JP2004048754A - Mobile communication apparatus - Google Patents

Mobile communication apparatus Download PDF

Info

Publication number
JP2004048754A
JP2004048754A JP2003191112A JP2003191112A JP2004048754A JP 2004048754 A JP2004048754 A JP 2004048754A JP 2003191112 A JP2003191112 A JP 2003191112A JP 2003191112 A JP2003191112 A JP 2003191112A JP 2004048754 A JP2004048754 A JP 2004048754A
Authority
JP
Japan
Prior art keywords
antenna
output
communication information
unit
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003191112A
Other languages
Japanese (ja)
Other versions
JP3747922B2 (en
Inventor
Fujio Osagawa
長川 扶仁雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003191112A priority Critical patent/JP3747922B2/en
Publication of JP2004048754A publication Critical patent/JP2004048754A/en
Application granted granted Critical
Publication of JP3747922B2 publication Critical patent/JP3747922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mobile communication apparatus which certainly makes a partner office receives a communication information from one's own office regardless of the position of the partner office in communication between mobile radios. <P>SOLUTION: The apparatus is provided with a transmission portion to be loaded on a self mobile radio and outputs a modulated wave signal subjected to a modulation by the communication information to transmit to the moving partner office; a distribution portion to distribute the modulated wave signal output from the transmission portion; an antenna portion to form an antenna synthesizing area according to a feed phase of the distributed distribution output, and to be constituted of a plurality of antennas to output the modulated wave signal to a space; a continuous transmission portion to repeatedly output the communication information by the predetermined number of times according to a communication quality required between the moving partner offices, and to output the communication information with the same contents by the number of times of the output; and a phase shift portion to change over the feed phase of the antenna corresponding to the number of time of the output of the communication information with the same contents output from the continuous transmission portion, and to change over an interference portion direction generated in the antenna synthesizing area to a different direction at each of the output of the communication information with the same contents. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、移動体に搭載され、移動体間の通信に用いられる移動体通信装置に関する。
【0002】
【従来の技術】
一般に、移動体間の通信においては、自局のみならず相手局の位置も時間的に変化するため自局の空中線を通信相手である相手局方向に対して指向させることはきわめて困難である。また、無指向性の空中線を用いたものでは相手局方向か否かを問わずに通信情報の送信ができるものの遠方の通信相手に通信情報を伝送させるには高い送信電力を要する。図10は従来の移動体通信装置の送信系を示すブロック構成図であり、一般に従来の移動体通信装置においては、覆域(空中線利得ともいう。)を確保して通信情報を的確に相手局に対して伝送させるため送信系に2つ以上の空中線を設けた通信装置が使用されていた。
【0003】
しかし、送信系に2つ以上の空中線を用いた従来の移動体通信装置では、これら空中線合成覆域は図11に示すように形成され、仮に相手局の位置がこれら空中線合成利得の干渉部方向に存在するような場合においては、この干渉部方向の空中線利得が十分でなく、干渉部方向でかつ遠方に存在した相手局に対しては通信情報を十分に送信することができない場合があった。
【0004】
また、特開昭55−132105号公報には、2つのアンテナから成る移動無線系用の装置において、通信接続の中断原因となる零位置(いわゆる干渉部)の生じない放射特性が得られるようにアンテナの給電線に電子制御された移相器を設け、2つのアンテナに供給される給電位相が逆相並びに同相との間を変動するようにシフトさせるものが記載されているが、これは受信側において通信接続の中断が生じないようにアンテナの給電位相を制御するものであり、たとえ、受信側の放射特性が改善されてたとしも送信側の空中線利得が上述したような特性を有する場合には送信側からの通信情報は受信側に十分伝送されず移動体間における安定した通信は確保できない。
【0005】
空中線の合成利得特性を改善するものとして他に特開昭55−63102号公報に記載されたものがあるが、いずれも受信側において空中線利得を改善するものであり、送信局側における問題については何ら示唆されたものでない。
【0006】
【特許文献1】
特開昭55−132105号公報(第2頁、図1−図3)
【0007】
【特許文献2】
特開昭55−63102号公報(第1頁−第2頁、図1,図2)
【0008】
【発明が解決しようとする課題】
上述したように、従来の移動体通信装置では、自局のみならず通信相手である相手局の位置が不規則に変化するため、自局と相手局との相対方位が常に変化し自局からの通信情報を相手局に対して安定して送信することは困難であった。また、受信側の放射特性が改善されてたとしも、送信側の空中線利得が上述したような特性を有する場合には相手局の位置によっては送信側からの通信情報が受信側に十分伝送されず、移動体間において安定した通信を確保するには送信側において空中線利得の改善等が不可欠であった。
【0009】
この発明はかかる問題点を解決するためになされたもので、移動体間の通信において自局からの通信情報を相手局の位置に拘わらずより確実に伝送することのできる新規な構成の移動体通信装置を得ることを目的とする。
【0010】
【課題を解決するための手段】
請求項1の発明に係る移動体通信装置は、自己の移動体に搭載され、移動する相手局に対して送信する通信情報により変調を施した被変調波信号を出力する送信部と、この送信部から出力された被変調波信号を分配する分配部と、その分配された分配出力の給電位相に応じて空中線合成覆域を形成し、前記被変調波信号を空間に出力する複数の空中線より構成されるアンテナ部と、前記通信情報を前記移動する相手局との間に要求される通信品質に応じて予め定められた回数繰り返して出力し、その出力回数だけ同一内容の通信情報を出力する連送部と、この連送部から出力された同一内容の通信情報の出力回数に対応して前記空中線の給電位相を切換え、前記空中線合成覆域に生じる干渉部の方向を前記同一内容の通信情報の出力毎に異なる方向に切換える移相部とを備えたものである。
ことを特徴とする移動体通信装置。
【0011】
請求項2の発明に係る移動体通信装置は、前記同一内容の通信情報による複数の被変調波信号を複数回繰り返して前記アンテナ部から出力するようにしたものである。
【0012】
【発明の実施の形態】
実施の形態1.
以下、この発明の一実施形態について図1乃至図4を用いて詳細に説明する。図1はこの発明の一実施形態である移動通信装置を示すブロック構成図であり、2つの空中線からなるアンテナ部を有した送信系1と1つの空中線からなるアンテナ部を有した受信系2とから構成されている。本実施形態による移動体通信装置においては送信系1と受信系2とでそれぞれ別個のアンテナ部を設けるようにしているが、送信系1のアンテナ部を受信系2のアンテナ部として共用するようにしてもよい。その場合、受信系2ではダイバーシチ受信部を設けることによりダイバーシチ受信が可能となる(他の実施形態において説明する。)。
【0013】
