JP2004050210A - Method for manufacturing and forming fine particle laminated metal - Google Patents

Method for manufacturing and forming fine particle laminated metal Download PDF

Info

Publication number
JP2004050210A
JP2004050210A JP2002209257A JP2002209257A JP2004050210A JP 2004050210 A JP2004050210 A JP 2004050210A JP 2002209257 A JP2002209257 A JP 2002209257A JP 2002209257 A JP2002209257 A JP 2002209257A JP 2004050210 A JP2004050210 A JP 2004050210A
Authority
JP
Japan
Prior art keywords
fine particle
rolling
laminated metal
metal material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002209257A
Other languages
Japanese (ja)
Inventor
Nobuhiro Tazoe
田添 信広
Kazuyuki Sato
佐藤 一幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002209257A priority Critical patent/JP2004050210A/en
Publication of JP2004050210A publication Critical patent/JP2004050210A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing and forming fine particle laminated metal for manufacturing a material with very small crystalline grain size, and forming the metal. <P>SOLUTION: This method comprises a step of manufacturing a fine particle laminated metal in which one initial metal sheet is a thin film layer of very small grain size by overlapping, rolling and bonding a plurality of metal sheets, and again overlapping, rolling and bonding a plurality of obtained intermediate roll stocks repeatedly, and a step of forming the fine particle laminated metal by an electromagnetic press. The fine particle laminated metal of very small grain size is manufactured in a repeatedly overlapping, rolling and bonding step to considerably improve the strength, and the metal is formed by the electromagnetic press as a high-speed deformation forming machine of large deformability to degradation of elongation. Further, in the steps of manufacturing the fine particle laminated metal, the final thickness for each layer of the target fine particle laminate metal is substantially determined by the product of the repeated rolling draft to the power of the rolling number with the initial thickness. The grain size is also be estimated, and the repeatedly overlapping, rolling and bonding condition is easily set. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は微粒子積層金属材の製造・成形方法に関し、金属の結晶粒径を100nm〜1nm程度に微細化した材料を製造し、これを用いて成形加工ができるようにしたものである。
【0002】
【従来の技術】
金属材料の結晶粒径を100nm〜1μmにすることにより、強度、靭性、耐蝕性等の種々の性質を飛躍的に向上することが期待されており、種々の研究・開発が行われている。
【0003】
このような超微細結晶粒を得るための加工法として、Tortion Straining 法、Equal Channel Pressing(ECAP)法、粉末のメカニカルミリング法などが提案されている。
【0004】
ところが、これまでの超微細結晶粒を得るための加工法では、実験室的な規模では結晶粒超微細化できることが報告されているものの、大型バルク材の連続製造などは困難であり、鉄鋼材料やAL合金等の大型構造材料への適用は疑問視されている。
【0005】
これに対して、超微細結晶粒を得るための加工法として繰り返し重ね接合圧延法(Accumulative Roll−Bonding ;ARB法)が提案されており、金属薄板を重ね合わせて圧延して接合し、得られた圧延材をさらに重ね合わせて圧延して接合することを繰り返すようにするものである。
【0006】
この繰り返し重ね接合圧延法では、極めて大きな歪を材料に与えることができ、しかも圧延は何回繰り返しても良く、接合面は脱脂とワイヤブラッシングによる処理で足り、接合の温度も再結晶温度以下の温間域で圧延すれば良く、鉄鋼材料やAL合金等の大型構造材料への適用も従来の上記3つの加工法と比べて比較的容易と考えられる。
