JP2004051615A - Bile acids adsorbent using chitosan-orotic acid salt - Google Patents

Bile acids adsorbent using chitosan-orotic acid salt Download PDF

Info

Publication number
JP2004051615A
JP2004051615A JP2002241183A JP2002241183A JP2004051615A JP 2004051615 A JP2004051615 A JP 2004051615A JP 2002241183 A JP2002241183 A JP 2002241183A JP 2002241183 A JP2002241183 A JP 2002241183A JP 2004051615 A JP2004051615 A JP 2004051615A
Authority
JP
Japan
Prior art keywords
chitosan
orotate
acid
bile acids
bile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002241183A
Other languages
Japanese (ja)
Inventor
Susumu Kawashima
河島 進
Yoshifumi Murata
村田 慶史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SNOWDEN CO Ltd
Original Assignee
SNOWDEN CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNOWDEN CO Ltd filed Critical SNOWDEN CO Ltd
Priority to JP2002241183A priority Critical patent/JP2004051615A/en
Publication of JP2004051615A publication Critical patent/JP2004051615A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a preparation used for the prevention/treatment of hyperlipidemia, especially removing bile acids in gastrointestinal tract powerfully and used widely as a food, beverage, medicine, etc. <P>SOLUTION: This bile acid-adsorbent is obtained by using chitosan-orotic acid salt as active ingredients. The chitosan-orotic acid salt can be prepared as not only gel beads but also powder, and can be used widely for the food, beverage and medicine directly or by preparing as various oral preparations. The cholesterol-decreasing activity is twice as potent as that of the chitosan, and by the bile acids adsorbing capacity, it adsorbs every bile acids irrespective to primary, secondary or conjugated species, and especially exhibits a high adsorbing capacity to the secondary bile acids. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明は、新規なキトサン・オロチン酸塩を有効成分とする胆汁酸吸着剤。高脂血症、動脈硬化症、肥満などの予防・改善効果を期待できる飲食品、医薬品または医薬部外品に関する。
【0002】
【従来の技術】近年の動脈硬化性疾患の増加は、食習慣の変化に伴う高脂血症の増加と大きく関連しており、我が国の食生活の変化から考えても、これらの疾患に対して、欧米諸国なみの認識が必要であると考えられる。高脂血症の治療や予防に関しては、食品は非常に重要な因子であり、特に、高脂血症患者においては、その疾患の進行を予防するためにも、コレステロール摂取量を制限した日常的な食習慣が大切であるとされている。
【0003】体内のコレステロールの殆どは肝臓で胆汁酸に異化される。そしてコレステロールから生合成された胆汁酸は、胆管を通じて腸管内に分泌されて、小腸内の脂肪の消化吸収を助けている。分泌された胆汁酸は、その95%以上が腸管から再吸収されて腸肝循環を行い、糞便として体外に排斥されるのは5%以下である(牧野勲他、「代謝」24(8)p.685,1987年)。
【0004】従って、血液中のコレステロール値を低下させるための一つの手段として、腸管内の胆汁酸を吸着除去することにより、胆汁酸の腸肝循環を抑制させ、コレステロールから胆汁酸への異化作用を促進する方法が試みられてきている。この作用機序に基づく薬剤として上市されているものに、陰イオン交換樹脂であるコレスチラミンがあり、長期使用に於ける有効性と安全性が確認されて、広く臨床応用されている。しかし、コレスチラミンは、1日の投与量が8〜12gと非常に多く、しかも水やジュースに懸濁して服用しなければならないことから、副作用として腹部膨満感や便秘などの胃腸症状が多く発生する。このため、胆汁酸吸着能力が優れ、副作用のない代替薬剤が望まれている。
【0005】キトサンは、蟹や海老の甲殻や昆虫の外皮、イカ・貝等の軟体動物の器官、きのこ等菌類の細胞壁など、地球上に広く分布している生体高分子(多糖類)のキチン質を脱アセチル化して製造され、β−1.4−ポリ−D−グルコサミンの化学構造を有する塩基性多糖類である。キトサンに高脂血症を改善する薬効があることが報告されている。特公平6−92308号、特許第2885868号、特許第3108675号、特開平9−87302号、特表2001−512432号、特開2000−157210号、特開2001−169753号、特開2001−302519号、特開2002−45146号などがあるが、此等の内容はキトサンオリゴマー、キトサンの粒度、結晶等に関するもの、或いはキトサンと食物繊維、糖、蛋白質水解物などとの配合に関するものである。
【0006】オロチン酸は、哺乳動物のミルク中から検出され、各種器官の構成・機能に必須のピリミジン体前駆物質として哺乳動物生体に存在している。その化学構造はウラシル−6−カルボン酸で、発酵法または化学合成で製造され市販されている。胆汁酸吸着作用に関する報告はない。
【0007】キトサンとニコチン酸を配合した低コレステロール剤として、特表2000−504724号があり、ニコチン酸に対するキトサン配合の重量比を0.67〜360に限定し、また胆汁酸吸着に関する記載はない。特開平9−241169号は本発明者等の出願特許で、キトサンと有機酸との塩を製造し、ゲル状組成物に製剤化した胆汁酸吸着剤の最初の発明であり、有機酸としては乳酸、リンゴ酸、クエン酸、グルタミン酸及びアスパラギン酸を具体的に例示している。
【0008】
【発明が解決しようとする課題】本発明は、本発明者らの前記発明(特開平9−241169号)がキトサンと有機酸との塩をゲルマトリックス中に包含するゲル状組成物製剤に関し、その使用・応用が限られるため、汎用性の高い粉末化が可能で、更に強力に胆汁酸を吸着するキトサン・有機酸塩を提供することにある。
【0009】
【課題を解決するための手段】本発明者らはキトサンと、経口摂取が可能な各種有機酸との塩を製造し、粉末化及び胆汁酸吸着能の実験を重ね、新規なキトサン・オロチン酸塩が粉末化が可能で、かつ強力な胆汁酸吸着能を有することを見出し、本発明を完成した。
【0010】本発明のキトサン・オロチン酸塩は前記発明(特開平9−241169号)の製剤と同様にアルギン酸ゲル等のゲルマトリックス中に包含させたゲルビーズとして、また粉末として、または腸溶性コーテイングした粉末として直接的に、或いはシロップ剤、散剤、顆粒剤、錠剤、カプセル剤等の経口用製剤化して、飲食品、医薬品または医薬部外品に使用することが出来る。
【0011】
【実施例】以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0012】
【実施例1】キトサン・オロチン酸塩粉末の製法
0.5gキトサンを0.072%オロチン酸水溶液500mlに加え、攪拌する。肉眼的には、キトサン粉末が浮遊(或いは沈澱)した状態にある。一日後、グラスフィルターにて濾取し、水洗する(乾燥を早めるためにエタノールでリンスしてもよい)。乾燥させデシケーター中で保管する。
また12gのキトサンを用いて、同様の方法でスケールアップを試みたが、全く同様にキトサン・オロチン酸塩の粉末を調製できた。
【0013】キトサン・オロチン酸塩粉末中のオロチン酸含有量
キトサン・オロチン酸塩20mgを秤量し、希塩酸溶液(或いは蒸留水)に加えて一日放置し、解離したオロチン酸量を高速液体クロマトグラフィで測定した [測定条件:カラムC18(150x4.6mm)、溶出液5mMリン酸(pH約2.9)、流速0.8ml/分、注入量10μl、検出280nm]。測定結果は2.7mMオロチン酸/キトサン・オロチン酸塩1gであった。
【0014】
【実施例2】インビトロ(in vitro)における胆汁酸取り込み試験
供試したサンプルは実施例1のキトサン・オロチン酸塩粉末、実施例1と同様の製法で調製したキトサン・リンゴ酸塩、キトサン・ニコチン酸塩、キトサン・クエン酸塩の4サンプルである。胆汁酸としては1次胆汁酸であるタウロコール酸ナトリウムとグリココール酸ナトリウム、2次胆汁酸としてタウロデオキシコール酸ナトリウムとグリコケノデオキシコール酸ナトリウムを用いた。
【0015】2mM胆汁酸水溶液15mlの入ったL字管を予め37°Cに加温し、各サンプル10mg、或いは50mgを入れ、振とうする(67回/分)。経時的にL字管から水溶液試料を採取して、系中の胆汁酸量を高速液体クロマトグラフィにより測定した。測定条件は、カラムC18(150x4.6mm)、溶出液はメタノール:30mMリン酸緩衝液(pH3.4):アセトニトリル=6:3:1、流速0.8ml/分、注入量20μl、検出は230nmの吸光度で行った。
【0016】図1に、胆汁酸としてタウロコール酸ナトリウムを用いた場合の実験結果を示す。サンプル量は各10mgで、供試した4サンプルの中、キトサン・オロチン酸塩の胆汁酸吸着が最速で、15分後には系中に溶解している胆汁酸の約47%を吸着し、その量は1.42±0.08mMタウロコール酸/サンプル1g(n=5)で最大であった。一方、キトサン・ニコチン酸塩及びキトサン・クエン酸塩の胆汁酸吸着は悪く、15分後ではキトサン・オロチン酸塩の半分以下であり、1時間経過しても殆どその胆汁酸吸着量の増大はなかった。
【0017】また、キトサン・オロチン酸塩を50mg使用した時には系中の90%以上の胆汁酸吸着が認められた。
【0018】図2に、キトサン・オロチン酸塩(サンプル量10mg)のキトサン脱アセチル化度の相違による胆汁酸(タウロコール酸)吸着への影響についての実験結果を示す。結果はキトサン脱アセチル化度の増加と共に、タウロコール酸吸着量の増加がみられた。一方、図3に示される様に含有されるオロチン酸量はキトサン脱アセチル化度の相違に関連性がなかった。100%アセチル化しているキチンでは殆どオロチン酸の吸着がないことから、脱アセチル化度の大きいキトサンほど効率よくイオン交換が起こっていると考えられる。
【0019】図4に、キトサン・オロチン酸塩粉末(サンプル量10mg)の粒子径による胆汁酸(タウロコール酸)吸着量への影響についての実験結果を示す。キトサン・オロチン酸塩を篩にかけて以下の3つのサイズに分け、各粒子径による胆汁酸吸着量を測定した。
A:48〜80メッシュ(300〜180μm)
B:80〜200メッシュ(180〜75μm)
C:200メッシュ>(75μm>)
結果はいずれの粒子径に於いても、ほぼ同程度のタウロコール酸吸着が認められた。この事は胆汁酸のキトサン・オロチン酸塩粉末への吸着が粉体表面のみで起きているのでないことを証明した。むしろ200メッシュ以上の微粉末では吸着量が若干減少しており、これは微粉末化による「固体表面のぬれ」の変化に起因すると考えられる。
【0020】図5及び図6に、キトサン・オロチン酸塩(サンプル量10mg)中のオロチン酸濃度による胆汁酸(タウロコール酸)吸着量への影響についての実験結果を示す。結果はキトサンに対して、塩としてオロチン酸が0.036%以上の濃度で存在すれば十分な胆汁酸吸着が起こることを証明した。
【0021】図7に、キトサン・オロチン酸塩(サンプル量10mg)の胆汁酸選択性についての実験結果を示す。結果はキトサン・オロチン酸塩が1次、2次胆汁酸或いは抱合体種にかかわらず、各胆汁酸を吸着することを証明した。とりわけ2次胆汁酸の吸着量が大きかったことは特質すべき新知見である。
【0022】
【実施例3】キトサン・オロチン酸塩固定化アルギン酸ゲルビーズの調製
0.5gキトサンを1(W/W)%アルギン酸ナトリウム溶液9.5gに加え、攪拌分散させる。この溶液約2g(1サンプル分)を0.05M塩化カルシウム溶液10mlに滴下すると、瞬時にキトサン固定化アルギン酸ハイドロゲルビーズが形成され、これを室温にて30分間ほど放置後、メッシュフィルターにて取り出し、0.072%オロチン酸溶液100mlに移し替え、一日室温にて放置する。ハイドロゲルビーズを篩で取り出し、蒸留水10ml程度で洗浄した後、乾燥させる。
【0023】キトサン・オロチン酸塩固定化乾燥アルギン酸ゲルビーズ中から放出されるオロチン酸の測定
乾燥ゲルビーズ0.13g(1サンプル分)を100mlのメスフラスコに入れ、蒸留水を加えてメスアップして室温放置、6時間後及び24時間後に放出されたオロチン酸量を高速液体クロマトグラフィにて測定した[測定条件:カラムC18(150x4.6mm)、溶出液5mMリン酸(pH約2.9)、流速0.8ml/分、注入量10μl、検出280nm]。測定結果は6時間後及び24時間後共に同量の26.1±0.2μMのオロチン酸が放出された(n=3)。
【0024】
【実施例4】キトサン・オロチン酸塩固定化アルギン酸ゲルビーズのインビトロ(in vitro)における胆汁酸取り込み試験
供試したサンプルは、実施例3で調製したビーズと、実施例3に於いてキトサン固定化アルギン酸ハイドロゲルビーズを0.072%オロチン酸溶液100mlに移し替える際の該溶液量を100mlの替わりに20ml、50ml及び150mlとして調製した3種のキトサン・オロチン酸塩固定化アルギン酸ゲルビーズを加えた計4サンプルである。胆汁酸にはタウロコール酸ナトリウムを使用した。
【0025】2mMタウロコール酸ナトリウム水溶液15mlの入ったL字管を予め37°Cに加温し、各サンプル0.13gを入れ、振とうする(67回/分)。経時的にL字管から試料を採取して、系中の胆汁酸量を高速液体クロマトグラフィにより測定した。測定条件は、カラムC18(150x4.6mm)、溶出液はメタノール:30mMリン酸緩衝液(pH3.4):アセトニトリル=6:3:1、流速0.8ml/分、注入量20μl、検出は230nmの吸光度で行った。
【0026】図8は、キトサン・オロチン酸塩固定化アルギン酸ゲルビーズの調製時にオロチン酸溶液量を変化させたときの胆汁酸(タウロコール酸)吸着量への影響を示した実験結果である。結果は0.072%オロチン酸50〜150mlで調製したビーズに於いてはほぼ同様のタウロコール酸取り込み挙動を示し、1〜1.5時間で取り込みは終了した。また、その取り込み量は系中に存在する胆汁酸の約90%であった。
【0027】図9は、キトサン・オロチン酸塩固定化アルギン酸ゲルマトリックスの乾燥時と水を含んだ状態での胆汁酸(タウロコール酸)取り込みへの影響を示す実験結果である。結果は乾燥ゲルビーズもハイドロゲルビーズも、全く同様の胆汁酸取り込み挙動を示した。これはゲルが消化管内で水分を含むか否かに拘わらず、同様の胆汁酸吸着が起ることを証明した。
【0028】
【実施例5】キトサン・オロチン酸塩経口摂取による血中コレステロール低下作用実験
実験動物はウイスター(whister)系ラット5週令を使用した。ステンレス製ケージ1室に1匹を飼育し、自由摂餌及び自由摂水とした。ラットを4群(1群3〜5匹)に分け、各群には、第1表に示す組成の標準飼料CRF−1(チャールズリバー配合)粉末飼料(標準飼料群)を、第2表に示す組成を有する高脂高コレステロール飼料(高コレステロール群)を、キトサンを5%含有する高脂高コレステロール飼料(キトサン投与群)を、及びキトサン・オロチン酸塩を5%含有する高脂高コレステロール飼料(キトサン・オロチン酸塩投与群)を投与した。採血は1週間目、実験開始後2週間目に尾静脈より血液を採取し、採血後約1時間放置し、完全に凝血したのち3000rpmにて遠心し上清を血清とし、血清中の総コレステロール量を測定した。測定はコレステロールE・テストワコー(DAOS法)、或いはコレステロールC・テストワコー法により行った。
【0029】
【第1表】標準飼料組成
CRF−1(チャールズリバー配合)粉末飼料(100g中)
水分          8.1g
粗タンパク質     22.6g
粗脂肪         5.6g
粗灰分         6.6g
粗繊維         3.3g
可溶性無窒素物    53.8g
カロリー      356 kcal
【0030】
【第2表】高脂高コレステロール飼料組成
コレステロール     1.0%
オリーブ油       2.0%
コール酸ナトリウム   0.2%
CRF−1      96.8%
以上の各成分を乳鉢にて十分混和後、710μmの篩にかけ飼料とした。
【0031】図10に上記4種の異なる飼料で飼育した場合のラット飼料摂取量の1週間及び2週間後の変化の結果を示す。結果は標準飼料群および高コレステロール群の飼料摂取量に差は認められなかった。また同様にキトサン投与群及びキトサン・オロチン酸塩投与群とも飼料摂取量に差は認められなかった。
【0032】図11に上記4種の異なる飼料で飼育した場合のラット体重の1週間、2週間及び3週間後の変化の結果を示す。結果は高コレステロール群、キトサン投与群及びキトサン・オロチン酸塩投与群とも、ラット体重は1.2及び3週間後いずれも順調に増加し、標準飼料群とに差は全く観察されなかった。
【0033】図12に上記4種の異なる飼料で飼育した場合のラット血清中総コレステロール量変動の1週間及び2週間後の実験結果を示す。最初の1週間は高コレステロール群、キトサン投与群及びキトサン・オロチン酸塩投与群いずれも高い血清コレステロール値を示し、標準飼料群に比し二倍近い値を示した。2週間後、高コレステロール群では依然として高い血清コレステロール値を維持しているが、キトサン投与群では標準飼料群とほぼ同程度まで低下し、キトサン・オロチン酸塩投与群に於いては標準飼料群の血清コレステロール値の半分近くにまで低下した。
【0034】
【発明の効果】本発明の新規なキトサン・オロチン酸塩は低コレステロール作用剤として知られるキトサンよりも、それに倍するコレステロール低下作用を有し、キトサン・オロチン酸塩の胆汁酸吸着能は1次、2次胆汁酸或いは抱合体種にかかわらず、遍く胆汁酸を吸着し、特に2次胆汁酸に対する吸着能が高いのは特質である。またキトサン・オロチン酸塩はゲルビーズばかりでなく、粉末として調製することができ、直接的に、或いはシロップ剤、散剤、顆粒剤、錠剤、カプセル剤等の各種経口用製剤化して、飲食品、医薬品または医薬部外品等に広く使用することが出来る。
【図面の簡単な説明】
【図1】キトサンと各種有機酸塩の胆汁酸吸着量を比較した図である。各サンプル量は10mgで、縦軸の胆汁酸にはタウロコール酸ナトリウムを使用した。
【図2】キトサン脱アセチル化度の相違によるキトサン・オロチン酸塩10mgの胆汁酸吸着量を示す図である。縦軸の胆汁酸にはタウロコール酸ナトリウムを使用した。
【図3】キトサン脱アセチル化度の相違によるキトサン・オロチン酸塩10mg中のオロチン酸量を示す図である。
【図4】キトサン・オロチン酸塩(10mg)粉末の粒子径の相違による胆汁酸吸着量を示す図である。縦軸の胆汁酸にはタウロコール酸ナトリウムを使用した。
【図5】キトサン・オロチン酸塩10mg中のオロチン酸濃度の相違による胆汁酸吸着量を示す図である。縦軸の胆汁酸にはタウロコール酸ナトリウムを使用した。
【図6】キトサン・オロチン酸塩10mg中のオロチン酸濃度の百分率と塩形成しているオロチン酸量との関係を示す図である。
【図7】キトサン・オロチン酸塩10mgを使用したときの胆汁酸選択性を示す図である。
【図8】キトサン・オロチン酸塩固定化アルギン酸ゲルビーズ中のオロチン酸濃度の相違による胆汁酸吸着量を示す図である。縦軸の胆汁酸にはタウロコール酸ナトリウムを使用した。
【図9】キトサン・オロチン酸塩固定化アルギン酸ゲルビーズの乾燥ゲルビーズとハイドロゲルビーズの胆汁酸吸着量を示す図である。縦軸の胆汁酸にはタウロコール酸ナトリウムを使用した。
【図10】4種の異なる飼料で飼育した場合の1週間及び2週間後のラット飼料摂取量を示す図である。
【図11】4種の異なる飼料で飼育した場合の1週間、2週間及び3週間後のラット体重を示す図である。
【図12】4種の異なる飼料で飼育した場合の1週間及び2週間後のラット血清中総コレステロール量を示す図である。
[0001]
TECHNICAL FIELD The present invention relates to a bile acid adsorbent comprising a novel chitosan orotate as an active ingredient. The present invention relates to foods and drinks, pharmaceuticals or quasi-drugs that can be expected to have a preventive / ameliorating effect on hyperlipidemia, arteriosclerosis, obesity and the like.
[0002]
2. Description of the Related Art The increase in arteriosclerotic diseases in recent years is greatly related to the increase in hyperlipidemia due to changes in eating habits. Therefore, it is necessary to have the same recognition as Western countries. Food is a very important factor in the treatment and prevention of hyperlipidemia, especially in patients with hyperlipidemia who have limited cholesterol intake to prevent the progression of the disease. It is said that good eating habits are important.
[0003] Most of the cholesterol in the body is catabolized by the liver into bile acids. Bile acids biosynthesized from cholesterol are secreted into the intestinal tract through the bile duct to assist in digestion and absorption of fat in the small intestine. More than 95% of the secreted bile acids are reabsorbed from the intestinal tract and enterohepatic circulation, and less than 5% are eliminated as faeces from the body (Isao Makino et al., “Metabolism” 24 (8)) p.685, 1987).
Accordingly, as one means for lowering the cholesterol level in blood, bile acids in the intestinal tract are adsorbed and removed, thereby suppressing the enterohepatic circulation of bile acids and causing a catabolic effect from cholesterol to bile acids. Attempts have been made to promote this. Cholestyramine, an anion exchange resin, is marketed as a drug based on this mechanism of action, and its efficacy and safety in long-term use have been confirmed, and it has been widely used in clinical applications. However, since cholestyramine has an extremely large daily dose of 8 to 12 g and must be taken in water or juice, gastrointestinal symptoms such as abdominal bloating and constipation occur frequently as side effects. I do. For this reason, there is a demand for a substitute drug having excellent bile acid adsorption ability and no side effect.
Chitosan is a biopolymer (polysaccharide) chitin widely distributed on the earth, such as the shells of crab and shrimp, the shell of insects, the organs of mollusks such as squid and shellfish, and the cell walls of fungi such as mushrooms. It is a basic polysaccharide produced by deacetylation of a substance and having a chemical structure of β-1.4-poly-D-glucosamine. It has been reported that chitosan has a drug effect to improve hyperlipidemia. Japanese Patent Publication No. 6-92308, Japanese Patent No. 2888568, Japanese Patent No. 3108675, Japanese Patent Application Laid-Open No. 9-87302, Japanese Patent Application Laid-Open No. 2001-512432, Japanese Patent Application Laid-Open No. 2000-157210, Japanese Patent Application Laid-Open No. 2001-169753, and Japanese Patent Application Laid-Open No. 2001-302519. And Japanese Patent Application Laid-Open No. 2002-45146, which are concerned with chitosan oligomers, chitosan particle size, crystals, and the like, or on the combination of chitosan with dietary fiber, sugar, protein hydrolyzate, and the like.
[0006] Orotic acid is detected in milk of mammals and is present in living mammals as a pyrimidine precursor which is essential for the constitution and function of various organs. Its chemical structure is uracil-6-carboxylic acid, which is produced by fermentation or chemical synthesis and is commercially available. There are no reports on bile acid adsorption.
[0007] As a low cholesterol agent containing chitosan and nicotinic acid, there is JP-A-2000-504724, which limits the weight ratio of chitosan to nicotinic acid to 0.67-360, and there is no description about bile acid adsorption. . Japanese Patent Application Laid-Open No. 9-241169 is an application patent of the present inventors, and is the first invention of a bile acid adsorbent produced by preparing a salt of chitosan and an organic acid and formulating it into a gel composition. Lactic acid, malic acid, citric acid, glutamic acid and aspartic acid are specifically exemplified.
[0008]
SUMMARY OF THE INVENTION The present invention relates to a gel composition comprising a salt of chitosan and an organic acid in a gel matrix according to the invention (JP-A-9-241169). It is an object of the present invention to provide a chitosan / organic acid salt which can be powdered with high versatility and further strongly adsorbs bile acids since its use and application are limited.
[0009]
Means for Solving the Problems The present inventors have produced salts of chitosan and various organic acids which can be orally ingested, repeated experiments on powdering and bile acid adsorption capacity, and obtained a novel chitosan orotic acid. The present inventors have found that salts can be powdered and have strong bile acid adsorption ability, and have completed the present invention.
The chitosan orotate of the present invention is, similarly to the preparation of the above-mentioned invention (Japanese Patent Application Laid-Open No. 9-241169), gel-gel incorporated in a gel matrix such as alginate gel, powder or enteric-coated. It can be used as a powder, or as an oral preparation such as syrup, powder, granule, tablet, capsule, etc., for use in foods and drinks, pharmaceuticals or quasi-drugs.
[0011]
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0012]
EXAMPLE 1 Preparation of chitosan orotinate powder 0.5 g of chitosan was added to 500 ml of 0.072% orotic acid aqueous solution and stirred. Macroscopically, the chitosan powder is in a suspended (or precipitated) state. One day later, the mixture is filtered with a glass filter and washed with water (rinsing with ethanol may be carried out to speed up drying). Dry and store in a desiccator.
The scale-up was attempted in the same manner using 12 g of chitosan, but a powder of chitosan orotate could be prepared in exactly the same manner.
Orotic acid content in chitosan orotate powder 20 mg of chitosan orotate is weighed, added to a dilute hydrochloric acid solution (or distilled water), allowed to stand for one day, and the amount of dissociated orotate is determined by high performance liquid chromatography. [Measurement conditions: column C 18 (150 × 4.6 mm), eluate 5 mM phosphoric acid (pH about 2.9), flow rate 0.8 ml / min, injection volume 10 μl, detection 280 nm]. The measurement result was 2.7 g orotic acid / chitosan orotate 1 g.
[0014]
Example 2 Bile acid uptake test in vitro The test samples were chitosan orotate powder of Example 1, chitosan malate and chitosan nicotine prepared by the same method as in Example 1. There are 4 samples of acid salt, chitosan citrate. As bile acids, sodium taurocholate and sodium glycocholate, which are primary bile acids, and sodium taurodeoxycholate and sodium glycochenodeoxycholate were used as secondary bile acids.
An L-shaped tube containing 15 ml of a 2 mM aqueous solution of bile acid is preliminarily heated to 37 ° C., and 10 mg or 50 mg of each sample is added and shaken (67 times / minute). An aqueous solution sample was collected from the L-shaped tube over time, and the amount of bile acids in the system was measured by high performance liquid chromatography. Measurement conditions were column C 18 (150 × 4.6 mm), eluent: methanol: 30 mM phosphate buffer (pH 3.4): acetonitrile = 6: 3: 1, flow rate: 0.8 ml / min, injection volume: 20 μl, detection: The measurement was performed at an absorbance of 230 nm.
FIG. 1 shows the experimental results when sodium taurocholate was used as a bile acid. The sample amount was 10 mg each, and the bile acid adsorption of chitosan orotate was the fastest among the four samples tested. After 15 minutes, about 47% of the bile acid dissolved in the system was adsorbed. The amount was highest at 1.42 ± 0.08 mM taurocholate / g of sample (n = 5). On the other hand, bile acid adsorption of chitosan nicotinate and chitosan citrate is poor, less than half that of chitosan orotate after 15 minutes, and almost no increase in the amount of bile acid adsorption even after 1 hour. Did not.
When 50 mg of chitosan orotate was used, 90% or more of bile acid was adsorbed in the system.
FIG. 2 shows the results of an experiment on the effect of differences in the degree of chitosan deacetylation of chitosan orotate (sample amount 10 mg) on bile acid (taurocholate) adsorption. The results showed that the amount of adsorbed taurocholic acid increased with the degree of chitosan deacetylation. On the other hand, as shown in FIG. 3, the amount of orotic acid contained was not related to the difference in the degree of chitosan deacetylation. Since chitin that is 100% acetylated hardly adsorbs orotic acid, it is considered that chitosan with a higher degree of deacetylation is more efficiently ion-exchanged.
FIG. 4 shows the results of an experiment on the effect of the particle size of chitosan orotate powder (sample amount: 10 mg) on the amount of bile acid (taurocholate) adsorbed. Chitosan orotate was sieved and divided into the following three sizes, and the amount of bile acid adsorbed by each particle size was measured.
A: 48-80 mesh (300-180 μm)
B: 80-200 mesh (180-75 μm)
C: 200 mesh> (75 μm>)
As a result, almost the same level of taurocholate adsorption was observed at all particle diameters. This proved that the adsorption of bile acids to chitosan orotate powder did not occur only on the powder surface. Rather, the amount of adsorption is slightly reduced in the case of a fine powder of 200 mesh or more, which is considered to be caused by a change in “wetting of the solid surface” due to the fine powder.
FIGS. 5 and 6 show the results of an experiment on the effect of the concentration of orotic acid in chitosan orotate (sample amount 10 mg) on the amount of bile acid (taurocholate) adsorbed. The results proved that sufficient bile acid adsorption occurred in chitosan when orotic acid was present as a salt at a concentration of 0.036% or more.
FIG. 7 shows the results of an experiment on the bile acid selectivity of chitosan orotate (sample amount: 10 mg). The results demonstrated that chitosan orotate adsorbs each bile acid, regardless of primary or secondary bile acid or conjugate species. In particular, the fact that the amount of secondary bile acid adsorbed was large is a remarkable new finding.
[0022]
Example 3 Preparation of chitosan / orotate-immobilized alginate gel beads 0.5 g of chitosan was added to 9.5 g of a 1 (W / W)% sodium alginate solution, and the mixture was stirred and dispersed. When about 2 g (for one sample) of this solution was dropped into 10 ml of a 0.05 M calcium chloride solution, chitosan-immobilized alginate hydrogel beads were instantly formed. After leaving this at room temperature for about 30 minutes, it was taken out with a mesh filter. Transfer to 100 ml of 0.072% orotic acid solution and leave at room temperature for one day. The hydrogel beads are taken out through a sieve, washed with about 10 ml of distilled water, and dried.
Measurement of orotic acid released from dried alginate gel beads immobilized with chitosan / orotate 0.13 g (for one sample) of dried gel beads was put into a 100 ml volumetric flask, and distilled water was added to make up the volume to room temperature. The amount of orotic acid released after standing, 6 hours and 24 hours was measured by high performance liquid chromatography [Measurement conditions: column C 18 (150 × 4.6 mm), eluate 5 mM phosphoric acid (pH about 2.9), flow rate 0.8 ml / min, injection volume 10 μl, detection 280 nm]. The measurement results showed that the same amount of 26.1 ± 0.2 μM orotic acid was released after 6 hours and 24 hours (n = 3).
[0024]
Example 4 Bile Acid Uptake Test of Chitosan Orotate-Immobilized Alginate Gel Beads In Vitro The test samples were the beads prepared in Example 3 and the chitosan-immobilized alginic acid immobilized in Example 3. When transferring the hydrogel beads to 100 ml of a 0.072% orotic acid solution, a total of four samples were prepared by adding three types of chitosan / orotate-immobilized alginic acid gel beads prepared as 20 ml, 50 ml, and 150 ml instead of 100 ml. It is. Sodium taurocholate was used as bile acid.
An L-shaped tube containing 15 ml of a 2 mM sodium taurocholate aqueous solution is preliminarily heated to 37 ° C., and 0.13 g of each sample is charged and shaken (67 times / minute). Samples were taken from the L-shaped tube over time, and the amount of bile acids in the system was measured by high performance liquid chromatography. Measurement conditions were column C 18 (150 × 4.6 mm), eluent: methanol: 30 mM phosphate buffer (pH 3.4): acetonitrile = 6: 3: 1, flow rate: 0.8 ml / min, injection volume: 20 μl, detection: The measurement was performed at an absorbance of 230 nm.
FIG. 8 is an experimental result showing the effect on the amount of bile acid (taurocholate) adsorbed when the amount of orotic acid solution was changed during preparation of chitosan / orotate-immobilized alginate gel beads. The results showed that the beads prepared with 50 to 150 ml of 0.072% orotic acid showed almost the same taurocholate uptake behavior, and the uptake was completed in 1 to 1.5 hours. In addition, its uptake was about 90% of the bile acids present in the system.
FIG. 9 shows the results of an experiment showing the effect of chitosan orotate-immobilized alginate gel matrix on bile acid (taurocholate) uptake during drying and in the presence of water. As a result, both the dried gel beads and the hydrogel beads showed the same bile acid uptake behavior. This demonstrated that similar bile acid adsorption occurred regardless of whether the gel contained water in the gastrointestinal tract.
[0028]
Example 5 Blood Cholesterol-Lowering Effect by Oral Intake of Chitosan Orotate Experimental Wistar rats were 5 weeks old. One animal was bred in one stainless cage, and had free access to water and water. The rats were divided into 4 groups (3 to 5 rats per group), and each group was given a standard feed CRF-1 (Charles River-containing) powdered feed (standard feed group) having the composition shown in Table 1 and Table 2 A high-fat high-cholesterol feed (high-cholesterol group) having the composition shown, a high-fat high-cholesterol feed containing 5% chitosan (chitosan-administered group), and a high-fat high-cholesterol feed containing 5% chitosan orotate (Chitosan orotate administration group). Blood was collected from the tail vein at 1 week and 2 weeks after the start of the experiment, left for about 1 hour after blood collection, completely coagulated, centrifuged at 3000 rpm, and the supernatant was used as serum, and total cholesterol in serum was collected. The amount was measured. The measurement was performed by the cholesterol E. test Wako (DAOS method) or the cholesterol C. test Wako method.
[0029]
Table 1 Standard feed composition CRF-1 (Charles River blended) powder feed (in 100g)
8.1 g of water
22.6 g of crude protein
5.6 g of crude fat
6.6 g of crude ash
3.3 g of crude fiber
53.8g of soluble nitrogen-free material
Calories 356 kcal
[0030]
[Table 2] High fat and high cholesterol feed composition Cholesterol 1.0%
Olive oil 2.0%
Sodium cholate 0.2%
CRF-1 96.8%
The above components were thoroughly mixed in a mortar, and sieved with a sieve of 710 μm to obtain a feed.
FIG. 10 shows the results of changes in the feed intake of rats after one week and two weeks when the rats were bred on the above four different diets. As a result, there was no difference in the feed intake between the standard diet group and the high cholesterol group. Similarly, no difference was observed in the feed intake between the chitosan administration group and the chitosan / orotate administration group.
FIG. 11 shows the results of changes in the rat body weight after one week, two weeks and three weeks when the rats were bred on the above four different diets. As a result, in all of the high cholesterol group, the chitosan administration group and the chitosan orotate administration group, the rat body weight increased steadily after 1.2 and 3 weeks, and no difference was observed between the rats and the standard diet group.
FIG. 12 shows the experimental results of the change in the total cholesterol level in the serum of the rat after one week and two weeks when the rats were bred on the above four different diets. In the first week, the high cholesterol group, the chitosan administration group, and the chitosan orotate administration group all showed high serum cholesterol levels, almost twice as high as the standard diet group. Two weeks later, the high cholesterol group still maintained high serum cholesterol levels, but the chitosan-administered group decreased to almost the same level as the standard diet group, and the chitosan orotate-administered group had the standard diet group. It dropped to nearly half of the serum cholesterol level.
[0034]
Industrial Applicability The novel chitosan orotate of the present invention has a cholesterol lowering action twice that of chitosan known as a low cholesterol activator, and the chitosan orotate has a primary ability to adsorb bile acids. Irrespective of the type of secondary bile acid or conjugate, it is a characteristic that it adsorbs bile acid uniformly, and particularly has a high ability to adsorb secondary bile acid. Chitosan orotate can be prepared not only as gel beads, but also as powders, or directly or as various oral preparations such as syrups, powders, granules, tablets, capsules, etc. Alternatively, it can be widely used for quasi-drugs and the like.
[Brief description of the drawings]
FIG. 1 is a graph comparing bile acid adsorption amounts of chitosan and various organic acid salts. The amount of each sample was 10 mg, and sodium burocholate was used as the bile acid on the vertical axis.
FIG. 2 is a graph showing the amount of bile acid adsorbed by 10 mg of chitosan orotate depending on the degree of chitosan deacetylation. Sodium taurocholate was used as the bile acid on the vertical axis.
FIG. 3 is a graph showing the amount of orotic acid in 10 mg of chitosan orotate according to the difference in the degree of deacetylation of chitosan.
FIG. 4 is a graph showing the amount of bile acid adsorbed depending on the particle size of chitosan orotate (10 mg) powder. Sodium taurocholate was used as the bile acid on the vertical axis.
FIG. 5 is a graph showing the amount of bile acid adsorption depending on the concentration of orotic acid in 10 mg of chitosan orotate. Sodium taurocholate was used as the bile acid on the vertical axis.
FIG. 6 is a graph showing the relationship between the percentage of orotic acid concentration in 10 mg of chitosan orotate and the amount of orotic acid in salt formation.
FIG. 7 shows bile acid selectivity when 10 mg of chitosan orotate is used.
FIG. 8 is a graph showing the amount of bile acid adsorbed by the difference in orotic acid concentration in chitosan / orotate-immobilized alginate gel beads. Sodium taurocholate was used as the bile acid on the vertical axis.
FIG. 9 is a graph showing bile acid adsorption amounts of dried gel beads and hydrogel beads of chitosan / orotate-immobilized alginate gel beads. Sodium taurocholate was used as the bile acid on the vertical axis.
FIG. 10 shows the feed intake of rats after one week and two weeks when reared on four different diets.
FIG. 11 is a diagram showing rat body weights after 1 week, 2 weeks, and 3 weeks when reared on four different diets.
FIG. 12 is a graph showing total cholesterol levels in serum of rats after one week and two weeks when reared on four different diets.

Claims (3)

キトサン・オロチン酸塩を有効成分とすることを特徴とする胆汁酸吸着剤。A bile acid adsorbent comprising chitosan orotate as an active ingredient. 前記の剤型が粉末又はゲルビーズである請求項1記載の胆汁酸吸着剤。The bile acid adsorbent according to claim 1, wherein the dosage form is powder or gel beads. 請求項2記載の粉末又はゲルビーズを含有する飲食品、医薬品または医薬部外品。A food or drink, a medicine or a quasi-drug containing the powder or gel beads according to claim 2.
JP2002241183A 2002-07-19 2002-07-19 Bile acids adsorbent using chitosan-orotic acid salt Pending JP2004051615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241183A JP2004051615A (en) 2002-07-19 2002-07-19 Bile acids adsorbent using chitosan-orotic acid salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241183A JP2004051615A (en) 2002-07-19 2002-07-19 Bile acids adsorbent using chitosan-orotic acid salt

Publications (1)

Publication Number Publication Date
JP2004051615A true JP2004051615A (en) 2004-02-19

Family

ID=31943959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241183A Pending JP2004051615A (en) 2002-07-19 2002-07-19 Bile acids adsorbent using chitosan-orotic acid salt

Country Status (1)

Country Link
JP (1) JP2004051615A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236222A (en) * 2006-03-06 2007-09-20 Nippon Suisan Kaisha Ltd Composition containing chitosan and slightly soluble salt
JP2008531501A (en) 2005-02-22 2008-08-14 エイ カルマリ ラシダ Method for improving oral bioavailability of drugs and less toxic orotate composition
JP2011125282A (en) * 2009-12-18 2011-06-30 Kirin Holdings Co Ltd Orotic acid-containing beverage, and method for producing the same
WO2011105383A1 (en) 2010-02-25 2011-09-01 富士フイルム株式会社 Agent for controlling production of primary bile acid and secondary bile acid
WO2018163053A1 (en) * 2017-03-07 2018-09-13 Primex Ehf. Microencapsulated chitosan, methods of making and methods for the use thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531501A (en) 2005-02-22 2008-08-14 エイ カルマリ ラシダ Method for improving oral bioavailability of drugs and less toxic orotate composition
JP2015145430A (en) * 2005-02-22 2015-08-13 サヴィファーム インコーポレイテッド Method of increasing drug oral bioavailability and compositions of less toxic orotate
JP2007236222A (en) * 2006-03-06 2007-09-20 Nippon Suisan Kaisha Ltd Composition containing chitosan and slightly soluble salt
JP4616195B2 (en) * 2006-03-06 2011-01-19 日本水産株式会社 Composition containing a sparingly soluble salt of chitosan
JP2011125282A (en) * 2009-12-18 2011-06-30 Kirin Holdings Co Ltd Orotic acid-containing beverage, and method for producing the same
WO2011105383A1 (en) 2010-02-25 2011-09-01 富士フイルム株式会社 Agent for controlling production of primary bile acid and secondary bile acid
WO2018163053A1 (en) * 2017-03-07 2018-09-13 Primex Ehf. Microencapsulated chitosan, methods of making and methods for the use thereof
US10945964B2 (en) * 2017-03-07 2021-03-16 Primex Ehf. Microencapsulated chitosan, methods of making and methods for the use thereof

Similar Documents

Publication Publication Date Title
EP1105123A1 (en) Pharmaceutical compositions containing lipase inhibitors and chitosan
CA2901018C (en) Metal ion-functional fiber component complex compositions, preparation and uses thereof
JPH04503813A (en) Drugs, food products and compositions that inhibit cholesterol absorption
WO1999021566A1 (en) Dietary composition with lipid binding properties for weight management and serum lipid reduction
WO1991004751A1 (en) Inhibitor of absorption of digestion product of food and drink
WO2001051063A1 (en) Inhibitors against sodium ion absorption, and preventive or therapeutic agents and foods containing the same
JPH06511270A (en) Compositions and methods for lowering cholesterol levels
JP2004051615A (en) Bile acids adsorbent using chitosan-orotic acid salt
CA2870813C (en) Dietary fiber compositions for the treatment of metabolic disease
WO2008116215A2 (en) Phosphorus binder for treatment of renal disease
JP4616195B2 (en) Composition containing a sparingly soluble salt of chitosan
WO2017198199A1 (en) Phosphate binder comprising hydroxide of ferrum and low-molecular-weight sugars, preparation method therefor, and applications thereof
US20080145408A1 (en) Dimeric Double Metal Salts of (-) Hydroxycitric Acid, Methods of Making and Uses of Same
JP4001443B2 (en) Phosphorus absorption inhibitor and therapeutic agent containing the same
JP3884611B2 (en) Improving agent for impulsive disease
CA2644585A1 (en) Fat-trapping composition comprising an indigestible cationic polysaccharide and an emulsifying agent
WO2017221886A1 (en) Intestinal environment-improving agent
JP2006518190A (en) Method for producing salt containing chitosan having blood pressure lowering function
JP2884124B2 (en) Phosphorus adsorbent
KR100473445B1 (en) cholesterol reducer and health food containing chitosan and ε-polylysine
RU2325187C1 (en) Pharmaceutical formulation of antibiotics and prebiotics (versions) applied for prevention and medical treatment of disbioses caused by antibacterial therapy
CN107397810B (en) Iron hydroxide-peach gum-based phosphorus binder, preparation method and application thereof
WO2008140444A1 (en) Dimeric double metal salts of(-) hydroxycitric acid, methods of making and uses of same
JPH01500751A (en) Treatment method
JP2003033651A (en) Per oral phosphorus adsorbent and food containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721