JP2004051397A - Amorphous silica porous material, method of manufacturing the same, molecular sieve membrane, catalyst carrier, and adsorbent - Google Patents

Amorphous silica porous material, method of manufacturing the same, molecular sieve membrane, catalyst carrier, and adsorbent Download PDF

Info

Publication number
JP2004051397A
JP2004051397A JP2002208783A JP2002208783A JP2004051397A JP 2004051397 A JP2004051397 A JP 2004051397A JP 2002208783 A JP2002208783 A JP 2002208783A JP 2002208783 A JP2002208783 A JP 2002208783A JP 2004051397 A JP2004051397 A JP 2004051397A
Authority
JP
Japan
Prior art keywords
amorphous silica
porous material
silica porous
diameter
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002208783A
Other languages
Japanese (ja)
Other versions
JP4099360B2 (en
Inventor
Takenobu Sakai
酒井 武信
Yuji Iwamoto
岩本 雄二
Koji Sato
佐藤 功二
Kenji Inada
稲田 健志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Center
Toyota Motor Corp
Original Assignee
Japan Fine Ceramics Center
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Ceramics Center, Toyota Motor Corp filed Critical Japan Fine Ceramics Center
Priority to JP2002208783A priority Critical patent/JP4099360B2/en
Publication of JP2004051397A publication Critical patent/JP2004051397A/en
Application granted granted Critical
Publication of JP4099360B2 publication Critical patent/JP4099360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an amorphous silica porous material high in the volume ratio of microfine pores, and to provide a method of manufacturing the material, a molecular sieve membrane using the amorphous silica porous material, a catalyst carrier and an adsorbent. <P>SOLUTION: In the amorphous silica porous material, total volume of the fine pore having ≤2 nm diameter is ≥70% per the volume of total fine pores. Total volume of the fine pore having ≤1 nm diameter can be ≥90% per total volume of the fine pore having ≤2 nm diameter. The amorphous silica porous material can be controlled to have 0.1-0.6 mL/g fine pore volume and 200-800 m<SP>2</SP>/g specific surface area. The method of manufacturing the amorphous silica porous material is performed by heating polysilazane having 1-3C alkoxy group in the molecule at 400-1000°C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非晶質シリカ多孔質材料及びその製造方法並びに分子ふるい膜、触媒担体及び吸着剤に関し、更に詳しくは、ミクロ細孔の容積の割合の高い非晶質シリカ多孔質材料及びその製造方法並びに該非晶質シリカ多孔質材料を用いた分子ふるい膜、触媒担体及び吸着剤に関する。
【0002】
【従来の技術】
近年、触媒や吸着剤等への利用のために孔径の小さい多孔体の開発が盛んに行われている。特に、メソ細孔とよばれる約2〜50nmの孔径を有する多孔体は、特開平10−36109号公報等に開示されている。また、特開2001−104744号公報には、実質的にシリカを素材とし、サブナノメーターから十数ナノメーターまでの径の均一なナノ細孔構造を有するナノ多孔材料が開示されている。
【0003】
【発明が解決しようとする課題】
しかし、上記のようなメソ細孔を有する多孔体、あるいは十数ナノメーターに及ぶ細孔を有する多孔体は、ミクロ細孔(孔径2nm未満)とよばれる更に微小な細孔を必要とする用途、例えば分子ふるい膜等には十分ではない。そこで、メソ細孔が混在せず、ミクロ細孔を有し、その容積の割合の高い多孔体が求められている。
【0004】
【課題を解決するための手段】
本発明は上記課題に鑑みてなされたものであり、以下に示される。
[1]直径が2nm以下である細孔の容積の合計が全細孔容積に対して70%以上である非晶質シリカ多孔質材料。
[2]直径が1nm以下である細孔の容積の合計は、直径が2nm以下である細孔の容積の合計に対して90%以上である上記[1]に記載の非晶質シリカ多孔質材料。
[3]細孔容積が0.1〜0.6ml/gであり、且つ比表面積が200〜800m/gである上記[1]又は[2]に記載の非晶質シリカ多孔質材料。
[4]分子中に炭素数1〜3のアルコキシ基を有するポリシラザンを400〜1000℃で熱処理することによって非晶質シリカ多孔質材料を得ることを特徴とする非晶質シリカ多孔質材料の製造方法。