【0007】
このような繰り返し重ね接合圧延法によって工業用純アルミニウムに対して結晶粒径を200nmまで微細化することが実験的に実現されており、これによって強度が300%向上することが報告(日本金属学会誌 第64巻第6号(2000))されている。
【0008】
【発明が解決しようとする課題】
ところが、繰り返し重ね接合圧延法により結晶粒径を200nmまで微細化することで、強度を大巾に向上できるが、逆に伸びが10%以下と小さくなり、得られた繰り返し重ね接合圧延材をプレス成形などで加工して工業製品を製造することが難しく、例えば自動車用外板の材料として用い、プレス加工することが難しく簡単に利用することができないという問題がある。
【0009】
そこで、繰り返し重ね接合圧延材を熱処理することで伸びを改善することも提案されているが、熱処理によって強度が低下してしまうという問題がある。
【0010】
この発明は、上記従来技術の有する課題に鑑みてなされたもので、金属の結晶粒径を微細化した材料を製造し、これを用いて成形加工ができる微粒子積層金属材の製造・成形方法を提供しようとするものである。
【0011】
【課題を解決するための手段】
上記従来技術が有する課題を解決するため、この発明の請求項1記載の微粒子積層金属材の製造・成形方法は、金属薄板を複数枚重ね合わせて圧延して接合し、得られた中間圧延材を再び複数枚重ね合わせて圧延して接合することを繰り返して初期の1枚の前記金属薄板が微粒子径の薄膜層となった微粒子積層金属材を製造する工程と、こののち高速変形成形機で当該微粒子積層金属材を成形する工程とからなることを特徴とするものである。
【0012】
この微粒子積層金属材の製造・成形方法によれば、金属薄板を複数枚重ね合わせて圧延して接合し、得られた中間圧延材を再び複数枚重ね合わせて圧延して接合することを繰り返して初期の1枚の前記金属薄板が微粒子径の薄膜層となった微粒子積層金属材を製造する工程と、こののち高速変形成形機で当該微粒子積層金属材を成形する工程とからなり、繰り返し重ね接合圧延工程で微粒子径の微粒子積層金属材を製造し、大幅な強度向上を図るとともに、伸びの低下に対しては変形能の大きな高速変形成形機で成形するようにして成形加工ができるようにしている。
【0013】
また、この発明の請求項2記載の微粒子積層金属材の製造・成形方法は、請求項1記載の構成に加え、前記高速変形成形機が電磁成形プレスであることを特徴とするものである。
【0014】
この微粒子積層金属材の製造・成形方法によれば、前記高速変形成形機として電磁成形プレスを用いるようにしており、磁場の持つエネルギを利用して大きな変形能力を得ようにし、これによって成形加工できるようにしている。
【0015】
さらに、この発明の請求項3記載の微粒子積層金属材の製造・成形方法は、請求項1または2記載の構成に加え、前記微粒子積層金属材を製造する工程で、目標とする当該微粒子積層金属材の1層当たりの最終厚みを、繰り返し圧延の圧下率の圧延回数乗と初期厚みとの積によって概略決定して行うことを特徴とするものである。
【0016】
この微粒子積層金属材の製造・成形方法によれば、前記微粒子積層金属材を製造する工程で、目標とする当該微粒子積層金属材の1層当たりの最終厚みを、繰り返し圧延の圧下率の圧延回数乗と初期厚みとの積によって概略決定して行うようにしており、微粒子積層金属材の1層当たりの最終厚みを定めることで、微粒子径も予測できるようになり、繰り返し重ね接合圧延条件を容易に設定できるようになる。
【0017】
【発明の実施の形態】
以下、この発明の一実施の形態について詳細に説明する。
この発明の微粒子積層金属材の製造・成形方法は、微粒子積層金属材を製造する工程と、この微粒子積層金属材を高速変形成形機、例えば電磁成形プレスで成形する工程とで構成されている。
【0018】
この微粒子積層金属材の製造・成形方法を構成する微粒子積層金属材を製造する工程は、金属薄板を複数枚重ね合わせて圧延して接合し、得られた中間圧延材を再び複数枚重ね合わせて圧延して接合することを繰り返して初期の1枚の前記金属薄板が微粒子径の薄膜層となった微粒子積層金属材を製造する工程であり、いわゆる繰り返し重ね接合圧延法(ARB法)によるものである。
【0019】
この繰り返し重ね接合圧延法(ARB法)による微粒子積層金属材を製造する工程では、金属薄板を複数枚重ね合わせて圧延することを繰り返すことから、出発材となる金属薄板としては、圧延に供することができる金属材料の薄板であれば何等制限はなく、通常の圧延によって得られた圧延材、粉末原料からの焼結材等製造方法は何であっても良く、素材も鉄鋼などほか、アルミニウム、銅等の非鉄金属、あるいはこれらの合金など何等制限はない。
【0020】
このような金属薄板は複数枚重ね合わせられ、複数回圧延されて接合されることが繰り返されるが、金属薄板の重ね合わせ枚数は、2枚以上何枚であっても良く、圧延設備の能力など圧延可能条件などによって適宜定めれば良い。
【0021】
この重ね合わせ接合圧延では、圧延の1パス毎に得られた中間圧延材を再び重ね合わせて圧延して接合することを繰り返すようにするほか,複数パス毎に得られた中間圧延材を再び重ね合わせて圧延して接合することを繰り返すようにしても良く、この場合の重ね合わせ枚数も2枚以上複数枚とすれば良い。
【0022】
このような重ね合わせ圧延では、極めて大きな歪を与えることができることから、金属薄板の接合面は、脱脂とワイヤブラッシングとを行うことで良く、接合温度は高い方が良いが、歪の蓄積との兼ね合いから再結晶温度以下の温間域で行うようにする。
【0023】
このような重ね合わせ接合圧延では、重ね合わせ接合圧延が繰り返されるにしたがって初期(圧延開始時)の1枚の金属薄板が次第に薄くなり、その厚さに応じて結晶粒径も微小になり微粒子径の薄膜層になるが、初期(圧延開始時)の1枚の金属薄板が微粒子径の薄膜層になったときにこの工程での微粒子積層金属材がえられる。
【0024】
したがって、例えば微粒子積層金属材の1層の厚さが1nmになれば、この層を構成する金属結晶の粒子径が最大でも1nmになると考えられ、このことから結晶粒径が1nmの金属材料を製造することができる。
【0025】
そこで、この微粒子積層金属材の1層の厚さは、次のようにして求めることができる。
【0026】
一般に、nパス後の積層材を構成する単一層の厚みをtn とすると、次式で表すことができる。
【0027】
tn =t0 ×(re1)n1×(re2)n2×……×(ren)nn
ここで、
t0 :単一層の初期厚さ
re1:1パス目の圧下率
re2:2パスめの圧下率


ren:nパスめの圧下率
n1 :re1での圧延回数
n2 :re2での圧延回数


nn :renでの圧延回数
である。
【0028】
そこで、例えば単一層の初期厚さt0 =1mmとし、各パスでの圧下率ren=0.5(50%)一定とすると、
▲1▼ 10パスの繰り返し圧延後の単一層の厚さt10は、
t10=1×(0.5)10=9.8×10−4mm
=0.98μm=980nm
▲2▼ 15パスの繰り返し圧延後の単一層の厚さt15は、
t15=1×(0.5)15=3.1×10−5mm
=0.03μm=30nm
▲3▼ 20パスの繰り返し圧延後の単一層の厚さt20は、
t20=1×(0.5)20=9.5×10−7mm
=0.95×10−6μm
=約1nm
となる。
【0029】
したがって、20パスの圧延を行うことで、単一層の厚さを約1nmにすることができ、これによって単一層の最終粒径も約1nmになっていると予測することができる。
【0030】
そこで、この式から単一層の目標とする最終厚み(最終粒径)を定めることで、圧延パス数などの圧延条件を定めることができる。
【0031】
なお、このような重ね合わせ接合圧延は、1台の圧延機を正逆転して圧延材を往復させて圧延する入側・出側にそれぞれテンションリールを備えた可逆式圧延機等が用いられられ、圧延機として4段式や多段式のゼンジマーミル等が用いられる。
【0032】
こうして重ね合わせ接合圧延により単一層の最終厚さを100nm〜1nm程度にすることで結晶粒の最終粒径も100nm〜1nm程度にでき、得られる微粒子積層金属材は引張強度が大巾に向上し、数倍にすることが可能となり、実験では6倍にすることができた。
【0033】
しかし、得られる微粒子積層金属材は伸びが低下し、実験では8%以下と低下した。
【0034】
このため、得られた微粒子積層金属材をこれまでと同様のプレス加工で成形することは、成形量が大きい場合は、割れ等の発生によりプレス不可となるケースが多々あった。
【0035】
そこで、この微粒子積層金属材の製造・成形方法を構成する微粒子積層金属材の成形工程では、高速変形成形機、例えば電磁成形プレスで成形するようにする。
【0036】
この電磁成形プレス(Eelctromagnetic Forming :EMF、例えば特開2001−252788号公報など参照)は、図1にその原理を示すように、磁場の持つエネルギを利用する加工法であり、大容量・高電圧のコンデンサ(キャパシタバンク)1からの放電電流を金型2に隣接して設けたコイル3などの導体に流すことによって瞬間的に強磁場を発生させ、接近して置いた電導体の被加工材(被成形材)4に渦電流を発生させ、この渦電流がコイル磁場と干渉し大きな力を生じ、その力で被加工材4を金型2に押し付けて高速で成形するものである。
【0037】
すなわち、高速加工では、高速変形することにより破断歪が大きくなる:静的破断歪は10%程度のところ、高速では大巾に増加する。
【0038】
また、高速変形では、変形する部分全体が同じ方向に移動する:亀裂が発生するためには部分的に変形方向が変わっていることが必要であるが、高速変形ではその時間がなく、また高速変形の力が大きいので、材料の強度の分布に起因する力の影響がほとんどない。
【0039】
そして、この電磁成形プレスでは、爆発成形や放電成形のように加工力を伝達する水などを必要とせず、大気中でも真空中でも成形でき、しかも加工速度が速くほとんどの加工を1ms以内で終わることができる。
【0040】
また、この電磁成形プレスは、成形の高速性などにより伸びの小さな材料でも複雑な形状に成形でき、アルミニウムではスプリングバックなしに成形することができる。
【0041】
したがって、微粒子積層金属材のように伸びが10%以下と小さくとも電磁成形プレスによって金型形状に沿った形状に加工することができる。
【0042】
これにより、例えば自動車の外板用の材料として微粒子積層金属材を用いることで、強度向上に対応して使用する板厚さを薄くすることができ、これによって重量軽減を図ることが可能となる。
【0043】
ここで、微粒子積層金属材による引張強度が300%向上したものを使用すれば、曲げ強度と板厚の関係(σw =M/Z=M/(bh2 /6)→σw は1/h2 と比例関係がある)からこれまでの板材に比べ、約60%の厚さにでき、500%向上したものを使用すれば、これまでの板材に比べ、約40%の厚さにできる。
【0044】
以上のように、この微粒子積層金属材の製造・成形方法によれば、微粒子積層金属材の製造が重ね合わせ接合圧延でできるので、大型バルク材であっても連続製造ができ、鉄鋼材料やAL合金等の大型構造材料へも適用することが容易である。
【0045】
また、製造される微粒子積層金属材の強度を大巾に向上できるが、伸びが低下するため、従来のプレス加工などで成形加工することが出来ないが、電磁成形プレスで成形するようにしているので、複雑な形状であっても変形能が大きな成形が可能で、これまでの工業製品への適用が可能となり、これによって重量低減を図ることができる。
【0046】
さらに、微粒子積層金属材を製造する工程での目標とする微粒子積層金属材の1層当たりの最終厚みを、繰り返し圧延の圧下率の圧延回数乗と初期厚みとの積によって概略決定して行うことができるので、圧延条件などを簡単に設定して微粒子積層金属材の製造から成形までを行うことができる。
【0047】
なお、最終圧延パス数は、概略決定したパス数に、実験等によって得られた補正パス数を加えたり、減らしたりして決定される。
【0048】
また、上記実施の形態では、高速変形成形機として電磁成形プレスを例に説明したが、これに限らず他の高速変形が可能な成形機(成形法)を用いることができ、例えば爆発成形法や放電成形法などを用いることもできる。
【0049】
【実施例】
以下に、この発明の実施例について具体的に説明するが、この発明は実施例に何等限定するものでない。
【0050】
(1) 繰り返し重ね接合圧延法による微粒子積層金属材を製造する工程
▲1▼ 金属薄板:アルミニウム合金(6061合金:成分下記参照)の1mm厚さ×150mm幅×350mm長さの薄板を2枚重ねて(2mm厚さ)1組の初期圧延材とした。
【0051】
成分    Si   Fe   Cu   Mn   Mg   Zn
(質量%)  0.5 0.55 0.35 0.05 0.90 0.15
成分     Ti   Al
(質量%)  0.15  bal.
【0052】
▲2▼ 実験用圧延機:4段圧延機で、ワークロールとして径が200mmφで材質がSUJ2種、バックアップロールとして径が400mmφで材質が鍛鋼のものを用い、圧延速度を15m/minとした。
【0053】
▲3▼ 繰り返し重ね接合圧延条件
1) 圧延温度  圧延前に電気炉(設定温度:200℃)に金属薄板を1分保持した後、圧延を開始した。
2) 各パスの圧下率を0.5(50%)一定とした。
3) 圧延潤滑(ロールと材料との間)は行わない。
4) 単一層(初期厚さ1mm)の最終パス出側の厚みを8nmを目標とし、このための圧延パス数を既に説明した式により求め、17パスの繰り返し圧延を行うことにした。
5) 各パスでは、その前のパスで得られた中間圧延材を2枚重ねて再び圧延すること繰り返し、圧延入側温度はそれぞれ200℃とした。
【0054】
このような繰り返し重ね接合圧延によって得られた微粒子積層金属材は引張強度が6倍以上であることが確認され、伸びが8%以下と低下した。
【0055】
(2) 微粒子積層金属材の電磁成形プレス工程
成形条件:水中(熱変形でないことを確認するため)でリング拡張テストを行い、25KJの電磁パスルを付加した。
【0056】
成形結果は、図2に示すように、横軸が変形速度(Vm/s)で縦軸が伸び (平均%)であり、通常の成形速度(略0m/s)では、伸びは8%であるが、電磁成形プレスにより成形速度を上げると、250m/sの速度でも破れることなく成形することができ、伸び量が40%以上まで到達できることが確認できた。
【0057】
【発明の効果】
以上、一実施の形態とともに具体的に説明したようにこの発明の請求項1記載の微粒子積層金属材の製造・成形方法によれば、金属薄板を複数枚重ね合わせて圧延して接合し、得られた中間圧延材を再び複数枚重ね合わせて圧延して接合することを繰り返して初期の1枚の前記金属薄板が微粒子径の薄膜層となった微粒子積層金属材を製造する工程と、こののち高速変形成形機で当該微粒子積層金属材を成形する工程とで構成したので、繰り返し重ね接合圧延工程で微粒子径の微粒子積層金属材を製造し、大幅な強度向上を図ることができるとともに、伸びの低下に対しては変形能の大きな高速変形成形機で成形するようにしてこれまでと同一形状の製品を成形加工することができる。
【0058】
また、この発明の請求項2記載の微粒子積層金属材の製造・成形方法によれば、前記高速変形成形機を電磁成形プレスとするようにしたので、磁場による大きなエネルギで高速で成形することができ、これまでと同一形状の製品を成形加工することができる。
【0059】
さらに、この発明の請求項3記載の微粒子積層金属材の製造・成形方法によれば、前記微粒子積層金属材を製造する工程で、目標とする当該微粒子積層金属材の1層当たりの最終厚みを、繰り返し圧延の圧下率の圧延回数乗と初期厚みとの積によって概略決定して行うようにしたので、微粒子積層金属材の1層当たりの最終厚みを定めることで、微粒子径も予測することができるようになり、繰り返し重ね接合圧延条件を容易に設定することができる。
【図面の簡単な説明】
【図1】この発明の微粒子積層金属材の製造・成形方法の一実施の形態にかかる電磁成形プレスの原理説明図である。
【図2】この発明の微粒子積層金属材の製造・成形方法の一実施の形態にかかる電磁成形プレスによる成形後の試験結果の説明図である。
【符号の説明】
1 コンデンサ(キャパシタバンク)
2 金型
3 コイル
4 被加工材(被成形材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing and forming a metal particle layered metal material, which is a method of manufacturing a material in which the crystal grain size of a metal is reduced to about 100 nm to 1 nm, and performing a forming process using the material.
[0002]
[Prior art]
By setting the crystal grain size of the metal material to 100 nm to 1 μm, various properties such as strength, toughness, and corrosion resistance are expected to be dramatically improved, and various researches and developments have been made.
[0003]
As a processing method for obtaining such ultrafine crystal grains, a Torsion Straining method, an Equal Channel Pressing (ECAP) method, a mechanical milling method of powder, and the like have been proposed.
[0004]
However, although it has been reported that conventional processing methods for obtaining ultra-fine crystal grains can produce ultra-fine crystal grains on a laboratory scale, continuous production of large bulk materials is difficult, and steel materials Application to large structural materials such as aluminum alloys and AL alloys has been questioned.
[0005]
On the other hand, a repeated roll-bonding (ARB) method has been proposed as a processing method for obtaining ultra-fine crystal grains. The rolled material is further overlapped, rolled, and joined.
[0006]
In this repetitive lap joint rolling method, a very large strain can be given to the material, and the rolling may be repeated any number of times, and the joint surface needs only to be treated by degreasing and wire brushing, and the joining temperature is equal to or lower than the recrystallization temperature. It is sufficient to perform rolling in a warm region, and it is considered that application to large structural materials such as steel materials and AL alloys is relatively easy as compared with the conventional three processing methods.
[0007]
It has been experimentally realized that the grain size of industrial pure aluminum is reduced to 200 nm by such a repetitive lap joint rolling method, and the strength is thereby improved by 300% (The Institute of Metals, Japan) Journal, Vol. 64, No. 6, (2000)).
[0008]
[Problems to be solved by the invention]
However, by refining the crystal grain size to 200 nm by the repetitive lap welding method, the strength can be greatly improved, but the elongation is reduced to 10% or less. There is a problem that it is difficult to manufacture an industrial product by processing by molding or the like, for example, it is used as a material for an outer panel of an automobile, and it is difficult to press work and it cannot be easily used.
[0009]
Therefore, it has been proposed to improve elongation by repeatedly heat-treating the lap-joined rolled material, but there is a problem that the heat treatment lowers the strength.
[0010]
The present invention has been made in view of the above-mentioned problems of the related art, and provides a method of manufacturing and forming a fine particle laminated metal material capable of manufacturing a material having a fine crystal grain size of a metal and forming the material using the material. It is what we are going to offer.
[0011]
[Means for Solving the Problems]
In order to solve the problems of the prior art, a method of manufacturing and forming a fine-particle laminated metal material according to claim 1 of the present invention comprises: A step of manufacturing a fine-grain laminated metal material in which an initial one of the thin metal sheets has become a thin film layer having a fine-grain diameter by repeating a plurality of superimposed, rolled and joined again, and thereafter, using a high-speed deformation molding machine. And forming the fine particle-laminated metal material.
[0012]
According to this method of manufacturing and forming a fine particle laminated metal material, a plurality of thin metal sheets are stacked and rolled and joined, and the obtained intermediate rolled material is repeatedly stacked and rolled and joined again. A step of manufacturing a particulate laminated metal material in which one of the above-mentioned thin metal sheets is a thin film layer having a particle diameter, and a step of forming the particulate laminated metal material with a high-speed deformation molding machine after that; In the rolling process, a fine-grained laminated metal material with a fine-grain diameter is manufactured, and the strength is greatly improved. I have.
[0013]
According to a second aspect of the present invention, there is provided a method of manufacturing and molding a fine particle laminated metal material, wherein the high-speed deformation molding machine is an electromagnetic molding press in addition to the configuration of the first aspect.
[0014]
According to this method of manufacturing and forming a fine particle laminated metal material, an electromagnetic forming press is used as the high-speed deformation forming machine, and a large deformation capability is obtained by utilizing energy of a magnetic field, thereby forming and forming. I can do it.
[0015]
Further, in the method of manufacturing and molding a fine particle laminated metal material according to claim 3 of the present invention, in addition to the configuration according to claim 1 or 2, the step of manufacturing the fine particle laminated metal material includes the step of: It is characterized in that the final thickness per layer of the material is roughly determined by the product of the rolling reduction to the power of the number of times of rolling and the initial thickness.
[0016]
According to the method for manufacturing and molding a fine particle laminated metal material, in the step of producing the fine particle laminated metal material, the target final thickness per one layer of the fine particle laminated metal material is set to the rolling reduction of the rolling reduction of the repetitive rolling. The approximate thickness is determined by the product of the power and the initial thickness. By determining the final thickness per layer of the fine particle laminated metal material, the diameter of the fine particles can be predicted, and the conditions for repeated lap joint rolling can be easily adjusted. Can be set.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail.
The method for manufacturing and molding a particulate laminated metal material of the present invention comprises a step of producing a particulate laminated metal material, and a step of molding the particulate laminated metal material using a high-speed deformation molding machine, for example, an electromagnetic molding press.
[0018]
The step of manufacturing the fine particle laminated metal material constituting the method of manufacturing and forming the fine particle laminated metal material is such that a plurality of thin metal sheets are stacked, rolled and joined, and the obtained intermediate rolled material is stacked again. Rolling and joining are repeated to produce a fine particle laminated metal material in which one initial thin metal sheet has become a thin film layer having a fine particle diameter, and is a so-called repetitive lap joint rolling method (ARB method). is there.
[0019]
In the process of manufacturing a fine particle laminated metal material by the repeated lap joint rolling method (ARB method), since a plurality of metal sheets are stacked and rolled repeatedly, the metal sheet as a starting material must be subjected to rolling. There is no limitation as long as it is a thin plate of a metal material that can be produced, and any method of producing a rolled material obtained by ordinary rolling, a sintering material from a powder raw material, etc. may be used. There are no restrictions on non-ferrous metals such as, or alloys thereof.
[0020]
It is repeated that a plurality of such metal sheets are stacked and rolled and joined a plurality of times, but the number of stacked metal sheets may be any number of 2 or more, such as the capacity of rolling equipment. What is necessary is just to determine suitably by rolling possible conditions.
[0021]
In the lap joint rolling, the intermediate rolled material obtained in each pass of rolling is repeatedly overlapped, rolled, and joined, and the intermediate rolled material obtained in each of a plurality of passes is repeated. Rolling together and joining may be repeated, and in this case, the number of superposed sheets may be two or more.
[0022]
In such lap rolling, a very large strain can be given. Therefore, the joining surface of the thin metal plate may be subjected to degreasing and wire brushing, and the joining temperature is preferably higher. In consideration of the balance, the heat treatment is performed in a warm region below the recrystallization temperature.
[0023]
In such lap joint rolling, one metal sheet in the initial stage (at the start of rolling) becomes gradually thinner as the lap joint rolling is repeated, and the crystal grain size becomes smaller in accordance with the thickness, and the particle size becomes smaller. When one metal sheet at the initial stage (at the start of rolling) becomes a thin film layer having a fine particle diameter, a fine particle laminated metal material in this step is obtained.
[0024]
Therefore, for example, if the thickness of one layer of the fine particle laminated metal material becomes 1 nm, the particle diameter of the metal crystal constituting this layer is considered to be at most 1 nm. Can be manufactured.
[0025]
Therefore, the thickness of one layer of the fine particle laminated metal material can be determined as follows.
[0026]
In general, assuming that the thickness of a single layer constituting the laminated material after n passes is tn, the thickness can be expressed by the following equation.
[0027]
tn = t0 × (re1) n1 × (re2) n2 ×... × (ren) nn
here,
t0: Initial thickness of a single layer re1: Reduction ratio of the first pass re2: Reduction ratio of the second pass

ren: rolling reduction at n-th pass n1: rolling number at re1 n2: rolling number at re2

nn: Number of times of rolling in ren.
[0028]
Therefore, for example, when the initial thickness t0 of the single layer is set to 1 mm and the rolling reduction ren in each pass is fixed to 0.5 (50%),
{Circle around (1)} The thickness t10 of the single layer after the rolling of 10 passes is
t10 = 1 × (0.5) 10 = 9.8 × 10 −4 mm
= 0.98 μm = 980 nm
{Circle around (2)} The thickness t15 of the single layer after repeated rolling of 15 passes is
t15 = 1 × (0.5) 15 = 3.1 × 10 −5 mm
= 0.03 μm = 30 nm
{Circle around (3)} The thickness t20 of the single layer after repeated rolling of 20 passes is
t20 = 1 × (0.5) 20 = 9.5 × 10 −7 mm
= 0.95 × 10 −6 μm
= About 1 nm
It becomes.
[0029]
Therefore, by performing rolling in 20 passes, the thickness of the single layer can be reduced to about 1 nm, and it can be predicted that the final grain size of the single layer is also reduced to about 1 nm.
[0030]
Therefore, by determining the target final thickness (final grain size) of the single layer from this equation, the rolling conditions such as the number of rolling passes can be determined.
[0031]
In addition, such a lap joint rolling uses a reversible rolling mill provided with a tension reel on each of an entrance side and an exit side for rolling a material by reciprocating one rolling mill in normal and reverse directions. As a rolling mill, a four-stage or multi-stage Sendzimer mill or the like is used.
[0032]
By making the final thickness of the single layer about 100 nm to about 1 nm by the overlap bonding and rolling in this way, the final grain size of the crystal grains can be made about 100 nm to about 1 nm, and the resulting fine particle laminated metal material has a significantly improved tensile strength. , And could be increased by a factor of six in the experiment.
[0033]
However, the elongation of the obtained fine particle laminated metal material was reduced, and was reduced to 8% or less in the experiment.
[0034]
For this reason, when the obtained laminated metal material of fine particles is formed by the same press working as in the past, in many cases, when the formed amount is large, the pressing becomes impossible due to the occurrence of cracks or the like.
[0035]
Therefore, in the forming process of the fine particle laminated metal material constituting the method for producing and molding the fine particle laminated metal material, the fine particle laminated metal material is molded by a high-speed deformation molding machine, for example, an electromagnetic molding press.
[0036]
This electromagnetic forming press (Electromagnetic Forming: EMF, see, for example, Japanese Patent Application Laid-Open No. 2001-252788) is a processing method using energy of a magnetic field as shown in FIG. A discharge current from a capacitor (capacitor bank) 1 is caused to flow through a conductor such as a coil 3 provided adjacent to a mold 2, thereby instantaneously generating a strong magnetic field, and the work material of the conductor placed close to An eddy current is generated in the (working material) 4, and the eddy current interferes with the coil magnetic field to generate a large force. The working material 4 is pressed against the mold 2 by the force to form at high speed.
[0037]
That is, in high-speed machining, the breaking strain increases due to high-speed deformation: the static breaking strain is about 10%, and increases greatly at high speed.
[0038]
Also, in high-speed deformation, the entire deformed part moves in the same direction: it is necessary that the deformation direction is partially changed in order to generate a crack. Since the deformation force is large, there is almost no influence of the force due to the strength distribution of the material.
[0039]
In addition, this electromagnetic forming press does not require water or the like that transmits the processing force unlike explosion molding and electric discharge molding, and can be formed in the air or in a vacuum. In addition, the processing speed is high and most processing can be completed within 1 ms. it can.
[0040]
In addition, this electromagnetic forming press can form a material having a small elongation into a complicated shape due to the high speed of molding and the like, and aluminum can be formed without springback.
[0041]
Therefore, even if the elongation is as small as 10% or less as in the case of the fine particle laminated metal material, it can be processed into a shape conforming to the mold shape by the electromagnetic molding press.
[0042]
Thus, for example, by using a fine-particle laminated metal material as a material for an outer panel of an automobile, it is possible to reduce the thickness of the plate used in response to the improvement in strength, thereby making it possible to reduce the weight. .
[0043]
Here, the use of which tensile strength due to particle laminated metal material is improved 300 percent, flexural strength and the plate thickness of the relationship (σw = M / Z = M / (bh 2/6) → σw is 1 / h 2 The thickness can be reduced to about 60% as compared with the conventional plate, and can be reduced to approximately 40% as compared with the conventional plate by using a material improved by 500%.
[0044]
As described above, according to the method of manufacturing and forming a particulate laminated metal material, since the production of the particulate laminated metal material can be performed by superposition bonding and rolling, continuous production can be performed even for a large bulk material. It is easy to apply to large structural materials such as alloys.
[0045]
In addition, although the strength of the produced fine-particle laminated metal material can be greatly improved, the elongation is reduced, so that it cannot be formed by conventional press working or the like, but is formed by an electromagnetic forming press. Therefore, even if it has a complicated shape, it is possible to form a molding having a large deformability, and it is possible to apply the present invention to an industrial product, thereby reducing the weight.
[0046]
Further, the final thickness per layer of the fine particle laminated metal material to be targeted in the step of manufacturing the fine particle laminated metal material is roughly determined by the product of the rolling reduction to the power of the number of rolling times and the initial thickness. Therefore, it is possible to easily set the rolling conditions and the like, and perform the processes from production of the particulate laminated metal material to molding.
[0047]
Note that the final rolling pass number is determined by adding or reducing the corrected pass number obtained through experiments or the like to the roughly determined pass number.
[0048]
In the above-described embodiment, an electromagnetic molding press was described as an example of a high-speed deformation molding machine. However, the invention is not limited to this, and other high-speed deformation molding machines (forming methods) can be used. Or an electric discharge molding method.
[0049]
【Example】
Hereinafter, embodiments of the present invention will be specifically described, but the present invention is not limited to the embodiments.
[0050]
(1) Step of manufacturing a particulate laminated metal material by repeated lap joint rolling method {circle around (1)} Metal sheet: two thin sheets of aluminum alloy (6061 alloy: see components below), 1 mm thick × 150 mm wide × 350 mm long (2 mm thick) to form one set of initial rolled material.
[0051]
Component Si Fe Cu Mn Mg Zn
(Mass%) 0.5 0.55 0.35 0.05 0.90 0.15
Component Ti Al
(% By mass) 0.15 bal.
[0052]
{Circle over (2)} Experimental rolling mill: a four-high rolling mill, a work roll having a diameter of 200 mmφ and a material of SUJ2, a backup roll having a diameter of 400 mmφ and a material of forged steel, and a rolling speed of 15 m / min.
[0053]
{Circle around (3)} Repeated lap joint rolling conditions 1) Rolling temperature Before rolling, the metal sheet was held in an electric furnace (set temperature: 200 ° C.) for 1 minute, and then rolling was started.
2) The rolling reduction of each pass was fixed at 0.5 (50%).
3) Rolling lubrication (between the roll and the material) is not performed.
4) The thickness of the single layer (initial thickness: 1 mm) on the exit side of the final pass was set to 8 nm, and the number of rolling passes for this was determined by the above-described formula, and rolling was repeated 17 times.
5) In each pass, the two intermediate rolled materials obtained in the previous pass were repeatedly piled up and rolled again, and the rolling entry temperature was set to 200 ° C.
[0054]
It was confirmed that the tensile strength of the particulate laminated metal material obtained by such repeated lap joint rolling was 6 times or more, and the elongation was reduced to 8% or less.
[0055]
(2) Electromagnetic forming press process of fine particle laminated metal material Molding condition: A ring expansion test was performed in water (to confirm that it was not thermally deformed), and an electromagnetic pulse of 25 KJ was added.
[0056]
As shown in FIG. 2, the molding results show that the horizontal axis is the deformation speed (Vm / s) and the vertical axis is the elongation (average%). At the normal molding speed (approximately 0 m / s), the elongation is 8%. However, it was confirmed that when the molding speed was increased by an electromagnetic molding press, molding could be performed without breaking even at a speed of 250 m / s, and the elongation could reach 40% or more.
[0057]
【The invention's effect】
As described above in detail with one embodiment, according to the method for manufacturing and forming a fine particle laminated metal material according to claim 1 of the present invention, a plurality of thin metal sheets are stacked, rolled and joined. A step of manufacturing a fine-grain laminated metal material in which the initial one thin metal sheet is a thin-film layer having a fine-grain diameter by repeating a plurality of intermediate rolled materials that are again stacked, rolled, and joined; And a step of forming the particulate laminated metal material with a high-speed deformation molding machine, so that it is possible to produce a particulate laminated metal material having a fine particle diameter in a repeated lap joint rolling step, thereby achieving a significant improvement in strength and an increase in elongation. With respect to the decrease, it is possible to mold a product having the same shape as before by molding with a high-speed deformation molding machine having a large deformability.
[0058]
Further, according to the method of manufacturing and forming a particulate laminated metal material according to the second aspect of the present invention, the high-speed deformation forming machine is an electromagnetic forming press. Thus, a product having the same shape as before can be formed.
[0059]
Further, according to the method of manufacturing and molding a fine particle laminated metal material according to claim 3 of the present invention, in the step of producing the fine particle laminated metal material, the final final thickness per one layer of the fine particle laminated metal material is set. Since it was determined roughly by the product of the rolling reduction to the power of the number of times of the rolling and the initial thickness, by determining the final thickness per layer of the fine particle laminated metal material, it is also possible to predict the particle diameter. This makes it possible to easily set the conditions for repeated lap joint rolling.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of an electromagnetic molding press according to an embodiment of a method for producing and molding a particulate laminated metal material of the present invention.
FIG. 2 is an explanatory diagram of test results after molding by an electromagnetic molding press according to an embodiment of the method for producing and molding a particulate laminated metal material of the present invention.
[Explanation of symbols]
1 capacitor (capacitor bank)
2 Mold 3 Coil 4 Workpiece (workpiece)

Claims (3)

金属薄板を複数枚重ね合わせて圧延して接合し、得られた中間圧延材を再び複数枚重ね合わせて圧延して接合することを繰り返して初期の1枚の前記金属薄板が微粒子径の薄膜層となった微粒子積層金属材を製造する工程と、こののち高速変形成形機で当該微粒子積層金属材を成形する工程とからなることを特徴とする微粒子積層金属材の製造・成形方法。A plurality of thin metal sheets are stacked and rolled and joined, and the obtained intermediate rolled material is repeatedly stacked and rolled and joined again to form an initial thin metal layer having a fine particle diameter. A method of manufacturing and forming a fine particle laminated metal material, comprising: a step of producing the fine particle laminated metal material thus obtained; and a step of subsequently forming the fine particle laminated metal material by a high-speed deformation molding machine. 前記高速変形成形機が電磁成形プレスであることを特徴とする請求項1記載の微粒子積層金属材の製造・成形方法。2. The method according to claim 1, wherein the high-speed deformation molding machine is an electromagnetic molding press. 前記微粒子積層金属材を製造する工程で、目標とする当該微粒子積層金属材の1層当たりの最終厚みを、繰り返し圧延の圧下率の圧延回数乗と初期厚みとの積によって概略決定して行うことを特徴とする請求項1または2記載の微粒子積層金属材の製造・成形方法。In the step of manufacturing the fine particle laminated metal material, a target final thickness per layer of the fine particle laminated metal material is roughly determined by a product of a rolling reduction to the power of the number of times of rolling and an initial thickness. The method for producing and molding a particulate laminated metal material according to claim 1 or 2, wherein:
JP2002209257A 2002-07-18 2002-07-18 Method for manufacturing and forming fine particle laminated metal Pending JP2004050210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209257A JP2004050210A (en) 2002-07-18 2002-07-18 Method for manufacturing and forming fine particle laminated metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209257A JP2004050210A (en) 2002-07-18 2002-07-18 Method for manufacturing and forming fine particle laminated metal

Publications (1)

Publication Number Publication Date
JP2004050210A true JP2004050210A (en) 2004-02-19

Family

ID=31933150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209257A Pending JP2004050210A (en) 2002-07-18 2002-07-18 Method for manufacturing and forming fine particle laminated metal

Country Status (1)

Country Link
JP (1) JP2004050210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105817518A (en) * 2016-05-12 2016-08-03 北京机电研究所 Method and device for improving room temperature forming performance of magnesium alloy
CN107413917A (en) * 2017-07-05 2017-12-01 华中科技大学 A kind of large-scale metal sheet electromagnetism progressive molding method based on plate face control shape

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105817518A (en) * 2016-05-12 2016-08-03 北京机电研究所 Method and device for improving room temperature forming performance of magnesium alloy
CN107413917A (en) * 2017-07-05 2017-12-01 华中科技大学 A kind of large-scale metal sheet electromagnetism progressive molding method based on plate face control shape
CN107413917B (en) * 2017-07-05 2018-04-24 华中科技大学 A kind of large-scale metal sheet electromagnetism progressive molding method based on plate face control shape

Similar Documents

Publication Publication Date Title
Talebian et al. Manufacturing Al/steel multilayered composite by accumulative roll bonding and the effects of subsequent annealing on the microstructural and mechanical characteristics
US10913242B2 (en) Titanium material for hot rolling
US10780520B2 (en) Method for producing a hot-rolled plated composite material, flat product stack, hot-rolled plated composite material and use thereof
Yu et al. Investigation on microstructure, mechanical properties and fracture mechanism of Mg/Al laminated composites
TWI632959B (en) Titanium composite and titanium for hot rolling
Wang et al. High-strength and ductility bimodal-grained Al–Li/Al–Li–Zr composite produced by accumulative roll bonding
RU2465973C1 (en) Method of making foil from titanium-based intermetallide orthoalloys
TW201718890A (en) Titanium composite material, and titanium material for use in hot rolling
Mo et al. The influence of interface effect on the microstructure and mechanical behavior of tri-metal Ti/Al/Cu laminated metal composites
Bagheri et al. Post-rolling annealing of a multilayered Brass/IFS/Brass composite: An evaluation of anisotropy, formability, and mechanical properties
Vini et al. Effect of electrically assisted accumulative roll bonding (EARB) Process on the mechanical properties and microstructure evolution of AA5083/Al2O3 composites
JP2004107743A (en) Magnesium alloy sheet and its manufacturing method
TWI627285B (en) Titanium composite and titanium for hot rolling
JP2004050210A (en) Method for manufacturing and forming fine particle laminated metal
Jiang et al. Microstructure and mechanical properties of multilayered Cu/Ti composites fabricated by accumulative roll bonding
JP2003183730A (en) Material with ultrafine granular surface
Takata et al. Dynamic deformation behavior of ultrafine grained aluminum produced by ARB and subsequent annealing
TWI626093B (en) Titanium composite and titanium for hot rolling
Elshenawy et al. Studying the effects of accumulative roll bonding cycles on the mechanical properties of AA1050 aluminum alloy
TWI617671B (en) Titanium for hot rolling
JP2002069545A (en) METHOD FOR PRODUCING TiAl BASED INTERMETALLIC COMPOUND BY LAMINATE ROLLING
JP3297010B2 (en) Manufacturing method of nearβ type titanium alloy coil
Heydari Vini et al. Fabrication of AA1060/Al2O3 composites by warm accumulative roll bonding process and investigation of its mechanical properties and microstructural evolution
JP6848991B2 (en) Titanium material for hot rolling
Fatemi-Varzaneh et al. Accumulative roll bonding of AZ31 magnesium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016