図1において、1は送信系、2は受信系、3aは通信相手である相手局に対して送信する通信情報、3bは受信系2で受信された相手局からの通信情報、4は予め生成した高周波数の信号(以下、搬送波という。)に通信情報3aに応じた一定の変化を与え、即ち変調操作を施して出力する送信部、5は通信情報3aにより所望の形式に変調された搬送波(以下、被変調波信号という)を給電線を介して接続された複数の空中線6a及び6bに分配出力する分配部、6a及び6bは送信部4により出力され分配部5により分配出力された被変調波信号を空間に出力させる送信系の空中線である(本実施形態では、アンテナ部が2つの空中線6a及び6bにより構成されているが、3つ以上の空中線によりアンテナ部を構成してもよい。)。
【0014】
6cは受信系2のアンテナ部である空中線、7は空中線6cを介して受信した相手局からの無線信号8を周波数変換器等を用いて中間周波数に変換し、その後、相手局の送信部4で行われた変調操作と逆の操作である復調操作を施して相手局から送信された情報である通信情報を得る受信部である。なお、送信部4の変調方式は特定の方式に限定されるものでなく、送信する通信情報3aがアナログ信号であれば振幅変調、周波数変調、位相変調などを用い、送信する通信情報がデジタル信号又はデータ信号等であれば位相シフトキーイング、周波数シフトキーイングなどを用いた変調操作を行う。受信部7の復調方式も通信相手である相手局の変調方式に対応した方式のものを選択して使用する。
【0015】
ここで、9,10はいづれも本発明の特徴部分の構成であり、9は送信部4に対して通信情報3aを予め定められた回数繰り返して出力させると共に、その出力状況を各通信情報3aと併せて出力する連送部、10は分配部5と複数設けられた空中線のいずれか一方との間に接続され(本実施形態においては、空中線6aに接続されている。)、接続された空中線6aから空間に対して出力される被変調波信号の送信位相を連送部9から出力された通信情報3aの出力状況に応じて所望の位相に制御する移相部である。
【0016】
後述するように、通信情報3aの出力回数は空中線合成覆域の干渉部をどのように補償するかにより決定するもので、干渉部の最低利得方向において放射特性が最大利得となるように補償する場合には通信情報3aを2回だけ出力させればよく、干渉部の範囲全体において最大利得となるように補償したい場合には通信情報3aを3回以上出力させるものである(出力回数が多いほど干渉部の範囲全体に渡って高い利得特性で補償される。)。また、他の実施形態において説明するように、通信情報を連続送信(例えば2n回、3n回、n=正の整数)させるような場合においては、本発明が適用される移動体通信装置の通信能力(送信能力)をも考慮して出力回数が決定されるものである。詳細は後述する。
【0017】
そして、移相部10は連送部9から出力された通信情報3aの出力状況に基づいて接続された空中線6aの給電位相を所定のタイミングで切換え、所望の空中線合成覆域を形成されるように給電位相を設定する。例えば連送部9から出力された出力状況が2n回(nは正の整数)と判断した場合には移相部10は接続された空中線6aの給電位相を被変調波信号の出力タイミングに応じて180°切換え、他方の空中線(本実施形態では空中線6b)の給電位相に対し同相、逆相をn回交互に繰り返す位相制御を行い、また3n回と判断した場合には接続された空中線6aの給電位相を被変調波信号の出力タイミングに応じて120°ずつ切換え、他方の空中線(本実施形態では空中線6b)の給電位相に対し同相、120°ずれた位相、240°ずれた位相をn回繰り返すように位相制御するものである。
【0018】
11は受信系2に設けられた比較部であり、受信部7で復調された無線信号8の受信品質を比較し、受信品質が最も良好と判断されたものを相手局から送信された通信情報3bとして選択するものである。無線信号8は連送部9から出力された通信情報により変調された被変調波信号で構成されるため、送信系1の連送部9が同一内容の通信情報を2回繰り返して出力されるように設定されている場合には無線信号8は2つの被変調波信号で構成されており、3回繰り返して出力されるように設定されている場合には3つの被変調波信号で構成されている、そして、受信系2ではこれらを比較した結果、最も受信品質が良い通信情報を通信情報3bとして選択するものである。
【0019】
次に、本実施形態による移動体通信装置の動作、特に送信動作について図2及び図3を用いて詳細に説明する。図2は図1に示す移動体通信装置の部分説明図であって、移相部10が連送部9から出力された通信情報3aの出力状況に基づいて空中線6aの給電位相の切換えた場合における無線信号8の送信位相を示している。なお、本実施形態においては、連送部9から2回連続して通信情報3aが出力され、空中線6a乃至6bから相手局に対して送信された無線信号8は1送目の被変調波信号と2送目の被変調波信号とによって構成されたものとする。便宜上、空中線6aから出力された無線信号を8a、空中線6bから送信された無線信号を8bと区別し、さらに1送目の被変調波信号を8a1及び8b1、2送目の被変調波信号を8a2及び8b2と区別する。
【0020】
図3は図1に示す本実施形態による移動体通信装置を自局12とし、自局12の空中線合成覆域(又は空中線合成利得。以下、空中線合成覆域という。)と通信相手である相手局13との相対位置関係とを示した覆域説明図である。図3において、上段は無線信号8の1送目の被変調波信号8a1及び8b1の出力時における自局12の空中線合成覆域を示し、下段は1送目に続いて出力された2送目の被変調波信号8a2及び8b2の出力時における自局12の空中線合成覆域を示している。なお、相手局13は1送目の被変調波信号の出力時と2送目の被変調波信号の出力時とでほとんど移動せず、その位置がほとんど変化していないものとする。
【0021】
まず、送信動作において、連送部9は予め定められた連続送信分の通信情報3aを送信部4に対して出力し、各通信情報3aの識別のためのステータス信号を併せて出力する。このステータス信号は各通信情報3aの先頭部分にフラグとして付加するようにしてもよい。本実施形態においては、図2に示すように同一内容の通信情報3aを2回連続して相手局13に対して送信させるものであり、2n回の連続送信であって、n=1の場合の通信情報3aの送信について説明するものである。よって、何回目の連続送信かを区別する必要はなく、1送目と2送目とを識別するためのステータス信号が1送目及び2送目の通信情報3aに付加されて出力される。本実施形態の移動体通信装置は、この連送部9から出力されるステータス信号に基づいて移相部10が接続された空中線6aの給電位相の切換えを行うものである。
【0022】
次に送信部4では、連送部9から連続して出力された1送目及び2送目の通信情報3aにより変調した同一内容である2つの被変調信号を1送目の被変調信号及び2送目の被変調信号として連続して分配部5に対して出力する。なお、分配部5は送信部4から出力された各被変調信号をアンテナ部である各空中線6a及び6bに対して分配出力するものであり、送信部4から出力された1送目及び2送目の被変調信号は分配部5により空中線6a及び6bに対しそれぞれ分配出力される。
【0023】
ここで、空中線6aについては、上述したように連送部9から出力された通信除法3aの出力状況に基づいて給電位相の位相制御を行う移相部10が接続されており、空中線6aの給電位相は、連送部9から出力されたステータス信号に基づく移相部10の位相制御により1送目と2送目とで180°異なる位相に切換えらる。即ち、移相部10は連送部9から出力された通信情報3aと併せて出力された1送目と2送目とを識別するためのステータス信号を検出もしくは監視しており、このステータス信号により例えば1送目の通信情報3aが出力されたと判断すれば空中線6aの給電位相を所定のタイミングで他方の空中線6bと同相に制御し、1送目の通信情報3bに続いて2送目の通信情報3aが出力されたと判断すれば空中線6aの給電位相を所定のタイミングで他方の空中線6bと逆相、即ち1送目の給電位相と180°ずれた位相に位相制御する。
【0024】
なお、この給電位相の切換えは順序による制限されるものでなく、1送目を同相、2送目を逆相となるように切換えてもよい。
【0025】
このように、本実施形態による移動体通信装置によれば、空中線合成覆域が1送目の被変調波信号(8a1及び8b1)の出力時と2送目の被変調波信号(8a2及び8b2)の出力時とで給電位相が切換えられ、無線信号8の送信時において図3に示されるような2種類の異なる空中線合成覆域が形成されることになり、1送目における無線信号の放射特性の干渉部は2送目の無線信号により補償され、2送目における無線信号の放射特性の干渉部は1送目の無線信号により補償されれるので、図3上段に示すように通信相手である相手局13の位置が1送目の無線信号8a1及び8b1の送信時における放射特性の干渉部方向に存在したとしても、2送目の無線信号8a2及び8b2の送信時には相手局13は図3下段に示すように2送目の空中線合成覆域の最大利得方向に存在することが可能となり、自局12から送信された無線信号8が相手局13において確実に受信されることが可能となる。
【0026】
ここで、大事なことは1送目と2送目の被変調波信号はそれぞれが同一内容の通信情報3aにより変調されたものであるというところである。即ち、本発明は単に複数の空中線のうちいずれかの空中線における給電位相を他の空中線における給電位相と所定量だけ異なるように位相制御して放射特性を可変としただけではなく、同一内容の通信情報3aによる複数の被変調波信号を連続して送信させることにより、例えば1送目では相手局にて受信されなかった又は受信されても受信品質が不十分な通信情報3aを2送目で確実にかつ所定の受信品質で相手局に受信させることができるようにしたものである(受信動作については、上述したとおり。)。
【0027】
また、図4は送信部4に対する連送部9の連続送信の指示が2回連続でなく、2n回(n≧2の場合)の連続送信を指示した場合に形成される本実施形態による移動通信装置の空中線合成覆域の拡大説明図である。図4に示すように、連続送信の繰り返し回数(連続送信の回数と区別する。)を複数回(n≧2の場合)とし、その回数分通信情報3aを送信するようにすれば、さらに同一内容の通信情報3aを何度も送信することになり、相手局13において通信情報3aを受信する確立を大幅に向上させることができる。具体的にnの値をいくらにするかは連続送信の回数及び本発明にかかる移動体通信装置の通信能力(送信能力)により決まるためこれらを考慮して設定する。
【0028】
図4において、同相時における空中線合成覆域(図4中、実線で図示。)の各干渉部は(例えばa1点)、逆相時における空中線合成覆域(図4中、2点鎖線で図示。)において最大利得が得られるように補償され、逆相時における空中線覆域の各干渉部は(例えばb1点)、同相時における空中線合成覆域において最大利得となるように補償されており、相手局13の方向に生じる自局12の放射特性の干渉部は他方の空中線合成覆域によって相互に補償され、自局12の通信情報3aを相手局13の位置に拘わらず放射特性が最大利得の状態で送信させることができる。
【0029】
実施の形態2.
次に、本発明の他の実施形態について説明する。上記実施形態においては連送部9から出力された通信情報3aの出力状況が2回又は2n回(図2及び図3はn=1の場合)の場合について説明したが、本発明の特徴とするところは、いずれかの空中線の給電位相を制御することによって複数種類の空中線合成覆域を形成して各空中線合成覆域の干渉部を他の空中線合成覆域により補償し、かつ、これら各空中線合成覆域毎に送信位相を切換えた同一通信情報による複数の被変調波信号からなる無線信号8を出力させるようにしたところであり、上述したように、自局の通信能力に応じてそれ以上の空中線合成覆域(3つ以上)を形成し、それら空中線合成覆域の数に応じた数の被変調波信号からなる無線信号を送信させるようにしてもよい。
【0030】
図5は送信系1から出力された被変調波信号の連続送信の状況が3n回の場合における空中線合成覆域を示す拡大説明図であり、図5において、a2は1送目におけるアンテナ部6a及び6bの放射特性の干渉部、b2は2送目におけるアンテナ部6a及び6bの放射特性の干渉部、c2は3送目におけるアンテナ部6a及び6bの放射特性の干渉部である。なお、以下の実施形態(実施形態.2及び3)による移動体通信装置の構成については基本的には図1に示すものと同様であり、便宜上、図1に示す移動体通信装置を用いて以下の実施形態.2及び3.についてそれぞれ説明する。
【0031】
本実施形態による移動体通信装置は、送信位相の異なる3種類の被変調波信号からなる無線信号8をn回繰り返して相手局13に対して送信するものであり、送信動作において、連送部9は通信情報3aを送信部4に対して3n回繰り返して出力すると共に、各通信情報の識別のためのステータス信号を併せて出力する。ステータス信号は、1送目、2送目及び3送目とを識別するための信号と上記実施形態と同様に何回繰り返して連続送信されているのかを識別するための信号とから構成される。
【0032】
次に送信部4では、連送部9から出力された同一内容の通信情報3aにより変調した1送目、2送目及び3送目の各被変調信号を分配部5を介して空中線6a及び6bに対して出力し、各被変調波信号は移相部10により切換えられ形成された空中線合成覆域毎に空中線6a及び6bから無線信号8として空間に出力される。ここで、移相部10は、連送部9から出力された通信情報3aの出力状況に基づいて空中線6aの給電位相を切換えており、他方の空中線6bの給電位相に対し1送目は同相、2送目は120°ずれた位相、3送目は240°ずれた位相となるように空中線6aの給電位相を切換えている。なお、n=2の場合には通信情報3aの連続送信を2回繰り返して行なうものであり、上記給電位相の切換えも2回繰り返して行なう。
【0033】
従って、本実施形態による移動体通信装置の空中線合成覆域は、図5に示されるように1送目、2送目及び3送目とでそれぞれ異なる空中線合成覆域が形成され、1送目における放射特性の干渉部は2送目及び3送目における空中線合成覆域により補償され、2送目における放射特性の干渉部は1送目及び3送目における空中線合成覆域により補償され、3送目における放射特性の干渉部は1送目及び2送目における空中線合成覆域により補償されるように空中線合成覆域がそれぞれ形成される(なお、空中線6bの給電位相は1送目及び2送目において可変されないものである。)。
【0034】
そして、図5に示すような空中線合成覆域が形成された移動体通信装置(自局12)においては、通信相手である相手局13が1送目の被変調波信号の送信時における放射特性の干渉部(a2)方向に存在したとしても、2送目又は3送目の被変調波信号の送信時には相手局13が2送目又は3送目における放射特性の最大利得方向に存在することが可能となり、上記実施形態.1において説明したと同様な原理にて自局12から送信された無線信号8が相手局13において確実に受信されることが可能となる。また、本実施形態によれば、上記実施形態に比べて各送における自局の空中線合成覆域の干渉部を利得が高い状態でより幅広に補償することができるので、干渉部分における利得を平均的に高利得とすることができ、通信品質の信頼性をより向上させることができる。
【0035】
なお、本実施形態においても、1送目、2送目及び3送目の無線信号は同一内容の通信情報により変調された被変調信号であり、本発明は同一内容の通信情報による無線信号8を連続して送信させることにより、例えば1送目では相手局にて受信されなかった通信情報を2送目又は3送目において確実に相手局に受信させることができるものである。
【0036】
実施の形態3.
次に、本発明の他の実施形態について図6を用いて説明する。本実施形態は連送部9から通信情報3aを4n回繰り返して出力する、即ち4種類の空中線合成覆域を形成して無線信号8を相手局13に対して送信する移動体通信装置について説明するものである。図6は送信系1から出力された被変調波信号の連続送信の状況が4n回の場合における空中線合成覆域を示す拡大説明図であり、本実施形態による移動体通信装置では、空中線6aの給電位相が後述するように各空中線合成覆域毎に90°づつ切換えらる。
【0037】
図6において、a3は1送目におけるアンテナ部6a及び6bの放射特性の干渉部、b3は2送目におけるアンテナ部6a及び6bの放射特性の干渉部、c3は3送目におけるアンテナ部6a及び6bの放射特性の干渉部、d3は4送目におけるアンテナ部6a及び6bの放射特性の干渉部である。上記実施形態において説明したように、連送部9から出力される通信情報3aの数を増やすことによって移動体通信装置のアンテナ部の放射特性の干渉部による通信の中断はさらに改善することができる。
【0038】
次に本実施形態による移動体通信装置の動作について説明する。なお、基本的には上記実施形態.2同様であり、特徴部分についてのみ説明を行う。本実施形態では、連送部9は通信情報3aを4n回繰り返して送信部4に出力すると共に、各通信情報3aの識別のためのステータス信号を併せて出力する(n=2の場合、通信情報3aが8回連続して送信部4に出力される。送信部4では、連送部9から出力された各通信情報3aにより変調された複数の被変調波信号を分配部5を介して空中線6a及び6bに出力し、各被変調波信号は移相部10により切換えられ形成された空中線合成覆域毎に空中線6a及び6bから無線信号8として空間に出力される。
【0039】
ここで、移相部10は、連送部9から出力された通信情報3aの出力状況に基づいて空中線6aの給電位相を切換えており、他方の空中線6bの給電位相に対し1送目は同相、2送目は90°ずれた位相、3送目は逆相、即ち180°ずれた位相、4送目は270°ずれた位相となるように空中線6aの給電位相を切換えている。なお、n=3の場合には通信情報3aの連続送信を3回繰り返して行なうものであり、上記給電位相の切換えも3回繰り返して行なう。
【0040】
実施の形態4.
次に、本発明の他の実施形態について図7を用いて説明する。本実施形態に係る移動体通信装置は、GPS情報等に基づく自己位置情報及び相手局位置情報とから自局と相手局との相対方位を判別し、この判別された相対方位に基づいて空中線6aに接続された移相部10の位相制御を行うものである。
本実施形態による移動体通信装置によれば、自局と通信相手である相手局との位置を正確に把握でき、自局と相手局との相対方位をも精度良く判別するこができるので、この相対方位に基づいて最適な空中線合成覆域を選択して形成することができ、上記各実施形態による移動体通信装置のように何度も連続送信を繰り返す必要もなく、通信能力、即ち送信容量がそれほど大きくない移動体通信装置においても自局の通信情報3aをより確実に相手局に対して受信させることが可能となり得る。
【0041】
図7は本実施形態による移動体通信装置を示すブロック構成図であり、図7において、16a及び16bは空中線6a及び6bを送信及び受信に共用するために必要なダイプレクサであり、このダイプレクサ16a及び16bにより空中線6a及び6bは送信と受信とが同時にでき、かつ、自局の送信信号が後述するダイバーシチ受信部14に混入することを防止している。具体的には、送信部4から出力され分配部5によって分配出力された自局の通信情報3aによる被変調波信号をアンテナ部である空中線6a及び6bに対してそれぞれ出力し、これらアンテナ部6a及び6bを介して受信した相手局からの無線信号8をダイバーシチ受信部14にそれぞれ出力する。
【0042】
また、14はダイプレクサ16a及び16bを介して受信した例えば2つの相手局からの無線信号をそれぞれ復調し、受信レベル等の比較を行った結果、受信品質が良好な方の無線信号を受信信号として採用し比較部11に出力するダイバーシチ受信部、15はGPS情報のように精度良く自局の位置の把握が可能なGPS情報等から得られた自局の自局位置情報とダイバーシチ受信部14を介して得られた相手局からの相手局位置情報とから自局と通信相手である相手局との相対方位を判別し、この相対方位情報に基づいて自局の放射特性の干渉部が補償されるように移相部10による空中線6aの給電位相の制御を行なう位相制御部である。相手局からの相手局位置情報も自局と同様にGPS情報等に基づいて検出することにより、自局と相手局との位置情報乃至相対方位をより精度良く得ることができる。なお、図中同一符号は同一又は相当部分を示し、これらの詳細な説明については省略する。
【0043】
次に、本実施形態による移動体通信装置の動作、特に位相制御部15による移相部10の位相制御について図8を用いて説明する。なお、図8は図7に示す本実施形態による移動体通信装置により形成されたある空中線合成覆域であって、このある空中線合成覆域に対して相手局が存在する位置(例えばx1乃至x3)を併せて示した拡大説明図である。図7において、位相制御部15はまずGPS情報等に基づく自局の自局位置情報と相手局からの相手局位置情報とから自局と通信相手である相手局との相対方位をより正確にかつ精度良く判別する。次にこの相対方位に基づいて自局のアンテナ部の放射特性の空中線利得が相手局方向において最大利得となるような移相部10の給電位相を移相部10に対して指示する。
【0044】
具体的には、図8に示すように、相手局が自局のある空中線合成利得に対して図8のx1方向の位置にあると相対方位の判別をした場合には、自局の空中線合成覆域の最大利得がx1方向において最大となるように移相部10に対して給電位相の指示を行ない、相手局が自局に対して図8のx2方向の位置にあると相対方位の判別をした場合には、自局の空中線合成覆域の最大利得がx2方向において最大となるように移相部10に対して給電位相の指示を行なう。即ち、現在の空中線6aの給電位相が他方の空中線6bの給電位相と例えば同相の場合で(図8の実線で示す空中線合成覆域は空中線6a及び6bの給電位相が同相のときのものとする。)相手局の位置がx1方向にある場合には、移相部10は空中線6aの給電位相を現在の給電位相からほぼ180°ずれた位相に切換え、相手局の位置がx2方向にある場合には、移相部10は空中線6aの給電位相を現在の給電位相からほぼ120°ずれた位相に切換えるものである。
【0045】
このように、本実施形態による移動体通信装置によれば、自局位置情報と相手局位置情報とをGPS情報に基づいて得ることにより、自局と相手局との相対方位をより精度良く判別することができ、この相対方位に基づいて相手局との相対方位に応じた最適な空中線合成覆域を形成するので、上記実施形態による移動体通信装置とは異なり常に自局と通信相手である相手局との相対方位を正確に認識することができ、相手局の移動状態に拘わらず放射特性の最大利得が常に相手局の位置方向に対して指向するような空中線合成覆域を形成することができる。これにより、送信系1から送信された無線信号8はより通信品質が良い状態で相手局に対して送信される。
【0046】
また、本実施形態による移動体通信装置によれば、自局位置情報と相手局位置情報とを定期的に入手することにより、自局と相手局との正確な相対方位を継続的に認識することができるので、この認識された相対方位に基づいて常に最適な空中線合成覆域だけを形成でき(上記実施形態による移動体通信装置においては、相手局13の位置を自局12側で認識していないので、移相部10により空中線6aの給電位相を制御して複数種類(実施形態.1では2種類、実施形態2.では3種類)の空中線合成覆域を形成させるようにしていた。)、同一内容の通信情報3aを繰り返し送信部4に対して出力しこれら通信情報に基づく複数の被変調波信号を連続送信しなくても、より通信品質が良い状態で自局の通信情報3aを無線信号として相手局側に送信させることができ、通信品質に加えて通信効率がより向上した移動体通信装置を得ることができる。
【0047】
なお、送信容量に余裕を持たせることが可能であれば、大きい送信能力の送信系を構成し、自局から複数の被変調波信号からなる無線信号を相手局に送信させることによって通信品質を向上させることも勿論可能である。
【0048】
実施の形態5.
次に本発明の他の実施形態について図9を用いて説明する。上記各実施形態による本発明にかかる移動体通信装置は、いずれもアンテナ部が2つの空中線により構成されたものであったが、本発明においてアンテナ部を構成する空中線の数は2つに限られたものでない。図9は本実施形態による移動体通信装置を模式的に示した説明図である。図9において、17a乃至17dはその空中線合成覆域が図9に示すような形状となるように本移動体通信装置が搭載される移動体の所定の位置にそれぞれ設けられた本実施形態による移動体通信装置の空中線である。なお、本実施形態による移動体通信装置においては4つの空中線からアンテナ部が構成されるがこれ以上の数の空中線によりアンテナ部を構成してもよい。
【0049】
本実施形態による移動体通信装置によれば、上記各実施形態による移動体通信装置よりもアンテナ部の空中線の数が多いので空中線合成覆域における干渉部の生じる範囲をより小さくすることができる。また、本実施形態による移動体通信装置の場合、移相部10は互いに対向配置された空中線を一対とし、この一対の空中線のいずれかに接続される。例えば図9においては空中線17a及び空中線17b又は空中線17c及び空中線17dに接続される。そして、このように接続された移相部10が上記実施形態による移動体通信装置と同様に連送部9から出力された通信情報3aの出力状況に基づいて接続された空中線、例えば空中線17a又は17cの給電位相の切換えを行なうことにより、本実施形態においても上記各実施形態において説明したように放射特性の干渉部が補償され、同様の効果を奏することができる。
【0050】
【発明の効果】
この発明によれば、複数の空中線からなるアンテナ部の空中線合成覆域の干渉部分における空中線利得を高利得に補償することができ、通信相手である相手局に対して自局の通信情報を確実に送信させることが可能となり、移動体間における通信品質の信頼性を大幅に向上させることができる。
【図面の簡単な説明】
【図1】この発明の一実施形態による移動体通信装置を示すブロック構成図である。
【図2】図1に示す移動体通信装置の送信動作説明図である。
【図3】図1に示す移動体通信装置の空中線合成覆域を説明するための覆域説明図である。
【図4】図1に示す移動体通信装置の空中線合成覆域の拡大説明図である。
【図5】この発明の他の実施形態による移動体通信装置の空中線合成覆域の拡大説明図である。
【図6】この発明の他の実施形態による移動体通信装置の空中線合成覆域の拡大説明図である。
【図7】この発明の他の実施形態による移動体通信装置のブロック構成図である。
【図8】図7に示す移動体通信装置の空中線合成覆域及びこの空中線合成覆域に対する相手局の位置を示す拡大説明図である。
【図9】この発明の他の実施形態による移動体通信装置の空中線合成覆域を示す覆域説明図である。
【図10】従来の移動体通信装置のブロック構成図である。
【図11】従来の移動体通信装置の空中線合成覆域を説明するための覆域説明図である。
【符号の説明】
3a、3b 通信情報
4 送信部
5 分配部
6a、6b、6c、17a、17b、17c、17d 空中線
7 受信部
9 連送部
10 移相部
12 自局
13 相手局
15 位相制御部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mobile communication device mounted on a mobile object and used for communication between the mobile objects.
[0002]
[Prior art]
Generally, in communication between mobile units, not only the own station but also the position of the other station change with time, so that it is extremely difficult to direct the antenna of the own station toward the other station as the communication partner. Further, in the case of using an omnidirectional antenna, communication information can be transmitted regardless of whether it is in the direction of the partner station or not, but high transmission power is required to transmit the communication information to a distant communication partner. FIG. 10 is a block diagram showing a transmission system of a conventional mobile communication device. In general, in a conventional mobile communication device, a communication area is accurately obtained by securing a coverage area (also referred to as an antenna gain). A communication device provided with two or more antennas in a transmission system has been used in order to transmit data to a communication system.
[0003]
However, in the conventional mobile communication device using two or more antennas for the transmission system, these antenna combined coverage areas are formed as shown in FIG. 11, and if the position of the partner station is set to the direction of the interference part of these antenna combined gains In such a case, there is a case where the antenna gain in the direction of the interference unit is not sufficient, and the communication information cannot be sufficiently transmitted to the partner station located in the direction of the interference unit and far away. .
[0004]
Japanese Patent Application Laid-Open No. 55-132105 discloses a device for a mobile radio system including two antennas, which can obtain a radiation characteristic free from a zero position (so-called interference part) that causes a communication connection interruption. It is described that an electronically controlled phase shifter is provided on a feed line of an antenna to shift the feed phases supplied to the two antennas so as to fluctuate between the opposite phase and the same phase. The antenna controls the feed phase of the antenna so that the communication connection is not interrupted on the transmitting side, and the antenna gain on the transmitting side has the characteristics described above even if the radiation characteristics on the receiving side are improved. In this case, the communication information from the transmission side is not sufficiently transmitted to the reception side, and stable communication between mobile units cannot be secured.
[0005]
There is another method for improving the combined gain characteristic of an antenna described in Japanese Patent Application Laid-Open No. 55-63102. However, any of them is to improve the antenna gain on the receiving side. No suggestion.
[0006]
[Patent Document 1]
JP-A-55-132105 (page 2, FIG. 1 to FIG. 3)
[0007]
[Patent Document 2]
JP-A-55-63102 (pages 1 to 2, FIGS. 1 and 2)
[0008]
[Problems to be solved by the invention]
As described above, in the conventional mobile communication device, not only the own station but also the position of the other station, which is the communication partner, changes irregularly, so that the relative azimuth between the own station and the other station constantly changes, and It was difficult to stably transmit the communication information to the other station. Even if the radiation characteristics of the receiving side have been improved, if the antenna gain of the transmitting side has the above-described characteristics, communication information from the transmitting side is sufficiently transmitted to the receiving side depending on the position of the partner station. In order to secure stable communication between mobile units, it was necessary to improve the antenna gain on the transmitting side.
[0009]
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and has a novel structure in which communication information from the own station can be more reliably transmitted regardless of the position of the partner station in communication between the moving objects. An object is to obtain a communication device.
[0010]
[Means for Solving the Problems]
The mobile communication device according to the first aspect of the present invention is mounted on its own mobile body, and outputs a modulated wave signal modulated by communication information to be transmitted to a moving partner station. A distribution unit that distributes the modulated wave signal output from the unit, and forms an antenna synthesis coverage area according to a power supply phase of the distributed output that is distributed, from a plurality of antennas that output the modulated wave signal to space. The communication unit outputs the communication information repeatedly for a predetermined number of times according to the communication quality required between the moving antenna and the configured antenna unit, and outputs the same communication information as many times as the output number. A communication unit that switches a power supply phase of the antenna in accordance with the number of times of output of communication information of the same content output from the communication unit, and changes a direction of an interference unit generated in the antenna combined coverage to the communication of the same content. Different for each output of information It is obtained by a phase shift unit for switching the direction.
A mobile communication device characterized by the above-mentioned.
[0011]
According to a second aspect of the present invention, in the mobile communication device, a plurality of modulated wave signals based on the same communication information are repeatedly output a plurality of times from the antenna unit.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1 is a block diagram showing a mobile communication device according to an embodiment of the present invention. FIG. 1 shows a transmission system 1 having an antenna unit composed of two antennas and a reception system 2 having an antenna unit composed of one antenna. It is composed of In the mobile communication device according to the present embodiment, separate antenna units are provided for the transmission system 1 and the reception system 2, respectively. However, the antenna unit of the transmission system 1 is shared as the antenna unit of the reception system 2. You may. In this case, the receiving system 2 can provide diversity reception by providing a diversity receiving unit (described in another embodiment).
[0013]
In FIG. 1, 1 is a transmission system, 2 is a reception system, 3a is communication information to be transmitted to a partner station as a communication partner, 3b is communication information from the partner station received by the reception system 2, and 4 is generated in advance. The transmission unit 5 that gives a constant change according to the communication information 3a to the high-frequency signal (hereinafter, referred to as a carrier wave), that is, performs a modulation operation and outputs the carrier signal, is modulated by the communication information 3a into a desired format. (Hereinafter referred to as “modulated wave signal”) are distributed to a plurality of antennas 6 a and 6 b connected via a feeder line, and the distribution units 6 a and 6 b are output by the transmission unit 4 and distributed and output by the distribution unit 5. This is an antenna of a transmission system that outputs a modulated wave signal to space. (In the present embodiment, the antenna unit is configured by two antennas 6a and 6b, but the antenna unit may be configured by three or more antennas. .).
[0014]
Reference numeral 6c denotes an antenna serving as an antenna unit of the receiving system 2, and 7 denotes a radio signal 8 received from the partner station via the antenna 6c, which is converted into an intermediate frequency by using a frequency converter or the like. And a demodulation operation that is the reverse operation of the modulation operation performed in step S1 to obtain communication information that is information transmitted from the partner station. Note that the modulation method of the transmitting unit 4 is not limited to a specific method. If the communication information 3a to be transmitted is an analog signal, amplitude modulation, frequency modulation, phase modulation, or the like is used. Alternatively, in the case of a data signal or the like, a modulation operation using phase shift keying, frequency shift keying, or the like is performed. The demodulation method of the receiving unit 7 selects and uses a method corresponding to the modulation method of the communication partner station.
[0015]
Here, each of 9 and 10 is a configuration of a characteristic portion of the present invention, and 9 is to cause the transmitting section 4 to repeatedly output the communication information 3a a predetermined number of times and to output the communication information 3a to each communication information 3a. The transmission unit 10, which is output together with the signal, is connected between the distribution unit 5 and one of the plurality of antennas (in the present embodiment, connected to the antenna 6 a) and connected. The phase shift unit controls the transmission phase of the modulated wave signal output from the antenna 6a to the space to a desired phase according to the output state of the communication information 3a output from the continuous transmission unit 9.
[0016]
As will be described later, the number of times of output of the communication information 3a is determined by how to compensate for the interference portion of the antenna combined coverage, so that the radiation characteristic is maximized in the lowest gain direction of the interference portion. In such a case, the communication information 3a may be output only twice, and if it is desired to compensate for the maximum gain in the entire range of the interference unit, the communication information 3a is output three or more times (the number of times of output is large). The higher the gain, the higher the gain characteristics over the entire range of the interference part.) Further, as described in another embodiment, in a case where communication information is continuously transmitted (for example, 2n times, 3n times, n = positive integer), the communication of the mobile communication device to which the present invention is applied. The number of outputs is determined in consideration of the capability (transmission capability). Details will be described later.
[0017]
Then, the phase shift unit 10 switches the power supply phase of the connected antenna 6a at a predetermined timing based on the output state of the communication information 3a output from the continuous transmission unit 9, so that a desired antenna combined coverage is formed. Set the feed phase to. For example, when it is determined that the output status output from the continuous transmission unit 9 is 2n times (n is a positive integer), the phase shift unit 10 determines the power supply phase of the connected antenna 6a according to the output timing of the modulated wave signal. 180 °, phase control is performed to alternately repeat the same phase and the opposite phase n times with respect to the feeding phase of the other antenna (the antenna 6b in the present embodiment), and if it is determined that 3n times, the connected antenna 6a Is switched by 120 ° in accordance with the output timing of the modulated wave signal, and the power supply phase of the other antenna (in this embodiment, the antenna 6b) is shifted in phase by 120 ° and shifted by 240 ° to n. The phase is controlled so as to be repeated twice.
[0018]
Numeral 11 denotes a comparison unit provided in the reception system 2, which compares the reception quality of the radio signal 8 demodulated by the reception unit 7 and determines that the reception quality has been determined to be the best as communication information transmitted from the partner station. 3b. Since the radio signal 8 is composed of a modulated wave signal modulated by the communication information output from the continuous transmission unit 9, the continuous transmission unit 9 of the transmission system 1 repeatedly outputs the same communication information twice. In this case, the radio signal 8 is composed of two modulated wave signals, and when it is set to be repeatedly output three times, the radio signal 8 is composed of three modulated wave signals. The receiving system 2 selects the communication information having the highest reception quality as the communication information 3b as a result of the comparison.
[0019]
Next, the operation of the mobile communication device according to the present embodiment, particularly the transmission operation, will be described in detail with reference to FIGS. FIG. 2 is a partial explanatory view of the mobile communication device shown in FIG. 1, in which the phase shifter 10 switches the power supply phase of the antenna 6a based on the output status of the communication information 3a output from the continuous transmitter 9. 3 shows the transmission phase of the wireless signal 8 at. In this embodiment, the communication information 3a is output twice consecutively from the continuous transmission unit 9, and the radio signal 8 transmitted from the antennas 6a to 6b to the partner station is the first modulated wave signal. And the second transmission modulated wave signal. For convenience, the radio signal output from the antenna 6a is distinguished from 8a, the radio signal transmitted from the antenna 6b is distinguished from 8b, and the first modulated wave signal is represented by 8a1 and 8b1, and the second modulated wave signal is represented by 8a1 and 8b1. 8a2 and 8b2.
[0020]
FIG. 3 shows the mobile communication apparatus according to the present embodiment shown in FIG. 1 as the own station 12, and the antenna combined coverage of the own station 12 (or the antenna combined gain; hereinafter, referred to as the antenna combined coverage) and the other party that is the communication partner. FIG. 4 is an explanatory diagram of a coverage area showing a relative positional relationship with a station 13. In FIG. 3, the upper part shows the antenna combining coverage of the own station 12 when the first modulated wave signals 8a1 and 8b1 of the wireless signal 8 are output, and the lower part shows the second transmission output after the first transmission. 2 shows the antenna combined coverage of the own station 12 when the modulated wave signals 8a2 and 8b2 are output. It is assumed that the partner station 13 hardly moves between the output of the modulated wave signal of the first transmission and the output of the modulated wave signal of the second transmission, and its position hardly changes.
[0021]
First, in the transmission operation, the continuous transmission unit 9 outputs communication information 3a for a predetermined continuous transmission to the transmission unit 4, and also outputs a status signal for identifying each communication information 3a. This status signal may be added as a flag to the head of each piece of communication information 3a. In the present embodiment, as shown in FIG. 2, the communication information 3a having the same content is transmitted to the partner station 13 twice consecutively. In the case of 2n continuous transmissions, where n = 1 The transmission of the communication information 3a of FIG. Therefore, it is not necessary to distinguish the number of continuous transmissions, and a status signal for identifying the first transmission and the second transmission is added to the first and second communication information 3a and output. The mobile communication device of the present embodiment switches the power supply phase of the antenna 6a to which the phase shift unit 10 is connected, based on the status signal output from the continuous transmission unit 9.
[0022]
Next, the transmitting unit 4 converts the two modulated signals having the same contents modulated by the first and second communication information 3a continuously output from the continuous transmitting unit 9 into the first modulated signal and the first modulated signal. The signal is continuously output to the distribution unit 5 as a second modulated signal. The distribution unit 5 distributes and outputs each modulated signal output from the transmission unit 4 to each of the antennas 6a and 6b, which are antenna units, and transmits the first and second transmission signals output from the transmission unit 4. The modulated signal of the eye is distributed and output by the distributor 5 to the antennas 6a and 6b, respectively.
[0023]
Here, the antenna 6a is connected to the phase shift unit 10 that controls the phase of the power supply phase based on the output state of the communication division 3a output from the continuous transmission unit 9 as described above. The phase is switched by 180 ° between the first transmission and the second transmission by the phase control of the phase shift unit 10 based on the status signal output from the continuous transmission unit 9. That is, the phase shift unit 10 detects or monitors the status signal for identifying the first transmission and the second transmission output together with the communication information 3a output from the continuous transmission unit 9, and detects the status signal. For example, if it is determined that the communication data 3a of the first transmission is output, the power supply phase of the antenna 6a is controlled to the same phase as the other antenna 6b at a predetermined timing, and the second transmission information is transmitted following the communication information 3b of the first transmission. If it is determined that the communication information 3a has been output, the power supply phase of the antenna 6a is controlled at a predetermined timing to a phase opposite to that of the other antenna 6b, that is, a phase shifted by 180 ° from the power supply phase of the first transmission.
[0024]
The switching of the power supply phase is not limited by the order, and the first transmission may be switched so as to be in the same phase and the second transmission may be switched in the opposite phase.
[0025]
As described above, according to the mobile communication device according to the present embodiment, the antenna combined coverage is at the time of outputting the first modulated wave signal (8a1 and 8b1) and the second modulated wave signal (8a2 and 8b2). 3), the power supply phase is switched between when the radio signal is output and when the radio signal 8 is transmitted, two types of different antenna synthesis coverage areas are formed as shown in FIG. The interference part of the characteristic is compensated by the radio signal of the second transmission, and the interference part of the radiation characteristic of the radio signal of the second transmission is compensated by the radio signal of the first transmission. Therefore, as shown in the upper part of FIG. Even if the position of a certain partner station 13 exists in the direction of the interference part of the radiation characteristic at the time of transmitting the first transmission of the radio signals 8a1 and 8b1, the partner station 13 will be at the position of FIG. Two transmissions as shown in the lower section Of it becomes possible to present to the maximum gain direction of the antenna synthetic covering area, radio signal 8 transmitted from the local station 12 is capable of being received securely in the other station 13.
[0026]
What is important here is that the modulated wave signals of the first transmission and the second transmission are respectively modulated by the communication information 3a having the same contents. In other words, the present invention not only makes the radiation characteristics variable by controlling the phase of the feed phase in any one of a plurality of antennas so as to differ from the feed phase in the other antennas by a predetermined amount, but also achieves communication of the same content. By continuously transmitting a plurality of modulated wave signals based on the information 3a, for example, communication information 3a that is not received by the partner station in the first transmission or has insufficient reception quality even if received is transmitted in the second transmission. The receiving station can receive the received signal reliably and with a predetermined reception quality (the receiving operation is as described above).
[0027]
FIG. 4 shows the movement according to the present embodiment, which is formed when the continuous transmission instruction of the continuous transmission unit 9 to the transmission unit 4 is not continuous twice but instructs 2n continuous transmissions (when n ≧ 2). FIG. 3 is an enlarged explanatory diagram of an antenna combining coverage area of the communication device. As shown in FIG. 4, if the number of repetitions of continuous transmission (which is distinguished from the number of continuous transmissions) is set to a plurality of times (when n ≧ 2) and the communication information 3a is transmitted for the number of times, the same is achieved. Since the communication information 3a having the content is transmitted many times, the probability of receiving the communication information 3a at the partner station 13 can be greatly improved. Specifically, the value of n is determined by the number of continuous transmissions and the communication capability (transmission capability) of the mobile communication device according to the present invention, and is set in consideration of these.
[0028]
In FIG. 4, each interference part (for example, point a1) of the antenna combined coverage (indicated by a solid line in FIG. 4) at the time of the in-phase is the antenna combined coverage at the time of the opposite phase (shown by a two-dot chain line in FIG. 4). Is compensated so that the maximum gain is obtained, and each interference part of the antenna coverage area at the time of the opposite phase (for example, point b1) is compensated so as to have the maximum gain at the antenna synthesis coverage at the time of the in-phase. Interference portions of the radiation characteristics of the own station 12 that occur in the direction of the partner station 13 are mutually compensated by the other antenna combining coverage, and the communication characteristics 3a of the own station 12 have the maximum gain regardless of the position of the partner station 13. It can be transmitted in the state of.
[0029]
Embodiment 2 FIG.
Next, another embodiment of the present invention will be described. In the above-described embodiment, the case where the output status of the communication information 3a output from the continuous transmission unit 9 is twice or 2n times (in FIGS. 2 and 3 when n = 1) is described. That is, a plurality of types of antenna combined coverage areas are formed by controlling the feed phase of any one of the antennas, and the interference portion of each antenna combined coverage area is compensated by another antenna combined coverage area, and each of these antenna combined coverage areas is compensated for. This is to output a radio signal 8 composed of a plurality of modulated wave signals based on the same communication information whose transmission phase is switched for each antenna synthesis coverage area. May be formed so as to transmit a radio signal composed of a number of modulated wave signals corresponding to the number of the antenna combined coverages.
[0030]
FIG. 5 is an enlarged explanatory view showing the antenna synthesis coverage when the number of continuous transmissions of the modulated wave signal output from the transmission system 1 is 3n times. In FIG. 5, a2 denotes the antenna unit 6a in the first transmission. 6b, an interference portion of the radiation characteristics of the antenna portions 6a and 6b in the second transmission, and c2 is an interference portion of the radiation characteristics of the antenna portions 6a and 6b in the third transmission. The configuration of the mobile communication device according to the following embodiments (Embodiments 2 and 3) is basically the same as that shown in FIG. 1, and for convenience, the mobile communication device shown in FIG. The following embodiment. 2 and 3. Will be described.
[0031]
The mobile communication device according to the present embodiment repeats the radio signal 8 composed of three types of modulated wave signals having different transmission phases n times and transmits the same to the partner station 13. Reference numeral 9 repeatedly outputs the communication information 3a to the transmission unit 3 3n times, and also outputs a status signal for identifying each communication information. The status signal is composed of a signal for identifying the first transmission, the second transmission, and the third transmission, and a signal for identifying the number of times of continuous transmission similarly to the above embodiment. .
[0032]
Next, in the transmitting unit 4, the modulated signals of the first transmission, the second transmission, and the third transmission modulated by the communication information 3 a of the same content output from the continuous transmission unit 9 are transmitted via the distribution unit 5 to the antenna 6 a and the antenna 6 a. The modulated wave signals are output to the antenna 6a and 6b from the antennas 6a and 6b as radio signals 8 for each antenna combined coverage area formed by switching by the phase shift unit 10. Here, the phase shift unit 10 switches the power supply phase of the antenna 6a based on the output status of the communication information 3a output from the continuous transmission unit 9, and the first transmission is in phase with the power supply phase of the other antenna 6b. The feeding phase of the antenna 6a is switched so that the second transmission has a phase shifted by 120 ° and the third transmission has a phase shifted by 240 °. When n = 2, the continuous transmission of the communication information 3a is repeated twice, and the switching of the power supply phase is also repeated twice.
[0033]
Therefore, as shown in FIG. 5, in the antenna combining coverage of the mobile communication device according to the present embodiment, different antenna combining coverages are formed for the first transmission, the second transmission, and the third transmission, respectively. The interference part of the radiation characteristic in the second transmission is compensated by the antenna combined coverage in the second transmission and the third transmission, and the interference part of the radiation characteristic in the second transmission is compensated by the antenna combined coverage in the first transmission and the third transmission. The antenna synthesis coverage is formed such that the interference part of the radiation characteristic in the transmission is compensated by the antenna synthesis coverage in the first transmission and the second transmission (the feeding phase of the antenna 6b is the first transmission and the second transmission, respectively). It is not changed in the transmission.)
[0034]
Then, in the mobile communication device (own station 12) having an antenna synthesis coverage area as shown in FIG. 5, the other party 13 as a communication partner has a radiation characteristic at the time of transmitting the first modulated wave signal. The other station 13 exists in the direction of the maximum gain of the radiation characteristic in the second or third transmission at the time of transmitting the second or third modulated wave signal even if it is present in the direction of the interference part (a2). Is possible, and the above embodiment. The wireless signal 8 transmitted from the own station 12 can be reliably received by the partner station 13 on the same principle as described in 1. Further, according to the present embodiment, the interference part of the antenna combined coverage of the own station in each transmission can be broadly compensated in a state where the gain is high as compared with the above-described embodiment. Therefore, it is possible to achieve a high gain, and it is possible to further improve the reliability of communication quality.
[0035]
Also in the present embodiment, the first, second, and third transmission wireless signals are modulated signals modulated by the same content of communication information. Are continuously transmitted, for example, communication information that was not received by the partner station in the first transmission can be reliably received by the partner station in the second or third transmission.
[0036]
Embodiment 3 FIG.
Next, another embodiment of the present invention will be described with reference to FIG. This embodiment describes a mobile communication device that repeatedly outputs communication information 3a 4n times from the continuous transmission unit 9, that is, forms four types of antenna combined coverage and transmits a radio signal 8 to a partner station 13. Is what you do. FIG. 6 is an enlarged explanatory diagram showing the antenna synthesis coverage when the number of continuous transmissions of the modulated wave signal output from the transmission system 1 is 4n. In the mobile communication device according to the present embodiment, the antenna 6a The power supply phase is switched by 90 ° for each antenna combined coverage as described later.
[0037]
In FIG. 6, a3 is an interference portion of the radiation characteristics of the antenna portions 6a and 6b in the first transmission, b3 is an interference portion of the radiation characteristics of the antenna portions 6a and 6b in the second transmission, and c3 is the antenna portion 6a and 6b of the third transmission. An interference portion 6b of the radiation characteristic of the antenna 6b, and d3 is an interference portion of the radiation characteristic of the antenna portions 6a and 6b at the fourth transmission. As described in the above embodiment, by increasing the number of pieces of communication information 3a output from the continuous transmission unit 9, the interruption of communication by the interference unit of the radiation characteristic of the antenna unit of the mobile communication device can be further improved. .
[0038]
Next, the operation of the mobile communication device according to the present embodiment will be described. In addition, basically, the above-mentioned embodiment. 2 is the same, and only the characteristic portion will be described. In the present embodiment, the continuous transmission unit 9 repeats the communication information 3a 4n times and outputs the communication information 3a to the transmission unit 4 and also outputs a status signal for identifying the communication information 3a (in the case of n = 2, the communication The information 3a is output eight consecutive times to the transmission unit 4. In the transmission unit 4, the plurality of modulated wave signals modulated by the communication information 3a output from the continuous transmission unit 9 are transmitted via the distribution unit 5. The modulated signals are output to the antennas 6a and 6b, and each modulated wave signal is output to the space as a radio signal 8 from the antennas 6a and 6b for each of the antenna combined coverages formed by switching by the phase shift unit 10.
[0039]
Here, the phase shift unit 10 switches the power supply phase of the antenna 6a based on the output status of the communication information 3a output from the continuous transmission unit 9, and the first transmission is in phase with the power supply phase of the other antenna 6b. The second transmission has a phase shifted by 90 °, the third transmission has an opposite phase, that is, a phase shifted by 180 °, and the fourth transmission has a switching phase of the antenna 6a so as to have a phase shifted by 270 °. When n = 3, continuous transmission of the communication information 3a is repeated three times, and the switching of the power supply phase is also repeated three times.
[0040]
Embodiment 4 FIG.
Next, another embodiment of the present invention will be described with reference to FIG. The mobile communication device according to the present embodiment determines the relative azimuth between the own station and the other station from the self-position information based on the GPS information and the like and the other station position information, and based on the determined relative azimuth, the antenna 6a. To control the phase of the phase shift unit 10 connected to the power supply.
According to the mobile communication device according to the present embodiment, the position of the own station and the partner station that is the communication partner can be accurately grasped, and the relative azimuth between the own station and the partner station can also be accurately determined. An optimal antenna synthesis coverage can be selected and formed based on the relative orientation, and it is not necessary to repeat continuous transmission many times as in the mobile communication device according to each of the above embodiments, and the communication capability, that is, the transmission capability Even in a mobile communication device having a not so large capacity, it may be possible to more reliably make the other station receive the communication information 3a of the own station.
[0041]
FIG. 7 is a block diagram showing a mobile communication device according to the present embodiment. In FIG. 7, reference numerals 16a and 16b denote diplexers necessary for sharing antennas 6a and 6b for transmission and reception. The antennas 16a and 6b can transmit and receive at the same time by the antenna 16b, and also prevent the transmission signal of the own station from being mixed into the diversity receiver 14 described later. More specifically, a modulated wave signal based on the communication information 3a of the own station output from the transmission unit 4 and distributed and output by the distribution unit 5 is output to antennas 6a and 6b, which are antenna units, respectively. And a wireless signal 8 received from the other station via the communication station 6b to the diversity receiver 14.
[0042]
The demodulator 14 demodulates, for example, radio signals from, for example, two partner stations received via the diplexers 16a and 16b, and performs a comparison of the reception level and the like. As a result, the radio signal with the better reception quality is used as the reception signal. The diversity receiving unit 15 that adopts and outputs to the comparing unit 11, the diversity receiving unit 14 and the own station position information of the own station obtained from GPS information or the like that can grasp the position of the own station with high accuracy like GPS information. The relative azimuth between the own station and the other station, which is the communication partner, is determined from the other station position information from the other station obtained via the other station, and the interference part of the radiation characteristic of the own station is compensated based on the relative azimuth information. The phase control unit controls the power supply phase of the antenna 6a by the phase shift unit 10 as described above. By detecting the location information of the partner station from the partner station based on the GPS information and the like in the same manner as the own station, it is possible to more accurately obtain the positional information or the relative bearing between the own station and the partner station. The same reference numerals in the drawings denote the same or corresponding parts, and a detailed description thereof will be omitted.
[0043]
Next, the operation of the mobile communication device according to the present embodiment, in particular, the phase control of the phase shift unit 10 by the phase control unit 15 will be described with reference to FIG. FIG. 8 shows a certain antenna combining area formed by the mobile communication device according to the present embodiment shown in FIG. 7, and a position (for example, x1 to x3) where the partner station exists with respect to the certain antenna combining area. FIG. In FIG. 7, first, the phase control unit 15 more accurately determines the relative azimuth between the own station and the other station as a communication partner from the own station position information based on the GPS information and the like and the other station position information from the other station. And it is determined with high accuracy. Next, based on the relative direction, the feeding phase of the phase shift unit 10 is instructed to the phase shift unit 10 so that the antenna gain of the radiation characteristic of the antenna unit of the own station becomes the maximum gain in the direction of the partner station.
[0044]
Specifically, as shown in FIG. 8, if the relative station determines that the relative station is located at the position x1 in FIG. 8 with respect to a certain antenna combined gain of the own station, the antenna combining of the own station is performed. The power supply phase is instructed to the phase shift unit 10 so that the maximum gain of the covered area becomes the maximum in the x1 direction. When the partner station is located in the x2 direction of FIG. In this case, the power supply phase is instructed to the phase shift unit 10 so that the maximum gain of the antenna combined coverage of the own station becomes maximum in the x2 direction. That is, the current power supply phase of the antenna 6a is, for example, in phase with the power supply phase of the other antenna 6b (the combined antenna coverage area indicated by the solid line in FIG. 8 is that when the power supply phases of the antennas 6a and 6b are in phase. .)) When the position of the partner station is in the x1 direction, the phase shifter 10 switches the power supply phase of the antenna 6a to a phase shifted by approximately 180 ° from the current power supply phase, and when the position of the partner station is in the x2 direction. In the first embodiment, the phase shifter 10 switches the power supply phase of the antenna 6a to a phase shifted from the current power supply phase by approximately 120 °.
[0045]
As described above, according to the mobile communication device according to the present embodiment, the relative azimuth between the own station and the other station can be more accurately determined by obtaining the own station position information and the other station position information based on the GPS information. It is possible to form an optimum antenna synthesis coverage area according to the relative direction with the partner station based on the relative direction. Therefore, unlike the mobile communication device according to the above-described embodiment, the mobile station always communicates with its own station. To form an antenna combined coverage area that can accurately recognize the relative bearing with the partner station and that the maximum gain of the radiation characteristic always points toward the position direction of the partner station regardless of the moving state of the partner station. Can be. Thereby, the radio signal 8 transmitted from the transmission system 1 is transmitted to the partner station with better communication quality.
[0046]
Further, according to the mobile communication device according to the present embodiment, the relative position between the own station and the other station is continuously recognized by regularly obtaining the own station position information and the other station position information. Therefore, it is possible to always form only the optimum antenna synthesis coverage area based on the recognized relative orientation (in the mobile communication device according to the above-described embodiment, the position of the partner station 13 is recognized on the local station 12 side). Therefore, a plurality of types (two types in the first embodiment and three types in the second embodiment) are formed by controlling the feeding phase of the antenna 6a by the phase shift unit 10. ), The communication information 3a of its own station can be maintained in a better communication quality without repeatedly outputting the same communication information 3a to the transmitting unit 4 and continuously transmitting a plurality of modulated wave signals based on the communication information. As a wireless signal Can be sent to the station side, it is possible to communicate efficiently in addition to the communication quality obtain mobile communication apparatus that has improved.
[0047]
If it is possible to provide a sufficient transmission capacity, a transmission system having a large transmission capacity is formed, and the communication quality is improved by transmitting a radio signal including a plurality of modulated wave signals from the own station to the other station. It is of course possible to improve it.
[0048]
Embodiment 5 FIG.
Next, another embodiment of the present invention will be described with reference to FIG. In each of the mobile communication devices according to the present invention according to the above embodiments, the antenna unit is configured by two antennas. However, in the present invention, the number of antennas configuring the antenna unit is limited to two. Not something. FIG. 9 is an explanatory diagram schematically showing the mobile communication device according to the present embodiment. In FIG. 9, reference numerals 17a to 17d denote movements according to the present embodiment provided at predetermined positions of a mobile body on which the mobile communication device is mounted so that the combined antenna coverage area has a shape as shown in FIG. Antenna of the body communication device. In the mobile communication device according to the present embodiment, the antenna unit is configured by four antennas, but the antenna unit may be configured by more antennas.
[0049]
According to the mobile communication device according to the present embodiment, the number of antennas of the antenna unit is larger than that of the mobile communication device according to each of the above embodiments, so that the range in which the interference unit occurs in the antenna combined coverage area can be made smaller. Further, in the case of the mobile communication device according to the present embodiment, the phase shift unit 10 includes a pair of antennas arranged to face each other, and is connected to one of the pair of antennas. For example, in FIG. 9, it is connected to the antenna 17a and the antenna 17b or the antenna 17c and the antenna 17d. The phase shifter 10 connected in this way is connected based on the output status of the communication information 3a output from the communication unit 9 in the same manner as the mobile communication device according to the above-described embodiment, for example, the antenna 17a or the antenna 17a. By switching the power supply phase at 17c, the interference part of the radiation characteristic is also compensated in this embodiment as described in each of the above embodiments, and the same effect can be obtained.
[0050]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the antenna gain in the interference part of the antenna combined coverage area of the antenna part consisting of a plurality of antennas can be compensated for at a high gain, and the communication information of the own station can be reliably transmitted to the communication partner. , And the reliability of communication quality between mobile units can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a mobile communication device according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a transmission operation of the mobile communication device shown in FIG.
FIG. 3 is a coverage explanatory diagram for explaining an antenna combining coverage of the mobile communication device shown in FIG. 1;
FIG. 4 is an enlarged explanatory diagram of an antenna combining coverage area of the mobile communication device shown in FIG. 1;
FIG. 5 is an enlarged explanatory view of an antenna combining coverage area of a mobile communication device according to another embodiment of the present invention.
FIG. 6 is an enlarged explanatory view of an antenna combining coverage area of a mobile communication device according to another embodiment of the present invention.
FIG. 7 is a block diagram of a mobile communication device according to another embodiment of the present invention.
8 is an enlarged explanatory diagram showing an antenna combining coverage area of the mobile communication device shown in FIG. 7 and a position of a partner station with respect to the antenna combining coverage area.
FIG. 9 is a coverage explanatory diagram showing an antenna combining coverage of a mobile communication device according to another embodiment of the present invention.
FIG. 10 is a block diagram of a conventional mobile communication device.
FIG. 11 is a coverage explanatory diagram for explaining an antenna combining coverage of a conventional mobile communication device.
[Explanation of symbols]
3a, 3b Communication information
4 Transmission section
5 Distribution unit
6a, 6b, 6c, 17a, 17b, 17c, 17d Antenna
7 Receiver
9 Continuous feeder
10 Phase shift section
12 own station
13 partner station
15 Phase control unit

Claims (2)

自己の移動体に搭載され、移動する相手局に対して送信する通信情報により変調を施した被変調波信号を出力する送信部と、この送信部から出力された被変調波信号を分配する分配部と、その分配された分配出力の給電位相に応じて空中線合成覆域を形成し、前記被変調波信号を空間に出力する複数の空中線より構成されるアンテナ部と、前記通信情報を前記移動する相手局との間に要求される通信品質に応じて予め定められた回数繰り返して出力し、その出力回数だけ同一内容の通信情報を出力する連送部と、この連送部から出力された同一内容の通信情報の出力回数に対応して前記空中線の給電位相を切換え、前記空中線合成覆域に生じる干渉部の方向を前記同一内容の通信情報の出力毎に異なる方向に切換える移相部とを備えたことを特徴とする移動体通信装置。A transmitting unit mounted on its own mobile unit and outputting a modulated wave signal modulated by communication information transmitted to a moving partner station, and a distribution unit for distributing the modulated wave signal output from the transmitting unit Unit, an antenna unit formed of a plurality of antennas that form an antenna synthesis coverage area in accordance with the power supply phase of the distributed output that is distributed, and output the modulated wave signal to space, and the moving the communication information. A repeater that repeatedly outputs a predetermined number of times in accordance with the communication quality required between the transmitting and receiving stations, and outputs communication information having the same content as many times as the number of outputs. A phase shifting unit that switches a feeding phase of the antenna in accordance with the number of times of output of communication information of the same content, and switches a direction of an interference unit generated in the antenna combined coverage to a different direction for each output of the communication information of the same content. That you have Mobile communication device according to symptoms. 前記同一内容の通信情報による複数の被変調波信号を複数回繰り返して前記アンテナ部から出力するようにしたことを特徴とする請求項1記載の移動体通信装置。2. The mobile communication device according to claim 1, wherein the plurality of modulated wave signals based on the same communication information are repeatedly output a plurality of times from the antenna unit.
JP2003191112A 2003-07-03 2003-07-03 Mobile communication device Expired - Fee Related JP3747922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003191112A JP3747922B2 (en) 2003-07-03 2003-07-03 Mobile communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003191112A JP3747922B2 (en) 2003-07-03 2003-07-03 Mobile communication device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP06635098A Division JP3482864B2 (en) 1998-03-17 1998-03-17 Mobile communication device

Publications (2)

Publication Number Publication Date
JP2004048754A true JP2004048754A (en) 2004-02-12
JP3747922B2 JP3747922B2 (en) 2006-02-22

Family

ID=31712484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003191112A Expired - Fee Related JP3747922B2 (en) 2003-07-03 2003-07-03 Mobile communication device

Country Status (1)

Country Link
JP (1) JP3747922B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063615A1 (en) * 2007-11-12 2009-05-22 Panasonic Corporation Wireless communication control device
JP2010530657A (en) * 2007-05-25 2010-09-09 ラムバス・インコーポレーテッド Multi-antenna beamforming system for transmitting constant envelope signals decomposed from variable envelope signals
WO2023054569A1 (en) * 2021-09-30 2023-04-06 ソフトバンク株式会社 Antenna device, system, communication device, and program
JP7257564B1 (en) 2022-02-04 2023-04-13 ソフトバンク株式会社 Antenna device, system, communication device, and program
JP7257477B1 (en) 2021-09-30 2023-04-13 ソフトバンク株式会社 Antenna device, system, communication device, and program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530657A (en) * 2007-05-25 2010-09-09 ラムバス・インコーポレーテッド Multi-antenna beamforming system for transmitting constant envelope signals decomposed from variable envelope signals
WO2009063615A1 (en) * 2007-11-12 2009-05-22 Panasonic Corporation Wireless communication control device
US8600306B2 (en) 2007-11-12 2013-12-03 Panasonic Corporation Wireless communication control device
WO2023054569A1 (en) * 2021-09-30 2023-04-06 ソフトバンク株式会社 Antenna device, system, communication device, and program
JP7257477B1 (en) 2021-09-30 2023-04-13 ソフトバンク株式会社 Antenna device, system, communication device, and program
JP2023057184A (en) * 2021-09-30 2023-04-21 ソフトバンク株式会社 Antenna device, system, communication device, and program
JP7257564B1 (en) 2022-02-04 2023-04-13 ソフトバンク株式会社 Antenna device, system, communication device, and program
JP2023114175A (en) * 2022-02-04 2023-08-17 ソフトバンク株式会社 Antenna device, system, communication device, and program

Also Published As

Publication number Publication date
JP3747922B2 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
US11848709B2 (en) Media-based reconfigurable intelligent surface-assisted modulation
KR102113507B1 (en) Beam management for wireless communication
CN102769488B (en) Method and apparatus for choosing and broadcasting receiver beamforming vectors in peer-to-peer (P2P) networks
KR101820733B1 (en) Apparatus and method for selecting beam in wireless communication system
KR101364409B1 (en) Millimeter wave power conversion
US20070091988A1 (en) Systems for communicating using multiple frequency bands in a wireless network
EP2475195B1 (en) Beacon reception using directional antennas
US20170012359A1 (en) Method and device for extending beam area in wireless communication system
CN101204107B (en) Beam-hopping in a radio communications system
US20080107049A1 (en) System and method for wireless communication in a time division duplexing region
US20050201482A1 (en) Communication system and apparatus, and control method therefor
JP2008259187A (en) Transmitting device, signal transmission method, receiving device and signal receiving method in wireless communication system
CN102893536B (en) The power consumption reduced in wireless communication system provides enough directive radios to cover simultaneously
US20060068719A1 (en) System and method for optimizing a directional communication link
WO2007067107A1 (en) A wireless communication mimo system with repeaters
WO2000049730A1 (en) Radio communication system, transmitter and receiver
US8923908B2 (en) Distributed antenna system
US7251461B2 (en) Wireless communications system, wireless transmitter, and wireless receiver
CN101072413A (en) Mobile terminal with multi-path diversity antenna
CN109526245A (en) Twoway radio with main transceiver and auxiliary transceiver and the method using equipment offer initial access
JPH10336087A (en) Maximum ratio synthesis transmission diversity device
JP2021022791A (en) Antenna device, radio transmitter, radio receiver and radio communication system
US20040208255A1 (en) Wireless communication apparatus and wireless communication system
JPWO2007114049A1 (en) Wireless transmission system and wireless station and method used therefor
JP3747922B2 (en) Mobile communication device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040302

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees