポリプロピレン系樹脂組成物の外観性などを低下させるおそれがある。
【0003】
【解決しようとする課題】
従来,図8に示すような,応力集中によるクラック,白化,膨れ傷901の発生を防止するため,ポリプロピレン系樹脂組成物からなる製品を厚肉化したり,補強リブを設けることがある。
しかしながら,厚肉化や補強リブの設定により設計自由度が制限され,製品重量の増大を招くおそれがあり,優れた解決策とはいえない。
さらに,ポリプロピレン系樹脂組成物の硬度を下げて柔らかくして,応力をポリプロピレン系樹脂組成物が変形することで受け止めて吸収する方法も考えられるが,多くの硬度の低い柔らかい樹脂は耐熱性に問題があるため,これも優れた解決策とはいえない。
【0004】
本発明は,かかる従来の問題点に鑑みてなされたもので,応力集中部における膨れ,白化,クラック等が生じ難く,設計自由度が高い耐傷付性に優れたポリプロピレン系樹脂組成物を提供しようとするものである。
【0005】
【課題の解決手段】
第1の発明(請求項1)は,ポリプロピレンを主体とする硬質成分よりなるマトリックス内に,上記硬質成分よりも低い硬度の軟質成分よりなると共に長軸と短軸とを備えた扁平な形状を有する島状分散体が分散するポリプロピレン系樹脂組成物であって,
上記島状分散体は上記マトリックス内において上記短軸方向が上記ポリプロピレン系樹脂組成物の厚み方向と略一致するように分散し,
上記島状分散体の長軸方向の長さをA,短軸方向の長さをBとすると,1.3≦A/B≦10であることを特徴とするポリプロピレン系樹脂組成物にある(請求項1)。
【0006】
第1の発明にかかるポリプロピレン系樹脂組成物は軟質成分を有するため,外部から加わる応力を該軟質成分が吸収することができ,応力の集中する箇所で膨れ,白化,クラック等が生じ難い。
また,軟質成分よりなる島状分散体は硬質成分よりなるマトリックス中に分散しているため,ポリプロピレン系樹脂組成物全体の硬度の低下が防止できる。従って,厚肉化や補強リブが不要で,設計自由度が制限され難い。
【0007】
また,島状分散体の短軸方向が,ポリプロピレン系樹脂組成物の厚み方向と略一致することで,応力が集中する方向に対し垂直に上記島状分散体を揃えて分布させることができ,効率よく応力を吸収することができる。なお,本効果を得るためポリプロピレン系樹脂組成物を製品とする際は,該製品の使用環境下における応力集中方向を上記厚み方向と一致させる必要がある。
【0008】
また,島状分散体の形状は長軸方向の長さと短軸方向との長さとの間に上記関係が成立する扁平な形状である。
そのため,応力集中時に島状分散体の形状変形により応力を効率よく吸収し,耐傷付性向上効果を得ることができる。
【0009】
また,第2の発明(請求項5)は,ポリプロピレンとリアクター−TPOとよりなるポリプロピレン系樹脂組成物であって,
ポリプロピレンを主体とするマトリックス内に扁平な形状を有する島状分散体が分散し,
上記島状分散体は上記マトリックス内において上記短軸方向が上記ポリプロピレン系樹脂組成物の厚み方向と略一致するように分散し,
上記島状分散体の長軸方向の長さをA,短軸方向の長さをBとすると,1.3≦A/B≦10であり,
さらに上記ポリプロピレン系樹脂組成物100重量部内において,ポリプロピレンは60〜90重量部,リアクター−TPOは40重量部〜10重量部含まれることを特徴とするポリプロピレン系樹脂組成物にある。
【0010】
第2の発明にかかるポリプロピレン系樹脂組成物はポリプロピレンとリアクター−TPOとよりなり,リアクター−TPOはポリプロピレンよりも軟質の成分(硬度がロックウェル硬度のRスケールで90度未満)を多く含有するため,ポリプロピレン系樹脂組成物の外部から加わる応力を上記軟質の成分が吸収することができ,応力の集中する箇所で膨れ,白化,クラック等が生じ難い。
また,島状分散体はポリプロピレンよりなるマトリックス中に分散しているため,ポリプロピレン系樹脂組成物全体の硬度の低下が防止できる。従って,厚肉化や補強リブが不要で,設計自由度が制限され難い。
【0011】
また,島状分散体の短軸方向が,ポリプロピレン系樹脂組成物の厚み方向と略一致することで,応力が集中する方向に対し垂直に上記島状分散体を揃えて分布させることができ,効率よく応力を吸収することができる。なお,本効果を得るためポリプロピレン系樹脂組成物を製品とする際は,該製品の使用環境下における応力集中方向を上記厚み方向と一致させる必要がある。
【0012】
また,島状分散体の形状は長軸方向の長さと短軸方向との長さとの間に上記関係が成立する扁平な形状である。そのため,応力集中時に島状分散体の形状変形により応力を効率よく吸収し,耐傷付性向上効果を得ることができる。
【0013】
また,上記ポリプロピレン系樹脂組成物100重量部内において,ポリプロピレンは60〜90重量部,リアクター−TPOは40重量部〜10重量部含まれるため,耐衝撃性向上,耐傷付性向上効果を得ることができる。
【0014】
以上,第1及び第2の発明によれば,応力集中部における膨れ,白化,クラック等が生じ難く,設計自由度が高い耐傷付性に優れたポリプロピレン系樹脂組成物を提供することができる。
【0015】
【発明の実施の形態】
【0016】
第1及び第2の発明において,ポリプロピレンとしてはホモPP(=ポリプロピレン),ブロックPP,ランダムPP等を用いることができる。中でもブロックPPが適している。
また,第1の発明において,軟質成分の硬度はロックウェル硬度のRスケールで90度未満であることが好ましい。硬度が90度以上の軟質成分はポリプロピレンとの硬度差が小さすぎて,本発明にかかる効果が得難くなるおそれがある。また,軟質成分の硬度の下限はJIS A硬度で30度とすることが,上記関係が成立する扁平な形状の取りやすさという理由から好ましい。
【0017】
また,第1及び第2の発明において,長軸方向と短軸方向との比であるA/Bが1.3より小さい場合は,応力を効率よく吸収できず,応力集中部などにフクレや白化やクラックが発生するという問題が生じるおそれがあり,10より大きい場合は,耐衝撃性の不足,耐傷付性不足という問題が生じるおそれがある。
また,上記長軸方向の長さAとは,すべての島状分散体にかかる平均値である。上記短軸方向の長さBも,同様にすべての島状分散体にかかる平均値である。
【0018】
また,第2の発明において,ポリプロピレン系樹脂組成物100重量部内において,ポリプロピレンは60重量部未満,リアクター−TPOが40重量部以上であった場合は,耐熱性が不足するおそれがある。また,ポリプロピレンが90重量部以上,リアクター−TPOが10重量部未満であった場合は,耐衝撃性が不足するおそれがある。
【0019】
ここにリアクター−TPOとは,重合型TPOとも称され,ポリマー重合時にハードセグメントであるマトリックス樹脂にソフトセグメントであるゴム成分を分散させたオレフィン系熱可塑性エラストマーである。つまりリアクター−TPOでない従来のTPO(コンパウンドTPOと称されることがある)が,樹脂成分とゴム成分とを個別に重合して得,その後両成分を混練してTPOとするのに対し,リアクター−TPOは樹脂成分とゴム成分を同一の重合場で重合させてTPOとするものである。よってTPOとしての物性制御が実質重合プロセスの中で行われるのが大きな特徴である。また,リアクター−TPOは市販品を入手できる。また,この重合法により,多くの軟質成分を含有させることができるのも特徴である。
【0020】
そして,第2の発明において使用するリアクター−TPOとしては,上述したリアクター−TPOの中で特にゴム成分が長軸と短軸とを備えた扁平な形状となって,ハードセグメントであるマトリックス樹脂に分散した状態にあるものが好ましい。
【0021】
なお,TPOとはオレフィン系熱可塑性エラストマーのことで,一般的にはポリプロピレン(PP)やポリエチレン(PE)などの結晶性樹脂をハードセグメント,エチレン/プロピレンゴム(EPR),ブチルゴム(IIR)のようなゴム成分をソフトセグメントとして両者の性質及び構成比によって物性が制御される材料である。
【0022】
また,上記ポリプロピレン系樹脂組成物は無機充填材を含有することが好ましい(請求項2)。
無機充填材は高剛性を備えるため,ポリプロピレン系樹脂組成物の変位が小さい場合の応力吸収に特に効果的である。
また,ポリプロピレン系樹脂組成物100重量%に対し無機充填材を15〜85重量%含有することが好ましい。これにより耐熱性向上効果を得ることができる。含有量が15重量%未満である場合は耐熱性向上効果が得難くなるおそれがあり,85重量%を越えると耐傷付性不足が生じるおそれがある。
また,無機充填材の添加量のより好ましい添加量の下限は20重量%,より好ましい添加量の上限は40重量%である。
なお,無機充填材としては,ガラス繊維,ワラストナイト,タルク,マイカ等を用いることができる。
【0023】
次に,上記ポリプロピレン系樹脂組成物に対するパルスNMRより得た緩和曲線を三成分の重畳とみなし,三成分毎に分離することにより得た3本の分離曲線において,
スピン−スピン緩和時間が最も短い分離曲線に由来する成分が上記硬質成分であり,スピン−スピン緩和時間が最も長い分離曲線に由来する成分が上記軟質成分であることが好ましい(請求項3)。
【0024】
ここにパルスNMRを利用した測定について説明する。
複合系高分子材料の特徴を解析する際に,構成分子の運動性を利用することがある。核磁気共鳴(NMR)現象の緩和から分子運動性を直接評価することができるパルスNMR法は不均質な複合系高分子材料の分子運動性解析に広く利用されている。
【0025】
すなわち,磁場中においた高分子材料に適当な周波数のマイクロ波を照射することで,高分子材料中の水素原子核のスピンエネルギーが高エネルギーの状態に遷移する。これが核磁気共鳴である。マイクロ波の照射停止後,水素原子核は再び元のエネルギー状態に戻る。この戻る過程を緩和といい,時間に対して磁化が減衰する様子は緩和曲線として観測することができる。
【0026】
本発明にかかるポリプロピレン系樹脂組成物に対しマイクロ波を照射して得た緩和曲線は,硬質成分,軟質成分,硬質成分と軟質成分との境界領域成分との三成分にそれぞれ由来する緩和曲線を重畳した曲線となる。
従って,最小二乗法で解析することで,上記三成分に由来する各緩和曲線として分離することが可能となる。
【0027】
そして,緩和曲線における減衰の際の時定数となるスピン−スピン緩和時間は分子運動が遅い成分は短く,分子運動の速い成分は長くなることが知られており,そして分子運動が遅い成分は一般により硬質であることから,分離して得た分離曲線の中で最もスピン−スピン緩和時間が短い成分が硬質成分となる。反対に長い成分が軟質成分となる。
このようにして本発明にかかるポリプロピレン系樹脂組成物における硬質成分と軟質成分とを見分けることができる。
【0028】
次に,上記ポリプロピレン系樹脂組成物100重量部内において上記軟質成分は3〜50重量部含まれることが好ましい(請求項4)。これにより,耐傷付性向上,耐衝撃性向上効果を得ることができる。
軟質成分が3重量部より少ない場合は,応力を充分に吸収することができなくなるおそれがある。反対に50重量部より多い場合は,ポリプロピレン系樹脂組成物が柔らかくなりすぎ,耐熱性不足が生じるおそれがある。
なお,上記軟質成分の含有量は,上記パルスNMRより算出することができる。
【0029】
次に,第1及び第2の発明において,上記ポリプロピレン系樹脂組成物はホイールキャップ用材料として用いることが好ましい(請求項6)。
ホイールキャップは薄手の部材であり,ホイールへの着脱の際の傷つき防止が求められている。また,設計に広い自由度が必要とされ,また軽量であることが必要である。そのため本発明にかかるポリプロピレン系樹脂組成物はホールキャップ用材料として好適である。
【0030】
【実施例】
以下に,図面を用いて本発明の実施例について説明する。
(実施例1)
本発明にかかるポリプロピレン系樹脂組成物について説明する。
本例のポリプロピレン系樹脂組成物1は,ポリプロピレンを主体とする硬質成分よりなるマトリックス11と,該マトリックス11内に分散した,上記硬質成分よりも低い硬度の軟質成分よりなる島状分散体12とよりなる。
【0031】
そして,上記島状分散体12は長軸と短軸とを備えた扁平な形状を有し,また上記島状分散体12は上記マトリックス11内において上記短軸方向が上記ポリプロピレン系樹脂組成物1の厚み方向と略一致するように分散している。
さらに上記島状分散体12の長軸方向の長さをA,短軸方向の長さをBとすると,両者の比は,1.3≦A/B≦10の範囲内にある。
【0032】
以下,詳細に説明する。
本例のポリプロピレン系樹脂組成物1のモルフォロジーを図1に示す。同図に示すごとく,ポリプロピレン系樹脂組成物1は,硬質成分からなるマトリックス11に,軟質成分からなる島状分散体12が分散した状態にある。
【0033】
ここに本例のポリプロピレン系樹脂組成物1は,ブロックポリプロピレンとリアクター−TPO(リアクター−オレフィン系熱可塑性エラストマー)とより構成され,両者の中で硬質の成分がマトリックス11を,軟質の成分が島状分散体12を構成する。
すなわち,図2に示すごとくブロックポリプロピレン3はホモPPのマトリックス31中にPEコポリマー33及びEPラバー32が共重合部(ドメイン)34となって分散した状態にあり,ポリプロピレン3が本例にかかるポリプロピレン系樹脂組成物1となった際には,ホモPPが硬質成分に,PEコポリマー33及びEPラバー32が軟質成分となる。
【0034】
また,図3に示すごとく,リアクター−TPO 4は,ホモPPのマトリックス41にゴム成分(例えばEPR)42が分散した状態にあり,リアクター−TPO 4が本例にかかるポリプロピレン系樹脂組成物1となった際は,ホモPPが硬質成分に,ゴム成分42が軟質成分となる。
【0035】
なお,本例にかかるポリプロピレン系樹脂組成物1において,マトリックス11と島状分散体12との間は,硬質成分と軟質成分とが入り混じった第3の相を形成した状態にある。ポリプロピレンとリアクター−TPOのモルフォロジーは,上記のように硬質成分であるマトリックスの中に軟質成分であるドメインが分散した同じような構造で,リアクター−TPOは軟質成分を多く含有させることができ,軟質成分を扁平に分散させることができる。
【0036】
上記島状分散体13は扁平な形状である。
また上記島状分散体13は上記マトリックス11内において上記短軸方向が上記ポリプロピレン系樹脂組成物1の厚み方向と略一致するように分散する必要があり,図1に記載したように,ポリプロピレン系樹脂組成物1に対する応力の方向は矢線14の通り図面の上下方向であり,該上下方向がポリプロピレン系樹脂組成物1の厚み方向と一致する。
【0037】
次に,本例のポリプロピレン系樹脂組成物1にかかる試料A−1と比較試料B−1との性能比較について説明する。
表1に示すごとく,本例にかかるポリプロピレン系樹脂組成物1は試料A−1で,ブロックポリプロピレンとリアクター−TPOよりなる。
ここに,軟質成分の含有量と島状分散体のA/Bについて表1に記載したが,軟質成分の含有量は後述するパルスNMRより測定した。また,A/Bは,試料の断面を電子顕微鏡で観察することでA及びBの長さを測定し,該測定値から算出した。
これと比較する比較試料B−1も表1に記載したが,ブロックポリプロピレンとEBR(エチレンブタジエン共重合体)よりなる。また,比較試料B−1における軟質成分の含有量と島状分散体のA/Bについても記載した。
【0038】
上記成分から,次に示すごとく試料となるポリプロピレン系樹脂組成物を作成する。
原料となるブロックポリプロピレン等(表1参照)に添加剤(顔料,安定剤,結晶核剤,滑剤等)を必要量配合し,高速攪拌機に投入して3分間攪拌を行った。これにより混合組成物を得た。
上記混合組成物を口径30mmの二軸押出機を用いて,温度220℃で溶融混練し,押し出し,ペレタイズ化した。これにより得たペレットを80トンの射出成形機に投入し,温度220℃で射出した。これにより試料A−1や比較試料B−1にかかるポリプロピレン系樹脂組成物よりなるISO規格評価用ダンベル及び平板(40mm×110mm×2mm)を得た。
【0039】
次に,評価方法について説明する。
HDT衝撃強度は,上記評価用ダンベルを用い,規格(ISO75)に準拠して0.46MPa荷重にて評価した。IZOD衝撃強度評価は,上記評価用ダンベルを用い,規格(ISO180)に準拠して23℃雰囲気下にて評価した。
【0040】
また,MFR(メルトフローレート)は,規格(JIS K 7210)に準拠し,230℃,2.16kg荷重で測定した。
【0041】
また,耐傷付性評価は,図4に示す方法で行った。
すなわち,台座22(高さ6mm)の上に上記平板21を載置する。そして台座22の下で,平板21の平板下面の端部より20mm,支点230より50mmの位置に当接可能となるようにホイールカバー脱着治具23を設置する。ついで,支点230より140mmの位置にて荷重10kgを付加し,平板21の表面210に著しい膨れ傷211が形成されたか,されていないかについてを観察した。
なお,図2にかかる評価方法における各部の寸法は,a=110mm,b=2mm,c=6mm,d=50mm,e=140mm,f=20mmである。
【0042】
表1に記載された上記評価結果より,本発明にかかる試料A−1は耐熱性,機械的強度(耐衝撃性)に優れ,傷がつかないことが判った。
また,比較試料B−1は,耐熱性が低く,機械的強度(耐衝撃性)も低い。また傷つくことが判った。
【0043】
また,表1に記載された試料A−1中の硬質成分と軟質成分との内訳を調べるために,ソリッドエコー法によりパルスNMRの減衰曲線を測定した。得られた減衰曲線を図5に示す。この図において縦軸は強度,横軸は時間(緩和時間)である。
このときの測定条件について説明する。
パルスNMR装置として日本電子MU−25型を使用し,測定モードはソリッドエコー法である。信号モニタのx軸の時間は500マイクロ秒,RFパルス幅は2マイクロ秒,RFパルス間隔は8マイクロ秒,パルス繰り返し時間は1秒,測定温度は25℃とする。
【0044】
この結果得られた緩和曲線は図5における(1)と記載した曲線である。
この緩和曲線に対し,最小2乗法を適用したところ,図5より知れるごとく,(a)〜(c)の3本の曲線に分離することができた。スピン−スピン緩和時間T2は,(a)が368マイクロ秒,(b)が47.5マイクロ秒,(c)が12.4マイクロ秒であった。
【0045】
すなわち,一番時間の短い(c)が試料A−1の硬質成分に由来し,一番長い(a)が軟質成分に由来する。両者の中間の値である(b)は,硬質成分と軟質成分との境界領域で,図1では記載を省略した。
そしてこれらの(a)〜(c)より,最小二乗法を利用して各成分の重量比に換算することができる含有量が算出できる。
この試料A−1では,軟質成分がポリプロピレン系樹脂組成物全体の中で25重量%を占め,硬質成分が68重量%,両成分の境界領域の成分が7重量%占めることがわかった。
また,図5におけるWibull係数は,時間(t)に対して磁化(M)が減衰する緩和曲線 M(t)=Mexp〔−(1/WI)(t/TWI〕のWIを示す数値である。
【0046】
本例のポリプロピレン系樹脂組成物1は軟質成分よりなる島状分散体12を有するため,外部から加わる応力を該軟質成分が吸収することができ,応力の集中する箇所等で膨れや白化,クラック等が生じ難い。また,軟質成分は硬質成分よりなるマトリックス11中に分散しているため,ポリプロピレン系樹脂組成物全体の硬度の低下が防止できる。従って,厚肉化や補強リブが不要で,設計自由度が制限され難い。
【0047】
また,上記島状分散体12は所定の範囲にA/Bを有する扁平な形状である。そのため,応力集中時に島状分散体の形状変形により応力を効率よく吸収し,耐傷付性向上効果を得ることができる。
また,島状分散体12の短軸方向が,ポリプロピレン系樹脂組成物1の厚み方向と略一致することで,応力が集中するポリプロピレン系樹脂組成物1の厚み方向に対し垂直に上記島状分散体12を揃えて分布させることができ,効率よく応力を吸収することができる。
【0048】
以上,本例によれば,応力集中部における膨れ,白化,クラック等が生じ難く,設計自由度が高いポリプロピレン系樹脂組成物を提供することができる。
【0049】
【表1】

Figure 2004051837
【0050】
(実施例2)
本例は,無機充填材を含有するポリプロピレン系樹脂組成物について説明する。
図6は,無機充填材13を含有するポリプロピレン系樹脂組成物1のモルフォロジーである。
実施例1と同様に,ポリプロピレン系樹脂組成物1は,硬質成分からなるマトリックス11に,軟質成分からなる島状分散体12が分散した状態にある。また,ガラス繊維よりなる無機充填材13も同様にマトリックス11に分散した状態にある。
【0051】
そして,無機充填材13が入る場合,上記島状分散体12は耐傷付性向上に効果的である。通常,応力集中時,無機充填材13を中心としたクラックが発生するが,上記島状分散体12により無機充填材13付近の島状分散体12が効率よく応力を吸収し,クラック発生を押さえることが可能となる。
【0052】
また,無機充填材と島状分散体の数は,「無機充填材<島状分散体」となることが好ましい。さらにA/Bが1.3以上の無機充填材を中心とする付近100μm以内に島状分散体が存在するとより好ましい。
なお,無機充填材13とマトリックス11との密着性改良を目的として有機不飽和酸変性ポリオレフィン(例えば無水マレイン酸ポリオレフィン)を含有してもよい。
【0053】
次に,本例のポリプロピレン系樹脂組成物にかかる試料A−2〜4と比較試料B−2との性能比較について説明する。
表2に示すごとく,試料A−2は,ブロックポリプロピレン,リアクター−TPO,無機充填材であるガラス繊維よりなる。試料A−3はワラストナイトを,A−4はタルクをそれぞれ無機充填材として用いたポリプロピレン系樹脂組成物である。
比較試料B−2はブロックポリプロピレンとEBRとよりなり,タルクを無機充填材として含んでいる。その他詳細は実施例1と同様であり,これらの試料からポリプロピレン系樹脂組成物を作製する方法も実施例1と同様である。
【0054】
このようにして得た各試料について実施例1と同様に性能を評価したところ,本発明にかかる試料であるA−2〜4は耐熱性に優れ,機械的特性(衝撃強度)に優れており,実施例1に記載した試験において傷もつかなかった。
しかしながら比較試料となるB−2は耐熱性が低く,実施例1に記載したような試験において傷がついてしまい,耐傷付性が劣っていた。
【0055】
【表2】
Figure 2004051837

【図面の簡単な説明】
【図1】実施例1における,ポリプロピレン系樹脂組成物のモルフォロジーを示す説明図。
【図2】実施例1における,ブロックポリプロピレンのモルフォロジーを示す説明図。
【図3】実施例1における,リアクター−TPOのモルフォロジーを示す説明図。
【図4】実施例1における,耐傷付性を評価する方法の説明図。
【図5】実施例1における,緩和曲線を示す線図。
【図6】実施例2における,無機充填材を含有するポリプロピレン系樹脂組成物のモルフォロジーを示す説明図。
【図7】従来における,ポリプロピレン系樹脂組成物に応力が加わる際の説明図。
【図8】従来における,ポリプロピレン系樹脂組成物に応力が加わり,膨れ傷が生じた場合の説明図。
【符号の説明】
1...ポリプロピレン系樹脂組成物,
11...マトリックス,
12...島状分散体,[0001]
【Technical field】
The present invention relates to a polypropylene resin composition comprising a hard component and a soft component.
[0002]
[Prior art]
Conventionally, a polypropylene resin composition has been widely used as a material having a high degree of design freedom. However, in a product use environment, stress concentration due to pulling or bending may occur, which may cause damage.
That is, as shown in FIG. 7, when a stress 91 centering on a point 900 is applied to the polypropylene-based resin composition 90, cracks, whitening, and swelling 901 occur as shown in FIG. The appearance and the like may be reduced.
[0003]
[Problem to be solved]
Conventionally, as shown in FIG. 8, in order to prevent the occurrence of cracks, whitening, and blisters 901 due to stress concentration, products made of a polypropylene resin composition are sometimes thickened or reinforcing ribs are provided.
However, the degree of freedom in design is limited by the thickening and setting of the reinforcing ribs, which may lead to an increase in product weight, which is not an excellent solution.
Furthermore, a method of reducing the hardness of the polypropylene-based resin composition to make it softer and absorbing the stress by deforming the polypropylene-based resin composition is also conceivable, but many soft resins having low hardness have a problem with heat resistance. This is not a good solution either.
[0004]
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and it is an object of the present invention to provide a polypropylene resin composition which is less likely to cause swelling, whitening, cracks, etc. in a stress concentration portion, has a high degree of design freedom, and has excellent scratch resistance. It is assumed that.
[0005]
[Means for solving the problem]
According to the first invention (claim 1), a flat shape comprising a soft component having a lower hardness than the hard component and having a long axis and a short axis is provided in a matrix composed of a hard component mainly composed of polypropylene. A polypropylene resin composition in which the island-like dispersion is dispersed,
The island-shaped dispersion is dispersed in the matrix such that the minor axis direction substantially matches the thickness direction of the polypropylene-based resin composition,
Assuming that the length of the island dispersion in the long axis direction is A and the length of the short axis direction is B, the polypropylene resin composition is characterized by satisfying 1.3 ≦ A / B ≦ 10 ( Claim 1).
[0006]
Since the polypropylene-based resin composition according to the first invention has a soft component, the soft component can absorb the stress applied from the outside, and swelling, whitening, cracks, and the like hardly occur at a location where the stress is concentrated.
In addition, since the island-shaped dispersion composed of the soft component is dispersed in the matrix composed of the hard component, a decrease in the hardness of the entire polypropylene resin composition can be prevented. Therefore, thickening and reinforcing ribs are not required, and the degree of freedom in design is not easily limited.
[0007]
In addition, since the minor axis direction of the island dispersion substantially matches the thickness direction of the polypropylene-based resin composition, the island dispersion can be uniformly distributed perpendicularly to the direction in which stress is concentrated, Stress can be efficiently absorbed. When a polypropylene-based resin composition is used as a product in order to obtain this effect, it is necessary that the stress concentration direction in the use environment of the product matches the thickness direction.
[0008]
The shape of the island-shaped dispersion is a flat shape in which the above relationship is established between the length in the long axis direction and the length in the short axis direction.
Therefore, the stress can be efficiently absorbed by the shape deformation of the island-shaped dispersion during stress concentration, and the effect of improving the scratch resistance can be obtained.
[0009]
A second invention (claim 5) is a polypropylene resin composition comprising polypropylene and reactor-TPO,
An island-shaped dispersion having a flat shape is dispersed in a matrix mainly composed of polypropylene,
The island-shaped dispersion is dispersed in the matrix such that the minor axis direction substantially matches the thickness direction of the polypropylene-based resin composition,
Assuming that the length of the island-shaped dispersion in the long axis direction is A and the length of the short axis direction is B, 1.3 ≦ A / B ≦ 10,
Further, in 100 parts by weight of the above polypropylene-based resin composition, the polypropylene-based resin composition is characterized in that 60 to 90 parts by weight of polypropylene and 40 to 10 parts by weight of reactor-TPO are contained.
[0010]
The polypropylene-based resin composition according to the second invention comprises polypropylene and reactor-TPO, and the reactor-TPO contains more soft components (hardness is less than 90 degrees in Rockwell hardness R scale) than polypropylene. In addition, the soft component can absorb the stress applied from the outside of the polypropylene-based resin composition, and swelling, whitening, cracks, and the like are less likely to occur at locations where the stress is concentrated.
Further, since the island-shaped dispersion is dispersed in a matrix made of polypropylene, a decrease in hardness of the entire polypropylene-based resin composition can be prevented. Therefore, thickening and reinforcing ribs are not required, and the degree of freedom in design is not easily limited.
[0011]
In addition, since the minor axis direction of the island dispersion substantially matches the thickness direction of the polypropylene-based resin composition, the island dispersion can be uniformly distributed perpendicularly to the direction in which stress is concentrated, Stress can be efficiently absorbed. When a polypropylene-based resin composition is used as a product in order to obtain this effect, it is necessary that the stress concentration direction in the use environment of the product matches the thickness direction.
[0012]
The shape of the island-shaped dispersion is a flat shape in which the above relationship is established between the length in the long axis direction and the length in the short axis direction. Therefore, the stress can be efficiently absorbed by the shape deformation of the island-shaped dispersion during stress concentration, and the effect of improving the scratch resistance can be obtained.
[0013]
Further, in 100 parts by weight of the polypropylene-based resin composition, 60 to 90 parts by weight of polypropylene and 40 to 10 parts by weight of reactor-TPO are included, so that the effects of improving impact resistance and scratch resistance can be obtained. it can.
[0014]
As described above, according to the first and second inventions, it is possible to provide a polypropylene-based resin composition which is less likely to cause swelling, whitening, cracks, etc. in the stress concentration portion, has a high degree of freedom in design, and has excellent scratch resistance.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
[0016]
In the first and second inventions, homo PP (= polypropylene), block PP, random PP, or the like can be used as the polypropylene. Among them, the block PP is suitable.
In the first invention, the hardness of the soft component is preferably less than 90 degrees on an R scale of Rockwell hardness. A soft component having a hardness of 90 degrees or more has too small a hardness difference from polypropylene, and may not be able to obtain the effects of the present invention. The lower limit of the hardness of the soft component is preferably 30 degrees in JIS A hardness because it is easy to take a flat shape satisfying the above relationship.
[0017]
In the first and second inventions, when A / B, which is the ratio between the major axis direction and the minor axis direction, is smaller than 1.3, the stress cannot be efficiently absorbed, so There is a possibility that problems such as whitening and cracks may occur. If it is larger than 10, problems such as insufficient impact resistance and insufficient scratch resistance may occur.
The length A in the major axis direction is an average value of all the island dispersions. The length B in the short axis direction is also an average value for all the island dispersions.
[0018]
In the second invention, if the amount of the polypropylene is less than 60 parts by weight and the amount of the reactor-TPO is 40 parts by weight or more in 100 parts by weight of the polypropylene resin composition, the heat resistance may be insufficient. If the amount of the polypropylene is 90 parts by weight or more and the amount of the reactor-TPO is less than 10 parts by weight, the impact resistance may be insufficient.
[0019]
Here, the reactor-TPO is also referred to as a polymerization type TPO, and is an olefin-based thermoplastic elastomer in which a rubber component as a soft segment is dispersed in a matrix resin as a hard segment during polymer polymerization. That is, a conventional TPO (sometimes referred to as a compound TPO), which is not a reactor-TPO, is obtained by individually polymerizing a resin component and a rubber component, and then kneading both components to form a TPO. -TPO is obtained by polymerizing a resin component and a rubber component in the same polymerization site to obtain TPO. Therefore, it is a great feature that the physical properties of the TPO are controlled during the substantial polymerization process. Moreover, a commercial item can be obtained for the reactor-TPO. Another feature is that many soft components can be contained by this polymerization method.
[0020]
In the reactor-TPO used in the second invention, the rubber component has a flat shape having a long axis and a short axis in the above-described reactor-TPO, and is used as a matrix resin which is a hard segment. Those in a dispersed state are preferred.
[0021]
Note that TPO is an olefin-based thermoplastic elastomer, and generally, a crystalline resin such as polypropylene (PP) or polyethylene (PE) is formed of hard segments, such as ethylene / propylene rubber (EPR) and butyl rubber (IIR). It is a material whose physical properties are controlled by the properties and composition ratio of both as a soft segment using a simple rubber component.
[0022]
Further, it is preferable that the polypropylene resin composition contains an inorganic filler.
Since the inorganic filler has high rigidity, it is particularly effective in absorbing stress when the displacement of the polypropylene resin composition is small.
It is preferable that the inorganic filler is contained in an amount of 15 to 85% by weight based on 100% by weight of the polypropylene resin composition. Thereby, a heat resistance improving effect can be obtained. If the content is less than 15% by weight, the effect of improving heat resistance may be difficult to obtain, and if it exceeds 85% by weight, insufficient scratch resistance may occur.
Further, the lower limit of the more preferable addition amount of the inorganic filler is 20% by weight, and the upper limit of the more preferable addition amount is 40% by weight.
As the inorganic filler, glass fiber, wollastonite, talc, mica and the like can be used.
[0023]
Next, the relaxation curves obtained from the pulsed NMR for the polypropylene resin composition were regarded as the superposition of the three components, and the three separation curves obtained by separating each of the three components were as follows:
The component derived from the separation curve having the shortest spin-spin relaxation time is preferably the hard component, and the component derived from the separation curve having the longest spin-spin relaxation time is preferably the soft component.
[0024]
Here, measurement using pulsed NMR will be described.
When analyzing the characteristics of composite polymer materials, the mobility of constituent molecules may be used. The pulse NMR method, which can directly evaluate the molecular mobility from the relaxation of the nuclear magnetic resonance (NMR) phenomenon, is widely used for analyzing the molecular mobility of a heterogeneous composite polymer material.
[0025]
That is, the spin energy of hydrogen nuclei in the polymer material transitions to a high energy state by irradiating the polymer material placed in a magnetic field with microwaves of an appropriate frequency. This is nuclear magnetic resonance. After stopping the microwave irradiation, the hydrogen nuclei return to the original energy state. This returning process is called relaxation, and the state of magnetization decay with time can be observed as a relaxation curve.
[0026]
The relaxation curves obtained by irradiating the polypropylene-based resin composition according to the present invention with microwaves show relaxation curves respectively derived from three components: a hard component, a soft component, and a boundary region component between the hard component and the soft component. It becomes a superimposed curve.
Therefore, by performing analysis using the least squares method, it is possible to separate as each relaxation curve derived from the above three components.
[0027]
It is known that the spin-spin relaxation time, which is the time constant for the decay in the relaxation curve, is short for components with slow molecular motion and long for components with fast molecular motion. , The component having the shortest spin-spin relaxation time in the separation curve obtained by separation is the hard component. On the contrary, the long component becomes the soft component.
Thus, the hard component and the soft component in the polypropylene resin composition according to the present invention can be distinguished.
[0028]
Next, it is preferable that 3 to 50 parts by weight of the soft component is contained in 100 parts by weight of the polypropylene resin composition. Thereby, the effect of improving the scratch resistance and the impact resistance can be obtained.
If the soft component is less than 3 parts by weight, the stress may not be sufficiently absorbed. On the other hand, when the amount is more than 50 parts by weight, the polypropylene resin composition becomes too soft, which may cause insufficient heat resistance.
The content of the soft component can be calculated from the pulse NMR.
[0029]
Next, in the first and second inventions, it is preferable to use the polypropylene resin composition as a material for a wheel cap.
The wheel cap is a thin member, and it is required to prevent damage when the wheel cap is attached to and detached from the wheel. In addition, a wide degree of freedom is required for the design, and it is necessary to be lightweight. Therefore, the polypropylene resin composition according to the present invention is suitable as a material for a hole cap.
[0030]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Example 1)
The polypropylene resin composition according to the present invention will be described.
The polypropylene-based resin composition 1 of this example comprises a matrix 11 composed of a hard component mainly composed of polypropylene, and an island-like dispersion 12 dispersed in the matrix 11 and composed of a soft component having a lower hardness than the hard component. Consisting of
[0031]
The island-like dispersion 12 has a flat shape having a major axis and a minor axis, and the island-like dispersion 12 is such that the minor axis direction is within the matrix 11 in the polypropylene-based resin composition 1. Are dispersed so as to substantially coincide with the thickness direction.
Further, assuming that the length of the island-shaped dispersion 12 in the major axis direction is A and the length in the minor axis direction is B, the ratio of both is in the range of 1.3 ≦ A / B ≦ 10.
[0032]
The details are described below.
FIG. 1 shows the morphology of the polypropylene resin composition 1 of this example. As shown in the figure, the polypropylene-based resin composition 1 is in a state where an island-like dispersion 12 composed of a soft component is dispersed in a matrix 11 composed of a hard component.
[0033]
Here, the polypropylene-based resin composition 1 of this example is composed of block polypropylene and reactor-TPO (reactor-olefin-based thermoplastic elastomer), in which the hard component is the matrix 11 and the soft component is the island. Constituent dispersion 12 is formed.
That is, as shown in FIG. 2, the block polypropylene 3 is in a state where the PE copolymer 33 and the EP rubber 32 are dispersed in the matrix 31 of the homo PP as the copolymer part (domain) 34, and the polypropylene 3 is the polypropylene according to the present example. When the resin composition 1 is obtained, the homo PP is a hard component, and the PE copolymer 33 and the EP rubber 32 are soft components.
[0034]
Further, as shown in FIG. 3, the reactor-TPO 4 is in a state in which a rubber component (for example, EPR) 42 is dispersed in a matrix 41 of homo PP, and the reactor-TPO 4 is the same as the polypropylene-based resin composition 1 according to the present example. In this case, the homo PP becomes a hard component and the rubber component 42 becomes a soft component.
[0035]
In the polypropylene resin composition 1 according to this example, a third phase in which a hard component and a soft component are mixed is formed between the matrix 11 and the island-shaped dispersion 12. The morphology of polypropylene and reactor-TPO has a similar structure in which domains as soft components are dispersed in a matrix as a hard component as described above. Reactor-TPO can contain a large amount of soft components, The components can be dispersed flat.
[0036]
The island-shaped dispersion body 13 has a flat shape.
In addition, the island-like dispersion 13 needs to be dispersed in the matrix 11 such that the short-axis direction substantially matches the thickness direction of the polypropylene-based resin composition 1. As shown in FIG. The direction of the stress on the resin composition 1 is the vertical direction of the drawing as indicated by an arrow 14, and the vertical direction coincides with the thickness direction of the polypropylene-based resin composition 1.
[0037]
Next, the performance comparison between Sample A-1 according to the polypropylene-based resin composition 1 of the present example and Comparative Sample B-1 will be described.
As shown in Table 1, the polypropylene-based resin composition 1 according to this example is a sample A-1, which is composed of a block polypropylene and a reactor-TPO.
Here, the content of the soft component and the A / B of the island-shaped dispersion are described in Table 1. The content of the soft component was measured by pulse NMR described later. A / B was calculated from the measured values by measuring the lengths of A and B by observing the cross section of the sample with an electron microscope.
Comparative sample B-1 for comparison is also shown in Table 1, but is composed of block polypropylene and EBR (ethylene butadiene copolymer). The content of the soft component in Comparative Sample B-1 and the A / B of the island-shaped dispersion are also described.
[0038]
From the above components, a polypropylene-based resin composition as a sample is prepared as shown below.
The necessary amount of additives (pigment, stabilizer, crystal nucleating agent, lubricant, etc.) was blended with block polypropylene or the like as a raw material (see Table 1), and the mixture was charged into a high-speed stirrer and stirred for 3 minutes. Thus, a mixed composition was obtained.
The above mixed composition was melt-kneaded at a temperature of 220 ° C. using a twin-screw extruder having a diameter of 30 mm, extruded, and pelletized. The pellets thus obtained were put into an 80-ton injection molding machine and injected at a temperature of 220 ° C. As a result, a dumbbell and a flat plate (40 mm × 110 mm × 2 mm) for the ISO standard, which were made of the polypropylene resin composition according to Sample A-1 and Comparative Sample B-1, were obtained.
[0039]
Next, the evaluation method will be described.
The HDT impact strength was evaluated at a load of 0.46 MPa according to the standard (ISO75) using the above-described dumbbell for evaluation. The IZOD impact strength evaluation was performed using a dumbbell for evaluation in an atmosphere of 23 ° C. in accordance with the standard (ISO180).
[0040]
The MFR (melt flow rate) was measured at 230 ° C. under a load of 2.16 kg in accordance with the standard (JIS K7210).
[0041]
The evaluation of the scratch resistance was performed by the method shown in FIG.
That is, the flat plate 21 is placed on the pedestal 22 (height: 6 mm). Then, the jig 23 for attaching and detaching the wheel cover is installed under the pedestal 22 so as to be able to abut on a position 20 mm from the end of the lower surface of the flat plate 21 and 50 mm from the fulcrum 230. Then, a load of 10 kg was applied at a position 140 mm from the fulcrum 230, and it was observed whether or not a remarkable swelling scratch 211 was formed on the surface 210 of the flat plate 21.
The dimensions of each part in the evaluation method according to FIG. 2 are a = 110 mm, b = 2 mm, c = 6 mm, d = 50 mm, e = 140 mm, and f = 20 mm.
[0042]
From the above evaluation results described in Table 1, it was found that Sample A-1 according to the present invention was excellent in heat resistance and mechanical strength (impact resistance) and was not damaged.
Comparative Sample B-1 has low heat resistance and low mechanical strength (impact resistance). It was also found to be hurt.
[0043]
Further, in order to examine the breakdown of the hard component and the soft component in the sample A-1 shown in Table 1, the decay curve of pulse NMR was measured by the solid echo method. FIG. 5 shows the obtained attenuation curve. In this figure, the vertical axis represents intensity, and the horizontal axis represents time (relaxation time).
The measurement conditions at this time will be described.
A JEOL MU-25 type was used as a pulse NMR apparatus, and the measurement mode was a solid echo method. The time on the x-axis of the signal monitor is 500 microseconds, the RF pulse width is 2 microseconds, the RF pulse interval is 8 microseconds, the pulse repetition time is 1 second, and the measurement temperature is 25 ° C.
[0044]
The resulting relaxation curve is the curve described as (1) in FIG.
When the least-squares method was applied to this relaxation curve, as can be seen from FIG. 5, the curve could be separated into three curves (a) to (c). The spin-spin relaxation time T2 was 368 microseconds in (a), 47.5 microseconds in (b), and 12.4 microseconds in (c).
[0045]
That is, the shortest time (c) is derived from the hard component of sample A-1, and the longest (a) is derived from the soft component. (B), which is an intermediate value between the two, is a boundary region between the hard component and the soft component, and is not shown in FIG.
From these (a) to (c), the content that can be converted into the weight ratio of each component can be calculated using the least squares method.
In this sample A-1, it was found that the soft component occupied 25% by weight in the entire polypropylene resin composition, the hard component occupied 68% by weight, and the component in the boundary region between the two components occupied 7% by weight.
5 is the WI of the relaxation curve M (t) = M 0 exp [− (1 / WI) (t / T 2 ) WI ] where the magnetization (M) decays with respect to time (t). Is a numerical value indicating
[0046]
Since the polypropylene-based resin composition 1 of the present embodiment has the island-shaped dispersion 12 composed of a soft component, the soft component can absorb the stress applied from the outside, and swelling, whitening, and cracking occur at places where the stress is concentrated. Etc. are unlikely to occur. Further, since the soft component is dispersed in the matrix 11 composed of the hard component, it is possible to prevent a decrease in the hardness of the entire polypropylene resin composition. Therefore, thickening and reinforcing ribs are not required, and the degree of freedom in design is not easily limited.
[0047]
The island-shaped dispersion 12 has a flat shape having A / B in a predetermined range. Therefore, the stress can be efficiently absorbed by the shape deformation of the island-shaped dispersion during stress concentration, and the effect of improving the scratch resistance can be obtained.
Further, since the minor axis direction of the island-shaped dispersion 12 substantially coincides with the thickness direction of the polypropylene-based resin composition 1, the island-shaped dispersion 12 is perpendicular to the thickness direction of the polypropylene-based resin composition 1 where stress is concentrated. The bodies 12 can be aligned and distributed, and the stress can be efficiently absorbed.
[0048]
As described above, according to this example, it is possible to provide a polypropylene-based resin composition in which swelling, whitening, cracks, and the like in the stress concentration portion are less likely to occur and the degree of freedom in design is high.
[0049]
[Table 1]
Figure 2004051837
[0050]
(Example 2)
This example describes a polypropylene-based resin composition containing an inorganic filler.
FIG. 6 shows the morphology of the polypropylene-based resin composition 1 containing the inorganic filler 13.
As in Example 1, the polypropylene-based resin composition 1 is in a state where the island-like dispersion 12 composed of the soft component is dispersed in the matrix 11 composed of the hard component. In addition, the inorganic filler 13 made of glass fiber is also in a state of being dispersed in the matrix 11.
[0051]
When the inorganic filler 13 enters, the island dispersion 12 is effective for improving the scratch resistance. Normally, when the stress is concentrated, cracks occur around the inorganic filler 13, but the island-like dispersion 12 near the inorganic filler 13 efficiently absorbs the stress by the above-mentioned island-like dispersion 12 and suppresses cracking. It becomes possible.
[0052]
Further, the number of the inorganic filler and the island-shaped dispersion is preferably “inorganic filler <island-shaped dispersion”. Further, it is more preferable that the island-like dispersion is present within 100 μm around an inorganic filler having an A / B of 1.3 or more.
In addition, an organic unsaturated acid-modified polyolefin (for example, maleic anhydride polyolefin) may be contained for the purpose of improving the adhesion between the inorganic filler 13 and the matrix 11.
[0053]
Next, the performance comparison between Samples A-2 to A-4 according to the polypropylene-based resin composition of this example and Comparative Sample B-2 will be described.
As shown in Table 2, Sample A-2 was made of block polypropylene, reactor-TPO, and glass fiber as an inorganic filler. Sample A-3 is a polypropylene-based resin composition using wollastonite, and A-4 is talc as an inorganic filler.
Comparative sample B-2 was made of block polypropylene and EBR, and contained talc as an inorganic filler. Other details are the same as in Example 1, and the method for producing a polypropylene-based resin composition from these samples is also the same as in Example 1.
[0054]
When the performance of each sample thus obtained was evaluated in the same manner as in Example 1, the samples A-2 to A-4 according to the present invention were excellent in heat resistance and mechanical properties (impact strength). In the test described in Example 1, no scratch was found.
However, B-2, which is a comparative sample, had low heat resistance, was damaged in the test described in Example 1, and was inferior in scratch resistance.
[0055]
[Table 2]
Figure 2004051837

[Brief description of the drawings]
FIG. 1 is an explanatory view showing the morphology of a polypropylene resin composition in Example 1.
FIG. 2 is an explanatory diagram showing the morphology of block polypropylene in Example 1.
FIG. 3 is an explanatory diagram showing a morphology of a reactor-TPO in Example 1.
FIG. 4 is an explanatory diagram of a method for evaluating scratch resistance in Example 1.
FIG. 5 is a diagram showing a relaxation curve in the first embodiment.
FIG. 6 is an explanatory view showing the morphology of a polypropylene-based resin composition containing an inorganic filler in Example 2.
FIG. 7 is an explanatory view when stress is applied to a polypropylene resin composition in the related art.
FIG. 8 is an explanatory view of a conventional case where a stress is applied to a polypropylene resin composition to cause blistering.
[Explanation of symbols]
1. . . Polypropylene resin composition,
11. . . matrix,
12. . . Island dispersion,

Claims (6)

ポリプロピレンを主体とする硬質成分よりなるマトリックス内に,上記硬質成分よりも低い硬度の軟質成分よりなると共に長軸と短軸とを備えた扁平な形状を有する島状分散体が分散するポリプロピレン系樹脂組成物であって,
上記島状分散体は上記マトリックス内において上記短軸方向が上記ポリプロピレン系樹脂組成物の厚み方向と略一致するように分散し,
上記島状分散体の長軸方向の長さをA,短軸方向の長さをBとすると,1.3≦A/B≦10であることを特徴とするポリプロピレン系樹脂組成物。
A polypropylene-based resin in which a flat island-shaped dispersion composed of a soft component having a lower hardness than the above-mentioned hard component and having a long axis and a short axis is dispersed in a matrix composed of a hard component mainly composed of polypropylene. A composition,
The island-shaped dispersion is dispersed in the matrix such that the minor axis direction substantially matches the thickness direction of the polypropylene-based resin composition,
A polypropylene resin composition characterized in that 1.3 ≦ A / B ≦ 10, where A is the length in the major axis direction and B is the length in the minor axis direction of the island-shaped dispersion.
請求項1において,上記ポリプロピレン系樹脂組成物は無機充填材を含有することを特徴とするポリプロピレン系樹脂組成物。2. The polypropylene resin composition according to claim 1, wherein the polypropylene resin composition contains an inorganic filler. 請求項1または2において,上記ポリプロピレン系樹脂組成物に対するパルスNMRより得た緩和曲線を三成分の重畳とみなし,三成分毎に分離することにより得た3本の分離曲線において,
スピン−スピン緩和時間が最も短い分離曲線に由来する成分が上記硬質成分であり,スピン−スピン緩和時間が最も長い分離曲線に由来する成分が上記軟質成分であることを特徴とするポリプロピレン系樹脂組成物。
3. The three separation curves according to claim 1 or 2, wherein a relaxation curve obtained by pulse NMR for the polypropylene-based resin composition is regarded as superposition of three components,
A component derived from a separation curve having the shortest spin-spin relaxation time is the hard component, and a component derived from the separation curve having the longest spin-spin relaxation time is the soft component. object.
請求項3において,上記ポリプロピレン系樹脂組成物100重量部内において上記軟質成分は3〜50重量部含まれることを特徴とするポリプロピレン系樹脂組成物。4. The polypropylene resin composition according to claim 3, wherein the soft component is contained in an amount of 3 to 50 parts by weight in 100 parts by weight of the polypropylene resin composition. ポリプロピレンとリアクター−TPOとよりなるポリプロピレン系樹脂組成物であって,
ポリプロピレンを主体とするマトリックス内に扁平な形状を有する島状分散体が分散し,
上記島状分散体は上記マトリックス内において上記短軸方向が上記ポリプロピレン系樹脂組成物の厚み方向と略一致するように分散し,
上記島状分散体の長軸方向の長さをA,短軸方向の長さをBとすると,1.3≦A/B≦10であり,
さらに上記ポリプロピレン系樹脂組成物100重量部内において,ポリプロピレンは60〜90重量部,リアクター−TPOは40重量部〜10重量部含まれることを特徴とするポリプロピレン系樹脂組成物。
A polypropylene-based resin composition comprising polypropylene and reactor-TPO,
An island-shaped dispersion having a flat shape is dispersed in a matrix mainly composed of polypropylene,
The island-shaped dispersion is dispersed in the matrix such that the minor axis direction substantially matches the thickness direction of the polypropylene-based resin composition,
Assuming that the length of the island-shaped dispersion in the long axis direction is A and the length of the short axis direction is B, 1.3 ≦ A / B ≦ 10,
Further, the polypropylene-based resin composition is characterized in that, in 100 parts by weight of the polypropylene-based resin composition, 60 to 90 parts by weight of the polypropylene and 40 to 10 parts by weight of the reactor-TPO are contained.
請求項1〜5のいずれか1項において,上記ポリプロピレン系樹脂組成物はホイールキャップ用材料として用いることを特徴とするポリプロピレン系樹脂組成物。The polypropylene resin composition according to any one of claims 1 to 5, wherein the polypropylene resin composition is used as a material for a wheel cap.
JP2002212774A 2002-07-22 2002-07-22 Polypropylene resin composition Pending JP2004051837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212774A JP2004051837A (en) 2002-07-22 2002-07-22 Polypropylene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212774A JP2004051837A (en) 2002-07-22 2002-07-22 Polypropylene resin composition

Publications (1)

Publication Number Publication Date
JP2004051837A true JP2004051837A (en) 2004-02-19

Family

ID=31935607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212774A Pending JP2004051837A (en) 2002-07-22 2002-07-22 Polypropylene resin composition

Country Status (1)

Country Link
JP (1) JP2004051837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178108A (en) * 2017-04-14 2018-11-15 住友化学株式会社 Propylene resin composition and molded body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178108A (en) * 2017-04-14 2018-11-15 住友化学株式会社 Propylene resin composition and molded body
US10619040B2 (en) 2017-04-14 2020-04-14 Sumitomo Chemical Company, Limited Propylene resin composition and injection molded article
JP7023164B2 (en) 2017-04-14 2022-02-21 住友化学株式会社 Propylene resin composition and molded product

Similar Documents

Publication Publication Date Title
EA038343B1 (en) Polypropylene - carbon fiber composite
US20120302696A1 (en) Glass fiber reinforced polypropylene
US7858688B2 (en) Thermoplastic articles and processes for making the same using an improved masterbatch
US10155828B2 (en) High flow TPO composition with excellent low temperature impact
JP2018522102A (en) Fiber reinforced composite
BRPI1100229A2 (en) impact resistant olefin polymer composition, and process for producing a composition
CA3000906C (en) High flow tpo composition with excellent balance in mechanical properties for automotive interior
WO2013113470A1 (en) Talc containing polypropylene composition with excellent thermomechanical properties
KR101357908B1 (en) Polypropylene resin composition for microcellular injection molding
JP5495154B2 (en) Ethylene-propylene block copolymer polypropylene resin composition with excellent fluidity, rigidity and impact strength
KR20190140461A (en) Carbon Fiber Reinforced Polyolefin Compositions and Methods
RU2704135C1 (en) High-flow composition with excellent elongation at break and low adhesibility in powder form
Muñoz‐Pascual et al. Effect on the Impact Properties of Adding Long‐Chain Branched Polypropylene in Polypropylene‐Polyolefin Elastomer Cellular Polymers Produced by Core‐Back Injection Molding
JP2004051837A (en) Polypropylene resin composition
TW202018001A (en) Upgraded recycled polyethylene polypropylene blend
EP3434728B1 (en) Long carbon fibre reinforced polypropylene composition
Luo et al. Effects of coupling agents on the rheological behavior and physical/mechanical properties of filled nylon 6
US9115278B2 (en) Polyolefin-based resin composition
KR20070048992A (en) Polypropylene resin composition for automobile trim
Al-Otaibi et al. Effect of nucleating agent incorporation on mechanical, morphological, and rheological properties of in-situ copolymer polypropylene and PPH/POE blends
KR20050121558A (en) Composite of polypropylene resin
KR20210065504A (en) Multi-component polypropylene composition for pressurization type reservoir tank
JPH05311018A (en) Polyolefin resin composition for automotive interior part
BR112017026870B1 (en) FIBER REINFORCED COMPOSITION, AUTOMOTIVE AND FOAMED ARTICLE, AND, USE OF A FIBER REINFORCED COMPOSITION
JPH026545A (en) Polyolefin resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115