[5]分子中に炭素数1〜3のアルコキシ基を有するポリシラザンを含む溶液を基材に塗布し、400〜1000℃で熱処理することによって該基材の表面に形成された非晶質シリカ多孔質材料を得ることを特徴とする非晶質シリカ多孔質材料の製造方法。
[6]上記[1]乃至[3]のいずれかに記載の非晶質シリカ多孔質材料を用いてなることを特徴とする分子ふるい膜。
[7]上記[1]乃至[3]のいずれかに記載の非晶質シリカ多孔質材料を用いてなることを特徴とする触媒担体。
[8]上記[1]乃至[3]のいずれかに記載の非晶質シリカ多孔質材料を用いてなることを特徴とする吸着剤。
【0005】
【発明の効果】
本発明の非晶質シリカ多孔質材料は、ミクロ細孔の容積の割合が高いため、分子等の関連する反応や分離、更には吸着等に利用する場合に非常に有用である。細孔内を分子が拡散する場合には、分子ふるい拡散が支配的となって、分子と多孔質材料との接触が増加する。また、細孔の連通経路がランダムであるため、細孔を通過する分子が効果的に作用する。
また、本発明の非晶質シリカ多孔質材料の製造方法によれば、細孔の直径がほぼ均一な多孔質材料を容易に製造することができる。
【0006】
【発明の実施の形態】
以下、本発明を更に詳しく説明する。
本発明の非晶質シリカ多孔質材料(以下、単に「多孔質材料」ともいう。)は、直径が2nm以下である細孔を少なくとも有する。この範囲のうちの、1種単独のあるいは2種以上の直径を有する細孔を備える多孔質材料とすることができる。尚、上記範囲外の直径を有する細孔を備えるものであってもよい。
また、直径が2nm以下である細孔の容積の合計は、全細孔容積に対して70%以上であり、好ましくは75〜100%、より好ましくは80〜100%である。70%未満では直径2nmより大きな細孔の影響を受け、所望の機能が低下する傾向にある。
更に、直径が1nm以下である細孔の容積の合計は、全細孔容積に対して、好ましくは65〜100%、より好ましくは75〜100%、更に好ましくは80〜100%である。
【0007】
また、直径が1nm以下である細孔の容積の合計は、直径が2nm以下である細孔の容積の合計に対して、好ましくは90%以上、より好ましくは92〜100%、更に好ましくは95〜100%である。90%未満では直径1〜2nmである細孔の影響を受け、機能がサチレートする傾向にある。
【0008】
本発明の多孔質材料は、細孔の少なくとも一部が、3次元の網目状に連なり、連通経路がランダムに3次元網目構造を有する。本発明の多孔質材料の細孔容積は、好ましくは0.1〜0.3ml/g、より好ましくは0.15〜0.3ml/g、更に好ましくは0.2〜0.3ml/gである。0.1ml/g未満では、所望の機能が低下する傾向にあり、0.3ml/gを超えると、所望の細孔構造を維持できなくなる傾向にある。
また、比表面積は、好ましくは200〜800m/g、より好ましくは400〜800m/g、更に好ましくは600〜800m/gである。200m/g未満では、所望の機能が低下する傾向にあり、800m/g、を超えると、所望の細孔構造を維持できなくなる傾向にある。
【0009】
本発明の多孔質材料の形状は特に限定されない。粒状であってもよいし、特定の形状、例えば、板状(多角形、円形、楕円形、長尺形等)、筒状、線状(直線、曲線等)、塊状(立方体、直方体、球形、略球形等)等であってもよい。また、金属、セラミックス、ガラス等の無機素材、あるいは樹脂等の有機素材からなる基材を被覆するような膜であってもよい。粒状である場合には、好ましい粒径は10〜100μmである。また、膜である場合には、好ましい厚さは200〜1000nmである。基材への載置あるいは接合方法は特に限定されない。膜厚が小さいほど、例えば、ガス分離膜の観点から、ガス透過に対する抵抗が少なくなるので好ましい。
【0010】
本発明の多孔質材料の製造方法は、分子中に炭素数1〜3のアルコキシ基を有するポリシラザンを400〜1000℃で熱処理することによって得ることを特徴とする。
【0011】
ポリシラザンとは、下記一般式(1)を単位とするシリコン系ポリマーである。
【化1】

Figure 2004051397
〔式中、Rは炭素数1〜3のアルキル基を示し、m及びnはモル比を示し、m:n=(80〜0):(20〜100)である。〕
【0012】
本発明において、熱処理に用いられるポリシラザンは、構造中の−SiH−の1つのH(水素原子)が炭素数1〜3のアルコキシ基に置換されているポリマーである。アルコキシ基への置換は完全であっても、一部であってもよいが、完全であることが好ましい。上記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基が挙げられるが、メトキシ基が好ましい。分子中に異なるアルコキシ基を含むものを用いてもよい。尚、炭素数の大きいアルコキシ基を有するポリシラザンを用いると、細孔が大きくなりすぎることがあり好ましくない。
【0013】
上記ポリシラザンは、通常、固体である。本発明の多孔質材料を得るために、上記ポリシラザンを熱処理するが、その時の形状は特に限定されず、粒状であっても、板状であっても、塊状であってもよい。
【0014】
また、熱処理前の上記ポリシラザンは、下記の熱処理条件において、変形、変質あるいはポリシラザンと反応しない材料からなる基材に載置した状態、例えば塗膜であってもよい。この場合は、上記ポリシラザンをベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、シクロヘキサン、シクロヘキセン等の溶媒に溶かし、これを各種素材及び各種形状の基材に塗布することによって形成することができる。また、この塗膜は基材に接合しているものであってもよいし、基材から剥離して得られるポリシラザンのみの膜体であってもよい。
尚、基材としては、上記例示した無機素材、有機素材等を用いることができるが、熱処理によって影響されにくい無機素材が好ましい。基材の形状は、板状、網状、筒状等挙げられるが、特に限定されない。基材の表面は平滑であってもよいし、凹凸を有するものであってもよいし、多孔質であってもよい。多孔質素材の例としては、アルミナ、シリカ、多孔質炭素、多孔性ガラス等が挙げられる。
【0015】
基材の表面に塗膜を形成する場合、通常は、均一な厚さで塗布されるが、その塗布方法としては、例えば、ディッピング法、スプレー法、スピン法等が挙げられる。塗膜の均一性の観点からは、ディッピング法がより好ましい。
また、塗膜の厚さは、用途等により適宜決定すればよいが、通常、0.4〜2μm、好ましくは0.4〜1μmである。塗膜形成後、乾燥されるが、その条件は、溶液の濃度、粘度、塗膜の厚さに応じて適宜選択すればよい。
【0016】
熱処理の温度は400〜1000℃であり、好ましくは500〜700℃、より好ましくは550〜600℃である。この範囲で熱処理することにより、効率よく細孔を形成することができる。尚、400℃未満では細孔の生成が不完全となる傾向にある。一方、1000℃を超えると、細孔の生成割合が減少したり、生成物が結晶化し、例えば、ガス透過機能が失われる傾向にある。また、上記温度における保持時間は、好ましくは0.5〜2時間、より好ましくは1〜1.5時間である。尚、熱処理の雰囲気は、酸素の存在する雰囲気が好ましい。通常、大気であり、酸素雰囲気とすることもできる。また、昇温速度及び降温速度、更に加熱の手段は特に限定されない。
【0017】
上記ポリシラザンが熱処理によって非晶質シリカ多孔質材料となるメカニズムは以下の通りである。即ち、上記ポリシラザンは約200℃において、アルコキシ基−ORのアルキル基Rが脱離し、RHとなる。脱離した部分は後に細孔となる。
【化2】
Figure 2004051397
【0018】
その後、更に高温になるにつれて構造中のNが脱離し、酸素がそこに入り、非晶質シリカ多孔質材料となる。
【0019】
本発明の非晶質シリカ多孔質材料を用いて、分子ふるい膜、触媒担体及び吸着剤等とすることができる。
分子ふるい膜とは、分子レベルで混合しているものからある特定の分子種を分離する膜をいい、例えば、空気中から酸素を分離するような膜をいう。非晶質シリカ多孔質材料からなる分子ふるい膜は、従来の材料からなるものよりも透過係数比が非常に高い。例えば、水素−窒素の分離の場合には、透過係数比αを好ましくは、50以上、より好ましくは80以上、更に好ましくは100以上とすることができ、水素−一酸化炭素の分離の場合には、透過係数比αを好ましくは、200以上、より好ましくは400以上、更に好ましくは500以上とすることができ、また、水素−メタンの分離の場合には、透過係数比αを好ましくは、100以上、より好ましくは200以上、更に好ましくは300以上とすることができ、水素、ヘリウム等の分子径の小さなガスの分離に好適である。
【0020】
また、触媒担体とは、その表面に触媒を保持することができるものであり、非晶質シリカ多孔質材料からなる触媒担体は、均一な細孔径及び一定の細孔容積を有するので、その大きさに合わせて触媒を保持すればよいので有用である。更に、貴金属等を担持させる場合には、小さな細孔に充填され、これらが凝集することがないため、例えば、高温における貴金属の粒成長を抑制することができる。触媒担体の例としては、エタノール合成触媒担体、燃料改質触媒担体等が挙げられる。
吸着剤は、従来よりクロマトグラフィー等の充填剤等として用いられているように、固体、液体、気体を引き寄せる効果を有するものである。上記のように、細孔径、細孔容積、比表面積に応じて使用方法等を選択すればよい。
【0021】
【実施例】
以下、実験例により本発明を具体的に説明する。
1.アルコキシ基含有ポリシラザンの合成
1−1.メトキシ基を有するポリシラザンの合成
パーヒドロポリシラザン(商品名「NN310」、東燃(株)製、組成は、Si;62.2質量%、N;25.0質量%、O;0.4質量%、C;4.5質量%、以下、単に、「PHPS」ともいう。)の20%キシレン溶液5gを容積50mlのナス型フラスコに入れ、アルコキシ基導入改質反応剤としてメタノールを、珪素とメタノールのモル比がSi/MeOH=5となるように窒素気流下で滴加し、室温で1時間攪拌し反応させた。尚、メタノールは定法により蒸留、脱水精製したものを用いた。
反応後、反応溶液の一部を分取し、ロータリーエバポレーターでキシレンを留去し、反応生成物を取り出し、H−NMR(溶媒;CDCl)で解析したところ、メトキシ基が導入されていることを確認した。以下、この反応生成物を「PHPS−1」という。
【0022】
1−2.ペンチルオキシ基を有するポリシラザンの合成
上記1−1におけるメタノールの代わりにペンチルアルコールを用いた以外は上記1−1と同様にしてペンチルオキシ基を有するポリシラザンを得た。以下、この反応生成物を「PHPS−5」という。
【0023】
2.非晶質シリカ多孔質粉末の評価
実施例1
上記で得られたPHPS−1の粉末を、大気中、270℃で1時間加熱し、高分子化した。その後、600℃まで昇温し、1時間保持して非晶質シリカ多孔質粉末を得た。平均粒子径は10μmであった。
この非晶質シリカ多孔質粉末の細孔構造解析を、窒素吸着法(装置名;「オートソーブ1」、QUANTA CHROME社製)により行った。その結果を表1に示す。また、細孔分布曲線を図1に示す。
更に、比表面積を、窒素吸着法(装置名;「オートソーブ1」、QUANTA
CHROME社製)により測定した。その結果を表1に併記した。
【0024】
【表1】
Figure 2004051397
【0025】
比較例1
上記で得られたPHPS−5の粉末を用いて、実施例1と同様にして非晶質シリカ多孔質粉末を得た。また、この非晶質シリカ多孔質粉末を、実施例1と同様にして評価した。その結果を表1に併記し、細孔分布曲線を図2に示す。
【0026】
比較例2
PHPSの粉末を用いて、実施例1と同様にして非晶質シリカ多孔質粉末を得た。また、この非晶質シリカ多孔質粉末を、実施例1と同様にして評価した。その結果を表1に併記し、細孔分布曲線を図3に示す。
【0027】
表1より、比較例1の多孔質粉末は、アルコキシ基を構成するアルキル基が大きい(炭素数が5)ために、アルキル基の脱離によって形成された細孔の直径が大きくなったために、ミクロ細孔容積中に占める直径1nm以下の細孔容積、及び全細孔容積中のミクロ細孔容積のいずれも劣っていた。また、比較例2の多孔質粉末は、ミクロ細孔容積中に占める直径1nm以下の細孔容積は90%であったが、全細孔容積中のミクロ細孔容積は60%と小さかった。
【0028】
3.非晶質シリカ多孔質膜の評価
実施例2
上記で得られたPHPS−1のキシレン溶液を、内径6mm、外径10mm、長さ25mm、細孔径0.1μmの円筒状多孔質アルミナ基材((株)ノリタケカンパニーリミテド製)にディップコーティングした後、アルミナ管状炉に入れ、大気中、270℃で1時間加熱し、高分子化した。その後、600℃まで昇温し、更に1時間保持して非晶質シリカ多孔質膜を得た。膜の厚さは、TEMで測定したところ、約200nmであった。
【0029】
この非晶質シリカ多孔質膜の細孔構造解析を、上記実施例1と同様にして行った。その結果を表2に示す。また、図4に示す装置を用い、以下に示す方法にてガス分離性能を測定した。
:CO:CH:CO:N=9:5:5:18:63の組成からなる混合ガス(1〜5気圧)を膜装填部▲1▼に流し、膜透過側▲2▼を減圧とした。ライン▲3▼を通ってバッファタンクに蓄積されるガスについて、内圧が60mmHgに達した時点でそれに要した時間とガスクロ検量管内のガス組成を分析し、各ガスの透過率を算出した。温度は、350℃から室温へ50℃間隔で降温し、300℃でガス分離性能を測定した。このときの透過率及び透過係数比を表2に併記した。
【0030】
【表2】
Figure 2004051397
【0031】
表2より、比較例3は、透過係数比α、α及びαがそれぞれ4、4及び2と劣っていた。比較例4は、比較例3よりは透過係数比α、α及びαが優れていたが、不十分であった。一方、実施例2は、透過係数比α、α及びαがそれぞれ125、500及び400と高く、300℃という高温において十分なガス分離性能に優れることが分かる。
【図面の簡単な説明】
【図1】実施例1で得られた細孔分布曲線を示すグラフである。
【図2】比較例1で得られた細孔分布曲線を示すグラフである。
【図3】比較例2で得られた細孔分布曲線を示すグラフである。
【図4】実施例2、比較例3及び比較例4において用いたガス分離膜透過特性装置の説明概略図である。
【図5】実施例2で得られた細孔分布曲線を示すグラフである。
【図6】比較例3で得られた細孔分布曲線を示すグラフである。
【図7】比較例4で得られた細孔分布曲線を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an amorphous silica porous material, a method for producing the same, and a molecular sieve membrane, a catalyst carrier, and an adsorbent. More specifically, the present invention relates to an amorphous silica porous material having a high micropore volume ratio and its production. The present invention relates to a method, a molecular sieve membrane using the amorphous silica porous material, a catalyst carrier and an adsorbent.
[0002]
[Prior art]
2. Description of the Related Art In recent years, porous materials having a small pore diameter have been actively developed for use as catalysts and adsorbents. In particular, a porous body having a pore diameter of about 2 to 50 nm called a mesopore is disclosed in Japanese Patent Application Laid-Open No. 10-36109. In addition, Japanese Patent Application Laid-Open No. 2001-104744 discloses a nanoporous material which is substantially made of silica and has a uniform nanopore structure with a diameter from sub-nanometer to ten and several nanometers.
[0003]
[Problems to be solved by the invention]
However, the porous body having mesopores as described above or the porous body having pores extending over ten and several nanometers is used for applications requiring finer pores called micropores (pore diameter of less than 2 nm). For example, it is not enough for a molecular sieve film. Therefore, a porous body which has micropores without mesopores and which has a high volume ratio is demanded.
[0004]
[Means for Solving the Problems]
The present invention has been made in view of the above problems, and will be described below.
[1] An amorphous silica porous material in which the total volume of pores having a diameter of 2 nm or less is 70% or more of the total pore volume.
[2] The amorphous silica porous material according to [1], wherein the total volume of the pores having a diameter of 1 nm or less is 90% or more of the total volume of the pores having a diameter of 2 nm or less. material.
[3] The amorphous silica porous material according to the above [1] or [2], wherein the pore volume is 0.1 to 0.6 ml / g and the specific surface area is 200 to 800 m 2 / g.
[4] Production of an amorphous silica porous material characterized by obtaining an amorphous silica porous material by heat-treating polysilazane having an alkoxy group having 1 to 3 carbon atoms in a molecule at 400 to 1000 ° C. Method.
[5] A porous amorphous silica formed on the surface of a substrate by applying a solution containing a polysilazane having an alkoxy group having 1 to 3 carbon atoms in the molecule to the substrate and heat-treating the solution at 400 to 1000 ° C. A method for producing an amorphous silica porous material, characterized by obtaining a porous material.
[6] A molecular sieve membrane comprising the amorphous silica porous material according to any one of [1] to [3].
[7] A catalyst carrier comprising the amorphous silica porous material according to any one of [1] to [3].
[8] An adsorbent characterized by using the amorphous silica porous material according to any one of [1] to [3].
[0005]
【The invention's effect】
Since the amorphous silica porous material of the present invention has a high volume ratio of micropores, it is very useful when it is used for reactions and separations related to molecules and the like, and also for adsorption. When molecules are diffused in the pores, molecular sieve diffusion becomes dominant and the contact between the molecules and the porous material increases. Further, since the communication paths of the pores are random, molecules passing through the pores act effectively.
Further, according to the method for producing an amorphous silica porous material of the present invention, a porous material having substantially uniform pore diameters can be easily produced.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
The amorphous silica porous material of the present invention (hereinafter, also simply referred to as “porous material”) has at least pores having a diameter of 2 nm or less. A porous material having pores having one or more diameters within this range can be used. It should be noted that pores having a diameter outside the above range may be provided.
The total volume of pores having a diameter of 2 nm or less is 70% or more, preferably 75 to 100%, more preferably 80 to 100% of the total pore volume. If it is less than 70%, it is affected by pores larger than 2 nm in diameter, and the desired function tends to decrease.
Further, the total volume of pores having a diameter of 1 nm or less is preferably 65 to 100%, more preferably 75 to 100%, and still more preferably 80 to 100%, based on the total pore volume.
[0007]
The total volume of the pores having a diameter of 1 nm or less is preferably 90% or more, more preferably 92 to 100%, and still more preferably 95% with respect to the total volume of the pores having a diameter of 2 nm or less. 100100%. If it is less than 90%, the function is affected by the pores having a diameter of 1 to 2 nm, and the function tends to be saturated.
[0008]
In the porous material of the present invention, at least a part of the pores is connected in a three-dimensional network, and the communication path has a random three-dimensional network structure. The pore volume of the porous material of the present invention is preferably 0.1 to 0.3 ml / g, more preferably 0.15 to 0.3 ml / g, and still more preferably 0.2 to 0.3 ml / g. is there. If it is less than 0.1 ml / g, the desired function tends to decrease, and if it exceeds 0.3 ml / g, the desired pore structure tends not to be maintained.
The specific surface area is preferably 200~800m 2 / g, more preferably 400 to 800 m 2 / g, more preferably 600~800m 2 / g. If it is less than 200 m 2 / g, the desired function tends to decrease, and if it exceeds 800 m 2 / g, the desired pore structure tends not to be maintained.
[0009]
The shape of the porous material of the present invention is not particularly limited. It may be granular, or a specific shape, for example, plate (polygon, circle, ellipse, long, etc.), tubular, linear (straight, curved, etc.), lump (cube, cuboid, spherical) , Etc.). Alternatively, the film may cover an inorganic material such as metal, ceramics and glass, or a base material made of an organic material such as resin. When it is granular, the preferred particle size is 10 to 100 μm. In the case of a film, the preferred thickness is 200 to 1000 nm. There is no particular limitation on the method of mounting or joining to the substrate. The smaller the film thickness is, for example, preferable from the viewpoint of a gas separation membrane because the resistance to gas permeation is reduced.
[0010]
The method for producing a porous material according to the present invention is characterized in that polysilazane having an alkoxy group having 1 to 3 carbon atoms in a molecule is obtained by heat treatment at 400 to 1000 ° C.
[0011]
Polysilazane is a silicon-based polymer having the following general formula (1) as a unit.
Embedded image
Figure 2004051397
[Wherein, R represents an alkyl group having 1 to 3 carbon atoms, m and n each represent a molar ratio, and m: n = (80-0) :( 20-100). ]
[0012]
In the present invention, the polysilazane used for the heat treatment is a polymer in which one H (hydrogen atom) of —SiH 2 — in the structure is substituted with an alkoxy group having 1 to 3 carbon atoms. The substitution with the alkoxy group may be complete or partial, but is preferably complete. Examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group, and a methoxy group is preferable. Those containing different alkoxy groups in the molecule may be used. In addition, when polysilazane having an alkoxy group having a large number of carbon atoms is used, the pores may be too large, which is not preferable.
[0013]
The polysilazane is usually a solid. In order to obtain the porous material of the present invention, the polysilazane is heat-treated, but the shape at that time is not particularly limited, and may be granular, plate-like, or massive.
[0014]
Further, the polysilazane before the heat treatment may be in a state of being placed on a substrate made of a material which does not deform, change in quality or react with the polysilazane under the following heat treatment conditions, for example, a coating film. In this case, the polysilazane can be formed by dissolving the above polysilazane in a solvent such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, cyclohexane, and cyclohexene, and applying this to various materials and substrates of various shapes. Further, the coating film may be bonded to the base material, or may be a film of only polysilazane obtained by peeling from the base material.
In addition, as the substrate, the above-mentioned inorganic materials, organic materials, and the like can be used, but an inorganic material that is hardly affected by the heat treatment is preferable. The shape of the substrate may be plate-like, net-like, tubular, or the like, but is not particularly limited. The surface of the substrate may be smooth, may have irregularities, or may be porous. Examples of the porous material include alumina, silica, porous carbon, porous glass, and the like.
[0015]
When a coating film is formed on the surface of a substrate, it is usually applied with a uniform thickness, and examples of the application method include a dipping method, a spray method, and a spin method. From the viewpoint of uniformity of the coating film, the dipping method is more preferable.
In addition, the thickness of the coating film may be appropriately determined depending on the application and the like, but is usually 0.4 to 2 μm, preferably 0.4 to 1 μm. After the coating film is formed, it is dried. The conditions may be appropriately selected depending on the concentration, viscosity and thickness of the coating film.
[0016]
The temperature of the heat treatment is 400 to 1000 ° C, preferably 500 to 700 ° C, and more preferably 550 to 600 ° C. By performing heat treatment in this range, pores can be efficiently formed. If the temperature is lower than 400 ° C., the generation of pores tends to be incomplete. On the other hand, when the temperature exceeds 1000 ° C., the generation ratio of pores decreases or the product crystallizes, and, for example, the gas permeation function tends to be lost. The holding time at the above temperature is preferably 0.5 to 2 hours, more preferably 1 to 1.5 hours. Note that the heat treatment atmosphere is preferably an atmosphere in which oxygen is present. Usually, it is the atmosphere, and it can be an oxygen atmosphere. Further, the heating rate, the cooling rate, and the heating means are not particularly limited.
[0017]
The mechanism by which the polysilazane becomes an amorphous silica porous material by heat treatment is as follows. That is, at about 200 ° C., the alkylsilyl R of the alkoxy group —OR is eliminated from the polysilazane to be RH. The desorbed portion becomes a pore later.
Embedded image
Figure 2004051397
[0018]
Thereafter, as the temperature further increases, N in the structure is desorbed, and oxygen enters there, resulting in an amorphous silica porous material.
[0019]
Using the amorphous silica porous material of the present invention, a molecular sieve membrane, a catalyst carrier, an adsorbent, and the like can be used.
The molecular sieve film refers to a film that separates a specific molecular species from a mixture at a molecular level, for example, a film that separates oxygen from the air. Molecular sieve membranes made of amorphous silica porous material have a much higher transmission coefficient ratio than those made of conventional materials. For example, hydrogen - in the case of separation of nitrogen, preferably the permeability coefficient ratio alpha 1, 50 or more, more preferably 80 or more, more preferably be 100 or more, the hydrogen - for the separation of carbon monoxide the, preferably the permeability coefficient ratio alpha 2, 200 or more, more preferably 400 or more, more preferably, to 500 or more, hydrogen - in the case of methane separation and permeability coefficient ratio alpha 3 Preferably, it can be 100 or more, more preferably 200 or more, and still more preferably 300 or more, which is suitable for separating gas having a small molecular diameter such as hydrogen and helium.
[0020]
Further, the catalyst carrier is capable of holding a catalyst on its surface, and a catalyst carrier made of an amorphous silica porous material has a uniform pore diameter and a constant pore volume. This is useful because it is sufficient to hold the catalyst accordingly. Furthermore, when a noble metal or the like is supported, it is filled in small pores and does not agglomerate. For example, grain growth of the noble metal at a high temperature can be suppressed. Examples of the catalyst carrier include an ethanol synthesis catalyst carrier, a fuel reforming catalyst carrier, and the like.
The adsorbent has an effect of attracting a solid, a liquid, and a gas as conventionally used as a filler for chromatography and the like. As described above, the method of use may be selected according to the pore diameter, pore volume, and specific surface area.
[0021]
【Example】
Hereinafter, the present invention will be described specifically with reference to experimental examples.
1. Synthesis of alkoxy group-containing polysilazane 1-1. Synthesis of polysilazane having a methoxy group Perhydropolysilazane (trade name “NN310”, manufactured by Tonen Corp., composition: Si; 62.2% by mass, N: 25.0% by mass, O: 0.4% by mass, C; 4.5% by mass, hereinafter simply referred to as “PHPS”) in a 50% eggplant-shaped flask in a 50% volume of a 20% xylene solution, and methanol as an alkoxy group-introducing reforming reactant; The mixture was added dropwise under a nitrogen stream so that the molar ratio became Si / MeOH = 5, and the mixture was stirred and reacted at room temperature for 1 hour. The methanol used was distilled and dehydrated and purified by a conventional method.
After the reaction, a part of the reaction solution was fractionated, xylene was distilled off with a rotary evaporator, and the reaction product was taken out and analyzed by 1 H-NMR (solvent; CDCl 3 ). As a result, a methoxy group was introduced. It was confirmed. Hereinafter, this reaction product is referred to as “PHPS-1”.
[0022]
1-2. Synthesis of polysilazane having pentyloxy group Polysilazane having a pentyloxy group was obtained in the same manner as in the above 1-1 except that pentyl alcohol was used instead of methanol in the above 1-1. Hereinafter, this reaction product is referred to as “PHPS-5”.
[0023]
2. Evaluation Example 1 of Porous Amorphous Silica Powder
The PHPS-1 powder obtained above was heated at 270 ° C. for 1 hour in the air to polymerize. Thereafter, the temperature was raised to 600 ° C. and maintained for 1 hour to obtain an amorphous silica porous powder. The average particle size was 10 μm.
The pore structure of the amorphous silica porous powder was analyzed by a nitrogen adsorption method (device name: "Autosorb 1", manufactured by QUANTA CHROME). Table 1 shows the results. FIG. 1 shows a pore distribution curve.
Furthermore, the specific surface area was measured by a nitrogen adsorption method (apparatus name: “Autosorb 1”, QUANTA).
CHROME). The results are shown in Table 1.
[0024]
[Table 1]
Figure 2004051397
[0025]
Comparative Example 1
An amorphous silica porous powder was obtained in the same manner as in Example 1 by using the PHPS-5 powder obtained above. This amorphous silica porous powder was evaluated in the same manner as in Example 1. The results are shown in Table 1, and the pore distribution curve is shown in FIG.
[0026]
Comparative Example 2
An amorphous silica porous powder was obtained in the same manner as in Example 1 using PHPS powder. This amorphous silica porous powder was evaluated in the same manner as in Example 1. The results are shown in Table 1, and the pore distribution curve is shown in FIG.
[0027]
As shown in Table 1, the porous powder of Comparative Example 1 had a large alkyl group constituting the alkoxy group (having 5 carbon atoms) and thus had a large diameter of pores formed by elimination of the alkyl group. Both the pore volume having a diameter of 1 nm or less in the micropore volume and the micropore volume in the total pore volume were inferior. In the porous powder of Comparative Example 2, the volume of micropores having a diameter of 1 nm or less in the volume of micropores was 90%, but the volume of micropores in the total volume of pores was as small as 60%.
[0028]
3. Example 2 of evaluation of amorphous silica porous membrane
The xylene solution of PHPS-1 obtained above was dip-coated on a cylindrical porous alumina substrate (manufactured by Noritake Company Limited) having an inner diameter of 6 mm, an outer diameter of 10 mm, a length of 25 mm, and a pore diameter of 0.1 μm. Thereafter, the mixture was placed in an alumina tube furnace and heated at 270 ° C. for 1 hour in the atmosphere to polymerize. Thereafter, the temperature was raised to 600 ° C. and further maintained for 1 hour to obtain an amorphous silica porous membrane. The thickness of the film was about 200 nm as measured by TEM.
[0029]
The pore structure analysis of this amorphous silica porous membrane was performed in the same manner as in Example 1 above. Table 2 shows the results. Further, the gas separation performance was measured by the following method using the apparatus shown in FIG.
A mixed gas (1 to 5 atm) having a composition of H 2 : CO: CH 4 : CO 2 : N 2 = 9: 5: 5: 18: 63 is allowed to flow into the membrane loading section (1) and the membrane permeation side (2) ▼ was reduced in pressure. When the internal pressure of the gas accumulated in the buffer tank through line (3) reached 60 mmHg, the time required for the internal pressure and the gas composition in the gas chromatography tube were analyzed, and the transmittance of each gas was calculated. The temperature was lowered from 350 ° C. to room temperature at 50 ° C. intervals, and the gas separation performance was measured at 300 ° C. The transmittance and the transmission coefficient ratio at this time are also shown in Table 2.
[0030]
[Table 2]
Figure 2004051397
[0031]
From Table 2, Comparative Example 3 was inferior in transmission coefficient ratios α 1 , α 2 and α 3 to 4, 4 and 2, respectively. Comparative Example 4 had better transmission coefficient ratios α 1 , α 2 and α 3 than Comparative Example 3, but was insufficient. On the other hand, in Example 2, the permeability coefficient ratios α 1 , α 2, and α 3 were as high as 125, 500, and 400, respectively.
[Brief description of the drawings]
FIG. 1 is a graph showing a pore distribution curve obtained in Example 1.
FIG. 2 is a graph showing a pore distribution curve obtained in Comparative Example 1.
FIG. 3 is a graph showing a pore distribution curve obtained in Comparative Example 2.
FIG. 4 is an explanatory schematic diagram of a gas separation membrane permeation characteristic device used in Example 2, Comparative Example 3, and Comparative Example 4.
FIG. 5 is a graph showing a pore distribution curve obtained in Example 2.
FIG. 6 is a graph showing a pore distribution curve obtained in Comparative Example 3.
FIG. 7 is a graph showing a pore distribution curve obtained in Comparative Example 4.

Claims (8)

直径が2nm以下である細孔の容積の合計が全細孔容積に対して70%以上である非晶質シリカ多孔質材料。An amorphous silica porous material in which the total volume of pores having a diameter of 2 nm or less is 70% or more of the total pore volume. 直径が1nm以下である細孔の容積の合計は、直径が2nm以下である細孔の容積の合計に対して90%以上である請求項1に記載の非晶質シリカ多孔質材料。The amorphous silica porous material according to claim 1, wherein the total volume of the pores having a diameter of 1 nm or less is 90% or more of the total volume of the pores having a diameter of 2 nm or less. 細孔容積が0.1〜0.6ml/gであり、且つ比表面積が200〜800m/gである請求項1又は2に記載の非晶質シリカ多孔質材料。Amorphous silica porous material according to the pore volume is 0.1~0.6ml / g, according to claim 1 or 2 and a specific surface area of 200~800m 2 / g. 分子中に炭素数1〜3のアルコキシ基を有するポリシラザンを400〜1000℃で熱処理することによって非晶質シリカ多孔質材料を得ることを特徴とする非晶質シリカ多孔質材料の製造方法。A method for producing an amorphous silica porous material, wherein an amorphous silica porous material is obtained by heat-treating polysilazane having an alkoxy group having 1 to 3 carbon atoms in a molecule at 400 to 1000 ° C. 分子中に炭素数1〜3のアルコキシ基を有するポリシラザンを含む溶液を基材に塗布し、400〜1000℃で熱処理することによって該基材の表面に形成された非晶質シリカ多孔質材料を得ることを特徴とする非晶質シリカ多孔質材料の製造方法。A solution containing a polysilazane having an alkoxy group having 1 to 3 carbon atoms in a molecule is applied to a substrate, and heat-treated at 400 to 1000 ° C. to form an amorphous silica porous material formed on the surface of the substrate. A method for producing an amorphous silica porous material, characterized by being obtained. 請求項1乃至3のいずれかに記載の非晶質シリカ多孔質材料を用いてなることを特徴とする分子ふるい膜。A molecular sieve film comprising the amorphous silica porous material according to claim 1. 請求項1乃至3のいずれかに記載の非晶質シリカ多孔質材料を用いてなることを特徴とする触媒担体。A catalyst carrier comprising the amorphous silica porous material according to any one of claims 1 to 3. 請求項1乃至3のいずれかに記載の非晶質シリカ多孔質材料を用いてなることを特徴とする吸着剤。An adsorbent comprising the amorphous silica porous material according to claim 1.
JP2002208783A 2002-07-17 2002-07-17 Method for producing amorphous silica porous material Expired - Fee Related JP4099360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208783A JP4099360B2 (en) 2002-07-17 2002-07-17 Method for producing amorphous silica porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208783A JP4099360B2 (en) 2002-07-17 2002-07-17 Method for producing amorphous silica porous material

Publications (2)

Publication Number Publication Date
JP2004051397A true JP2004051397A (en) 2004-02-19
JP4099360B2 JP4099360B2 (en) 2008-06-11

Family

ID=31932832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208783A Expired - Fee Related JP4099360B2 (en) 2002-07-17 2002-07-17 Method for producing amorphous silica porous material

Country Status (1)

Country Link
JP (1) JP4099360B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137752A (en) * 2005-11-22 2007-06-07 Japan Fine Ceramics Center Helium separating material and method of producing the same
JP2007532451A (en) * 2004-04-07 2007-11-15 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス Microporous amorphous material, process for producing the material and use of the material in catalytic conversion of organic compounds
CN100393398C (en) * 2005-11-15 2008-06-11 浙江师范大学 Granular type integral membrane reactor for catalysis-separation and its synthesis method
JP2009022902A (en) * 2007-07-20 2009-02-05 Noritake Co Ltd Porous material, method for manufacturing the same, and gas separating device
WO2014175097A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Catalyst, method for producing same, and electrode catalyst layer using said catalyst
WO2014175098A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
WO2018079744A1 (en) * 2016-10-27 2018-05-03 東亞合成株式会社 Silicon oxynitride material and method for producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532451A (en) * 2004-04-07 2007-11-15 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス Microporous amorphous material, process for producing the material and use of the material in catalytic conversion of organic compounds
CN100393398C (en) * 2005-11-15 2008-06-11 浙江师范大学 Granular type integral membrane reactor for catalysis-separation and its synthesis method
JP2007137752A (en) * 2005-11-22 2007-06-07 Japan Fine Ceramics Center Helium separating material and method of producing the same
JP4668043B2 (en) * 2005-11-22 2011-04-13 財団法人ファインセラミックスセンター Method for manufacturing helium separator
JP2009022902A (en) * 2007-07-20 2009-02-05 Noritake Co Ltd Porous material, method for manufacturing the same, and gas separating device
WO2014175097A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Catalyst, method for producing same, and electrode catalyst layer using said catalyst
WO2014175098A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
JPWO2014175098A1 (en) * 2013-04-25 2017-02-23 日産自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL AND ELECTRODE CATALYST LAYER, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL
WO2018079744A1 (en) * 2016-10-27 2018-05-03 東亞合成株式会社 Silicon oxynitride material and method for producing same

Also Published As

Publication number Publication date
JP4099360B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
US7109137B2 (en) Methods for making microporous ceramic materials
CN101274225B (en) Method for producing hydrogen gas separation material
JP3361655B2 (en) Porous ceramics composite hollow fiber membrane and method for producing the same
JP5804251B2 (en) Porous carbon nitride film, method for producing the same, and use thereof
JP3971546B2 (en) Porous ceramic laminate and method for producing the same
JP2004051397A (en) Amorphous silica porous material, method of manufacturing the same, molecular sieve membrane, catalyst carrier, and adsorbent
JP2003534907A (en) Improved silica film and method for producing the same
JP4728308B2 (en) Hydrogen separation membrane and method for producing hydrogen separation membrane
JP4129975B2 (en) Porous ceramic material and method for producing the same
JP2002128512A (en) Ceramic material, ceramic membrane and use thereof
JP2007022823A (en) Method for manufacturing porous silicon carbide-based formed body
JP2012187452A (en) Gas separation filter, and method for manufacturing the same
JP4997437B2 (en) Silicon carbide based porous molded body and method for producing the same
Wang et al. Effects of surface treatments and annealing on carbon-based molecular sieve membranes for gas separation
JP2007031170A (en) Boron nitride-based porous body and its manufacturing method
CN103058213B (en) Preparation method of LTA type molecular sieve film and prepared LTA type molecular sieve film
JP4384540B2 (en) Hydrogen separation material and method for producing the same
JP4270834B2 (en) Heat-resistant amorphous porous material, method for producing the same, and catalyst carrier
JP3943460B2 (en) Heat resistant hydrogen separation inorganic membrane and method for producing the same
JPH11114388A (en) Hydrogen separating material
JP3501951B2 (en) Carbon dioxide separation membrane
JP4417077B2 (en) Porous ceramic material, method for producing the same, and gas separation module including the same
JPH1157432A (en) Hydrogen separation material
JPH0330416B2 (en)
JPH11255570A (en) Porous ceramic composite member and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Ref document number: 4099360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees