JP2004048122A - Down converter for satellite broadcasting reception - Google Patents

Down converter for satellite broadcasting reception Download PDF

Info

Publication number
JP2004048122A
JP2004048122A JP2002199382A JP2002199382A JP2004048122A JP 2004048122 A JP2004048122 A JP 2004048122A JP 2002199382 A JP2002199382 A JP 2002199382A JP 2002199382 A JP2002199382 A JP 2002199382A JP 2004048122 A JP2004048122 A JP 2004048122A
Authority
JP
Japan
Prior art keywords
frequency
band
intermediate frequency
amplifier
satellite broadcasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002199382A
Other languages
Japanese (ja)
Inventor
Shigetaka Suzuki
鈴木 重孝
Shinji Nakagawa
中川 真志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2002199382A priority Critical patent/JP2004048122A/en
Publication of JP2004048122A publication Critical patent/JP2004048122A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Superheterodyne Receivers (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To equalize overall gains even when the deviation of gains in each band of a low-noise amplifier or an intermediate frequency amplifier is not corrected, and to improve the overall gains without increasing the number of stages of the amplifier. <P>SOLUTION: This down converter for satellite broadcasting reception is provided with a low-noise amplifier 1 which amplifies a satellite broadcasting signal in a satellite broadcasting band; a mixer 3 which is provided on the following stage of the amplifier 1 and block-converts the satellite broadcast signal into n intermediate-frequency band being a band lower than the satellite broadcasting band and having the same bandwidth as that of the satellite broadcasting band: an oscillator 21 which supplies a local oscillation signal having a fixed frequency to the mixer 3; and an intermediate-frequency amplifier 4 which amplifies an intermediate frequency signal in an intermediate-frequency band. The frequency of the local oscillation signal is made higher than the maximum frequency in the satellite broadcasting band. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は衛星放送受用ダウンコンバータに関する。
【0002】
【従来の技術】
従来の衛星放送受信用ダウンコンバータの構成を図7に示す。図7は、円偏波から水平偏波H及び垂直偏波Vに変換された衛星放送信号がそれぞれ系統の異なる回路によって中間周波信号にブロック変換される構成を示している。米国仕様の例では衛星放送信号が配列されている帯域(以下、衛星放送帯という)は12.2GHzから12.7GHzであり、中間周波信号が配列される帯域(以下、中間周波帯という)は0.95GHzから1.45GHzである。以下、その構成を詳細に説明する。
【0003】
先ず、水平偏波Hの衛星放送信号rfは複数段の増幅器31a、31bからなる低雑音増幅器31に入力される。増幅された水平偏波Hはバンドパスフィルタ32を介して混合器33に入力される。混合器33には発振器51から局部発振信号Loが供給される。局部発振信号Loの周波数は11.25GHzに固定されているので、混合器33からは0.95GHz乃至1.45GHzの中間周波帯域にブロック変換された中間周波信号ifが出力される。水平偏波Hの中間周波信号ifは複数段の増幅器34a、34bからなる中間周波増幅器34によって増幅され、切替手段52に入力される。
【0004】
一方、垂直偏波Vの衛星放送信号rfも複数段の増幅器41a、41bからなる低雑音増幅器41に入力される。増幅された垂直偏波Vはバンドパスフィルタ42を介して混合器43に入力される。混合器43にも発振器51から同じ周波数11.25GHzの局部発振信号Loが供給されているので、混合器43からは0.95GHz乃至1.45GHzの中間周波帯域にブロック変換された中間周波信号ifが出力される。垂直偏波Vの中間周波信号ifは複数段の増幅器44a、44bからなる中間周波増幅器44によって増幅され、切替手段52に入力される。
【0005】
切替手段52は二つの出力端を有し、その切替動作は図示しない手段によってよって制御され、いずれの出力端にも水平偏波Hの中間周波信号if又は垂直偏波Vの中間周波信号ifが取り出されるようになっている。
【0006】
ここで、衛星放送帯と中間周波帯と局部発振信号Loとの周波数関係を図8によって説明する。衛星放送帯の最低周波数12.2GHzをRF1、最高周波数12.7GHzをRF2とすると、中間周波信号ifは衛星放送信号rfと局部発振信号Loとの周波数差によって得られ、しかも局部発振信号Loが衛星放送帯よりも低いので、中間周波帯の最低周波数IF1は0.95GHzとなり、最高周波数IF2は1.45GHzとなる。すなわち、衛星放送帯の最低周波数RF1が中間周波帯の最低周波数IF1に変換され、衛星放送帯の最高周波数RF2が中間周波帯の最高周波数IF2に変換される。
【0007】
次に、図9乃至図11を参照して低雑音増幅器31及び中間周波増幅器34の各利得と全体の利得との関係について説明する。低雑音増幅器41及び中間周波増幅器44の各利得と全体の利得との関係については内容が同じであるので説明を省略する。
【0008】
一般的に増幅器の利得は低い周波数では高く、周波数が高くなると低くなる。また、中間周波増幅器34を含めた全体の利得は中間周波数帯の全体にわたってフラットであることが望ましい。そこで、従来では、低雑音増幅器31の利得と中間周波増幅器34の利得とを図示しない補正回路によってそれぞれの帯域でフラットとなるように補正している。即ち、低雑音増幅器31が図9の点線のように最低周波数RF1における利得G1から最高周波数RF2における利得G2まで漸次低下する特性である場合には補正回路によって最低の利得G2で均一となる実線のように補正される。
【0009】
同様に、中間周波増幅器34が図10の点線のように最低周波数IF1における利得G3から最高周波数IF2における利得G4まで漸次低下する特性である場合には補正回路によって最低の利得G4となる実線のように補正される。よって、混合器33の変換ロスを無視すれば、全体の利得G5は図11に示すように(G2+G4)となる。この利得が仕様を満足するように各増幅器31、34の段数を決めている。
【0010】
【発明が解決しようとする課題】
上記構成では、低雑音増幅器と中間周波増幅器とにそれぞれ周波数特性をフラットにする補正回路を設けているので、各増幅器に余分な回路を必要として構成を複雑にしている。また、周波数特性をフラットにするため低雑音増幅器における衛星放送帯の最低周波数での利得と、中間周波増幅器における中間周波帯の最低周波数での利得とを犠牲にすることとなり、必要な利得を得るために各増幅器の構成段数を多くしなければならなかった。
【0011】
本発明では、低雑音増幅器や中間周波増幅器の各帯域内での利得の偏差を補正しなくても全体の利得を帯域内で平準化でき、しかも増幅器の段数を増やすことなく全体の利得を高めることを目的とする。
【0012】
【課題を解決するための手段】
上記課題に対し、本発明の衛星放送受信用ダウンコンバータでは、衛星放送帯における衛星放送信号を増幅する低雑音増幅器と、前記低雑音増幅器の後段に設けられると共に、前記衛星放送信号を前記衛星放送帯よりも低い帯域であって前記衛星放送帯の帯域幅と同じ帯域幅の中間周波帯にブロック変換する混合器と、前記混合器に周波数が固定の局部発振信号を供給する発振器と、前記中間周波帯における中間周波信号を増幅する中間周波増幅器とを備え、前記局部発振信号の周波数を前記衛星放送帯における最高周波数よりも高くした。
【0013】
また、前記低雑音増幅器の前記衛星放送帯における最高周波数の利得と最低周波数における利得との偏差と前記中間周波増幅器の前記中間周波帯における最高周波数の利得と最低周波数の利得との偏差とをほぼ等しくした。
【0014】
また、前記局部発振信号の周波数を前記衛星放送帯における最高周波数よりもほぼ1GHz高くした。
【0015】
【発明の実施の形態】
本発明の衛星放送受信用ダウンコンバータを図1乃至図6によって説明する。図1は本発明の衛星放送受信用ダウンコンバータの回路構成を示し、図2は衛星放送帯と中間周波帯と局部発振信号との周波数関係を示し、図3乃至図6は各周波数帯における利得の周波数特性を示す。
【0016】
図1は、円偏波から水平偏波H及び垂直偏波Vに変換された衛星放送信号がそれぞれ系統の異なる回路によって中間周波信号にブロック変換される構成を示している。この構成は、基本的には従来の構成(図7)と同じである。米国仕様の例では衛星放送信号が配列されている帯域(以下、衛星放送帯という)は12.2GHzから12.7GHzであり、中間周波信号が配列される帯域(以下、中間周波帯という)は0.95GHzから1.45GHzである。以下、その構成を詳細に説明する。
【0017】
先ず、水平偏波Hの衛星放送信号rfは複数段の増幅器1a、1bからなる第一の低雑音増幅器1に入力される。増幅された水平偏波Hは第一のバンドパスフィルタ2を介して第一の混合器3に入力される。第一の混合器3には発振器21から局部発振信号Loが供給される。局部発振信号Loの周波数は衛星放送帯の最高周波数よりもほぼ1GHz高くしている。具体的には、0.95GHz高い13.65GHzとしている。そして、第一の混合器3からは0.95GHz乃至1.45GHzの中間周波帯域にブロック変換された中間周波信号ifが出力される。水平偏波Hの中間周波信号ifは複数段の増幅器4a、4bからなる第一の中間周波増幅器4によって増幅され、切替手段22に入力される。
【0018】
一方、垂直偏波Vの衛星放送信号rfも複数段の増幅器11a、11bからなる第二の低雑音増幅器11に入力される。増幅された垂直偏波Vは第二のバンドパスフィルタ12を介して第二の混合器13に入力される。第二の混合器13にも発振器21から同じ周波数13.65GHzの局部発振信号Loが供給されているので、第二の混合器13からは0.95GHz乃至1.45GHzの中間周波帯域にブロック変換された中間周波信号ifが出力される。垂直偏波Vの中間周波信号ifは複数段の増幅器14a、14bからなる第二の中間周波増幅器14によって増幅され、切替手段22に入力される。
【0019】
切替手段22は二つの出力端を有し、その切替動作は図示しない手段によってよって制御され、いずれの出力端にも水平偏波Hの中間周波信号if又は垂直偏波Vの中間周波信号ifが取り出されるようになっている。切替手段の後にはチューナ部(図示せず)が設けられ、チューナ部によって中間周波帯の任意の中間周波信号が選択される。
【0020】
ここで、衛星放送帯と中間周波帯と局部発振信号Loとの周波数関係を図2によって説明する。衛星放送帯の最低周波数12.2GHzをRF1、最高周波数12.7GHzをRF2とすると、中間周波信号ifは衛星放送信号rfと局部発振信号Loとの周波数差によって得られ、しかも局部発振信号Loが衛星放送帯よりも高いので、中間周波帯の最低周波数IF1は0.95GHzとなり、最高周波数IF2は1.45GHzとなる。すなわち、衛星放送帯の最低周波数RF1が中間周波帯の最高周波数IF2に変換され、衛星放送帯の最高周波数RF2が中間周波帯の最低周波数IF1に変換される。
【0021】
次に、図3乃至図6を参照して第一の低雑音増幅器1及び第一の中間周波増幅器4の各利得と全体の利得との関係について説明する。第二の低雑音増幅器11及び第二の中間周波増幅器14の各利得と全体の利得との関係については内容が同じであるので説明を省略する。
【0022】
本発明では、局部発振信号Loの周波数が衛星放送帯よりも高いことを利用して全体の利得を帯域内で平準化するようにしている。すなわち、第一の低雑音増幅器1の利得は特別の周波数特性補正回路を設けなければ図3に示すように最低周波数RF1ではG1と高く、最高周波数RF2ではG2と低くなりその偏差はAとなる。よって、第一の混合器3によってブロック変換された中間周波帯での利得は、第一のバンドパスフィルタ2の挿入ロスと第一の混合器3による変換ロスを無視すれば、図4に示すように最低周波数IF1ではG2と低く、最高周波数ではG1と高くなり、その偏差は同じAである。
【0023】
一方、第一の中間周波増幅器4の利得も特別の周波数特性補正回路を設けなければ図5に示すように最低周波数IF1ではG3と高く、最高周波数IF2ではG4と低くなる。その偏差はBとなる。ここで、衛星放送帯における第一の低雑音増幅器1の利得偏差Aと中間周波帯における第一の中間周波増幅器4の利得偏差Bとをほぼ等しくすれば、全体の利得G5は図6に示すように中間周波帯の全域で(G1+G4=G2+G3)となり平準化できる。
【0024】
この構成では、第一の低雑音増幅器1および第一の中間周波増幅器4における最低周波数の利得を犠牲にしていないので全体の利得を高めることになり、場合によっては各増幅器の増幅段数を減らすことも可能である。
また、局部発振信号Loの周波数を衛星放送帯の最高周波数RF2よりも0.95GHz高くすることで、中間周波信号ifを従来と同じ0.95GHzから1.45GHzの中間周波帯に変換できるが、局部発振信号Loは0.95GHzだけ高い周波数に限られることはない。
【0025】
なお、本発明では局部発振信号の周波数が衛星放送信号よりも高いので、中間周波帯における中間周波信号の配列順序が従来とは高低逆となるので、本発明の衛星放送受信用ダウンコンバータに接続し中間周波信号ifを選択してベースバンド信号を生成するチューナ部の構成を変更する必要があることは言うまでもない。
【0026】
【発明の効果】
以上説明したように、本発明の衛星放送受信用ダウンコンバータでは、衛星放送帯における衛星放送信号を増幅する低雑音増幅器と、低雑音増幅器の後段に設けられると共に、衛星放送信号を前記衛星放送帯よりも低い帯域であって衛星放送帯の帯域幅と同じ帯域幅の中間周波帯にブロック変換する混合器と、混合器に周波数が固定の局部発振信号を供給する発振器と、中間周波帯における中間周波信号を増幅する中間周波増幅器とを備え、局部発振信号の周波数を衛星放送帯における最高周波数よりも高くしたので、低雑音増幅器や中間周波増幅器の各帯域内での利得の偏差を補正しなくても全体の利得を帯域内で平準化でき、しかも増幅器の段数を増やすことなく全体の利得を高めることができる。
【0027】
また、低雑音増幅器の衛星放送帯における最高周波数の利得と最低周波数における利得との偏差と中間周波増幅器の中間周波帯における最高周波数の利得と最低周波数の利得との偏差とをほぼ等しくしたので、帯域内での利得をほぼ均一にすることができる。
【0028】
また、局部発振信号の周波数を衛星放送帯における最高周波数よりもほぼ1GHz高くしたので、従来からの中間周波帯と同じ帯域で中間周波信号を出力できる。
【図面の簡単な説明】
【図1】本発明の衛星放送受信用ダウンコンバータの構成を示す回路図である。
【図2】本発明の衛星放送受信用ダウンコンバータにおける衛星放送帯と中間周波帯と局部発振信号との周波数関係図である。
【図3】本発明の衛星放送受信用ダウンコンバータにおける低雑音増幅器の利得の周波数特性図である。
【図4】本発明の衛星放送受信用ダウンコンバータにおける混合器から出力される中間周波信号の周波数特性図である。
【図5】本発明の衛星放送受信用ダウンコンバータにおける中間周波増幅器の利得の周波数特性図である。
【図6】本発明の衛星放送受信用ダウンコンバータにおける全体の利得の周波数特性図である。
【図7】従来の衛星放送受信用ダウンコンバータの構成を示す回路図である。
【図8】従来の衛星放送受信用ダウンコンバータにおける衛星放送帯と中間周波帯と局部発振信号との周波数関係図である。
【図9】従来の衛星放送受信用ダウンコンバータにおける低雑音増幅器の利得の周波数特性図である。
【図10】従来の衛星放送受信用ダウンコンバータにおける中間周波増幅器の利得の周波数特性図である。
【図11】従来の衛星放送受信用ダウンコンバータにおける全体の利得の周波数特性図である。
【符号の説明】
1 第一の低雑音増幅器
2 第一のバンドパスフィルタ
3 第一の混合器
4 第一の中間周波増幅器
11 第二の低雑音増幅器
12 第二のバンドパスフィルタ
13 第二の混合器
14 第二の中間周波増幅器
21 発振器
22 切替手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a satellite broadcast receiving downconverter.
[0002]
[Prior art]
FIG. 7 shows a configuration of a conventional down converter for receiving satellite broadcasting. FIG. 7 shows a configuration in which satellite broadcast signals converted from circular polarization into horizontal polarization H and vertical polarization V are block-converted into intermediate frequency signals by circuits of different systems. In the example of US specifications, the band in which satellite broadcast signals are arranged (hereinafter referred to as satellite broadcast band) is from 12.2 GHz to 12.7 GHz, and the band in which intermediate frequency signals are arranged (hereinafter referred to as intermediate frequency band) is It is from 0.95 GHz to 1.45 GHz. Hereinafter, the configuration will be described in detail.
[0003]
First, the horizontally polarized satellite broadcast signal rf is input to a low-noise amplifier 31 including a plurality of stages of amplifiers 31a and 31b. The amplified horizontal polarization H is input to the mixer 33 via the band-pass filter 32. The local oscillation signal Lo is supplied from the oscillator 51 to the mixer 33. Since the frequency of the local oscillation signal Lo is fixed at 11.25 GHz, the mixer 33 outputs an intermediate frequency signal if which is block-converted into an intermediate frequency band of 0.95 GHz to 1.45 GHz. The intermediate frequency signal if of the horizontal polarization H is amplified by an intermediate frequency amplifier 34 including a plurality of stages of amplifiers 34a and 34b, and input to the switching means 52.
[0004]
On the other hand, the vertically polarized satellite broadcast signal rf is also input to the low-noise amplifier 41 including a plurality of stages of amplifiers 41a and 41b. The amplified vertical polarization V is input to the mixer 43 via the band pass filter 42. Since the local oscillation signal Lo having the same frequency of 11.25 GHz is also supplied from the oscillator 51 to the mixer 43, the intermediate frequency signal if which is block-converted into an intermediate frequency band of 0.95 GHz to 1.45 GHz from the mixer 43. Is output. The intermediate frequency signal if of the vertically polarized wave V is amplified by an intermediate frequency amplifier 44 including a plurality of stages of amplifiers 44a and 44b, and input to the switching means 52.
[0005]
The switching means 52 has two output terminals, and the switching operation thereof is controlled by means (not shown), and an intermediate frequency signal if of the horizontal polarization H or an intermediate frequency signal if of the vertical polarization V is supplied to either output terminal. It is to be taken out.
[0006]
Here, the frequency relationship among the satellite broadcast band, the intermediate frequency band, and the local oscillation signal Lo will be described with reference to FIG. Assuming that the lowest frequency 12.2 GHz of the satellite broadcast band is RF1 and the highest frequency 12.7 GHz is RF2, the intermediate frequency signal if is obtained by the frequency difference between the satellite broadcast signal rf and the local oscillation signal Lo, and the local oscillation signal Lo is obtained. Since it is lower than the satellite broadcasting band, the lowest frequency IF1 of the intermediate frequency band is 0.95 GHz and the highest frequency IF2 is 1.45 GHz. That is, the lowest frequency RF1 of the satellite broadcasting band is converted to the lowest frequency IF1 of the intermediate frequency band, and the highest frequency RF2 of the satellite broadcasting band is converted to the highest frequency IF2 of the intermediate frequency band.
[0007]
Next, the relationship between each gain of the low noise amplifier 31 and the intermediate frequency amplifier 34 and the overall gain will be described with reference to FIGS. The content of the relationship between each gain of the low-noise amplifier 41 and the intermediate frequency amplifier 44 and the overall gain is the same, and a description thereof will be omitted.
[0008]
In general, the gain of an amplifier is high at low frequencies and is low at higher frequencies. Further, it is desirable that the entire gain including the intermediate frequency amplifier 34 be flat over the entire intermediate frequency band. Therefore, conventionally, the gain of the low noise amplifier 31 and the gain of the intermediate frequency amplifier 34 are corrected so as to be flat in each band by a correction circuit (not shown). That is, when the low-noise amplifier 31 has such a characteristic that the gain gradually decreases from the gain G1 at the lowest frequency RF1 to the gain G2 at the highest frequency RF2 as indicated by the dotted line in FIG. Is corrected as follows.
[0009]
Similarly, when the intermediate frequency amplifier 34 has such a characteristic that the gain gradually decreases from the gain G3 at the lowest frequency IF1 to the gain G4 at the highest frequency IF2 as shown by the dotted line in FIG. Is corrected to Therefore, if the conversion loss of the mixer 33 is ignored, the overall gain G5 becomes (G2 + G4) as shown in FIG. The number of stages of each of the amplifiers 31 and 34 is determined so that this gain satisfies the specification.
[0010]
[Problems to be solved by the invention]
In the above configuration, since the low noise amplifier and the intermediate frequency amplifier are each provided with a correction circuit for flattening the frequency characteristics, an extra circuit is required for each amplifier, which complicates the configuration. Further, in order to flatten the frequency characteristics, the gain at the lowest frequency of the satellite broadcasting band in the low noise amplifier and the gain at the lowest frequency of the intermediate frequency band in the intermediate frequency amplifier are sacrificed, and the required gain is obtained. Therefore, the number of constituent stages of each amplifier had to be increased.
[0011]
According to the present invention, the entire gain can be leveled in the band without correcting the gain deviation in each band of the low noise amplifier and the intermediate frequency amplifier, and the overall gain can be increased without increasing the number of amplifier stages. The purpose is to:
[0012]
[Means for Solving the Problems]
In order to solve the above problem, a down converter for receiving satellite broadcasting according to the present invention includes a low noise amplifier for amplifying a satellite broadcasting signal in a satellite broadcasting band, and a downstream stage provided with the low noise amplifier. A mixer for performing block conversion to an intermediate frequency band having a lower band than the band and having the same bandwidth as the bandwidth of the satellite broadcasting band; an oscillator for supplying a local oscillation signal having a fixed frequency to the mixer; An intermediate frequency amplifier for amplifying an intermediate frequency signal in a frequency band, wherein the frequency of the local oscillation signal is higher than the highest frequency in the satellite broadcast band.
[0013]
Further, the deviation between the gain of the highest frequency and the gain at the lowest frequency in the satellite broadcasting band of the low noise amplifier and the deviation between the gain of the highest frequency and the gain of the lowest frequency in the intermediate frequency band of the intermediate frequency amplifier are substantially equal to each other. Made equal.
[0014]
Further, the frequency of the local oscillation signal is set to be approximately 1 GHz higher than the highest frequency in the satellite broadcasting band.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The down converter for receiving satellite broadcasting according to the present invention will be described with reference to FIGS. FIG. 1 shows a circuit configuration of a satellite broadcast receiving downconverter of the present invention, FIG. 2 shows a frequency relationship among a satellite broadcast band, an intermediate frequency band, and a local oscillation signal, and FIGS. FIG.
[0016]
FIG. 1 shows a configuration in which satellite broadcast signals converted from circular polarization into horizontal polarization H and vertical polarization V are block-converted into intermediate frequency signals by circuits of different systems. This configuration is basically the same as the conventional configuration (FIG. 7). In the example of US specifications, the band in which satellite broadcast signals are arranged (hereinafter referred to as satellite broadcast band) is from 12.2 GHz to 12.7 GHz, and the band in which intermediate frequency signals are arranged (hereinafter referred to as intermediate frequency band) is It is from 0.95 GHz to 1.45 GHz. Hereinafter, the configuration will be described in detail.
[0017]
First, the horizontally polarized satellite broadcast signal rf is input to a first low-noise amplifier 1 including a plurality of stages of amplifiers 1a and 1b. The amplified horizontal polarization H is input to the first mixer 3 via the first bandpass filter 2. The first mixer 3 is supplied with a local oscillation signal Lo from the oscillator 21. The frequency of the local oscillation signal Lo is approximately 1 GHz higher than the highest frequency of the satellite broadcasting band. Specifically, it is set to 13.65 GHz, which is 0.95 GHz higher. Then, the first mixer 3 outputs an intermediate frequency signal if block-converted into an intermediate frequency band of 0.95 GHz to 1.45 GHz. The intermediate frequency signal if of the horizontally polarized wave H is amplified by the first intermediate frequency amplifier 4 including a plurality of stages of amplifiers 4a and 4b, and input to the switching means 22.
[0018]
On the other hand, the vertically polarized satellite broadcast signal rf is also input to the second low-noise amplifier 11 including a plurality of stages of amplifiers 11a and 11b. The amplified vertical polarization V is input to the second mixer 13 via the second band-pass filter 12. Since the local oscillation signal Lo having the same frequency of 13.65 GHz is also supplied from the oscillator 21 to the second mixer 13, the second mixer 13 performs block conversion to an intermediate frequency band of 0.95 GHz to 1.45 GHz. The output intermediate frequency signal if is output. The intermediate frequency signal if of the vertically polarized wave V is amplified by the second intermediate frequency amplifier 14 including a plurality of stages of amplifiers 14a and 14b, and input to the switching unit 22.
[0019]
The switching means 22 has two output terminals, and the switching operation thereof is controlled by means not shown, and an intermediate frequency signal if of the horizontal polarization H or an intermediate frequency signal if of the vertical polarization V is applied to any output terminal. It is to be taken out. A tuner unit (not shown) is provided after the switching unit, and an arbitrary intermediate frequency signal in an intermediate frequency band is selected by the tuner unit.
[0020]
Here, the frequency relationship among the satellite broadcast band, the intermediate frequency band, and the local oscillation signal Lo will be described with reference to FIG. Assuming that the lowest frequency 12.2 GHz of the satellite broadcasting band is RF1 and the highest frequency 12.7 GHz is RF2, the intermediate frequency signal if is obtained by the frequency difference between the satellite broadcasting signal rf and the local oscillation signal Lo, and the local oscillation signal Lo is obtained. Since it is higher than the satellite broadcasting band, the lowest frequency IF1 of the intermediate frequency band is 0.95 GHz and the highest frequency IF2 is 1.45 GHz. That is, the lowest frequency RF1 of the satellite broadcasting band is converted to the highest frequency IF2 of the intermediate frequency band, and the highest frequency RF2 of the satellite broadcasting band is converted to the lowest frequency IF1 of the intermediate frequency band.
[0021]
Next, the relationship between each gain of the first low noise amplifier 1 and the first intermediate frequency amplifier 4 and the overall gain will be described with reference to FIGS. The contents of the relationship between the respective gains of the second low-noise amplifier 11 and the second intermediate frequency amplifier 14 and the overall gain are the same, and a description thereof will be omitted.
[0022]
The present invention uses the fact that the frequency of the local oscillation signal Lo is higher than that of the satellite broadcasting band to equalize the overall gain within the band. That is, unless a special frequency characteristic correction circuit is provided, the gain of the first low noise amplifier 1 is as high as G1 at the lowest frequency RF1 and as low as G2 at the highest frequency RF2 as shown in FIG. . Therefore, the gain in the intermediate frequency band subjected to the block conversion by the first mixer 3 is shown in FIG. 4 if the insertion loss of the first bandpass filter 2 and the conversion loss by the first mixer 3 are ignored. As described above, the lowest frequency IF1 is as low as G2, and the highest frequency is as high as G1.
[0023]
On the other hand, the gain of the first intermediate frequency amplifier 4 is as high as G3 at the lowest frequency IF1 and as low as G4 at the highest frequency IF2 unless a special frequency characteristic correction circuit is provided, as shown in FIG. The deviation is B. Here, if the gain deviation A of the first low-noise amplifier 1 in the satellite broadcasting band and the gain deviation B of the first intermediate-frequency amplifier 4 in the intermediate frequency band are made substantially equal, the overall gain G5 is shown in FIG. As described above, (G1 + G4 = G2 + G3) can be obtained over the entire range of the intermediate frequency band.
[0024]
In this configuration, since the gain of the lowest frequency in the first low noise amplifier 1 and the first intermediate frequency amplifier 4 is not sacrificed, the overall gain is increased, and in some cases, the number of amplification stages of each amplifier is reduced. Is also possible.
Also, by increasing the frequency of the local oscillation signal Lo by 0.95 GHz higher than the highest frequency RF2 of the satellite broadcast band, the intermediate frequency signal if can be converted from the conventional 0.95 GHz to the intermediate frequency band of 1.45 GHz, The local oscillation signal Lo is not limited to a frequency higher by 0.95 GHz.
[0025]
In the present invention, since the frequency of the local oscillation signal is higher than that of the satellite broadcast signal, the arrangement order of the intermediate frequency signals in the intermediate frequency band is opposite to that of the prior art. Needless to say, it is necessary to change the configuration of the tuner section that selects the intermediate frequency signal if and generates the baseband signal.
[0026]
【The invention's effect】
As described above, in the satellite broadcast receiving downconverter of the present invention, a low-noise amplifier for amplifying a satellite broadcast signal in a satellite broadcast band and a low-noise amplifier are provided at a subsequent stage, and the satellite broadcast signal is transmitted to the satellite broadcast band. A mixer that performs block conversion into an intermediate frequency band having a lower bandwidth than the bandwidth of the satellite broadcasting band, an oscillator that supplies a local oscillation signal having a fixed frequency to the mixer, and an intermediate frequency band in the intermediate frequency band. An intermediate frequency amplifier that amplifies the frequency signal is provided, and the frequency of the local oscillation signal is set higher than the highest frequency in the satellite broadcasting band, so that the gain deviation in each band of the low noise amplifier and the intermediate frequency amplifier is not corrected. However, the overall gain can be leveled within the band, and the overall gain can be increased without increasing the number of amplifier stages.
[0027]
Also, since the deviation between the gain of the highest frequency and the gain at the lowest frequency in the satellite broadcasting band of the low noise amplifier and the deviation between the gain of the highest frequency and the gain of the lowest frequency in the intermediate frequency band of the intermediate frequency amplifier were substantially equal, The gain in the band can be made substantially uniform.
[0028]
In addition, since the frequency of the local oscillation signal is approximately 1 GHz higher than the highest frequency in the satellite broadcasting band, the intermediate frequency signal can be output in the same band as the conventional intermediate frequency band.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing the configuration of a satellite broadcast receiving downconverter of the present invention.
FIG. 2 is a diagram showing a frequency relationship among a satellite broadcast band, an intermediate frequency band, and a local oscillation signal in the satellite broadcast receiving downconverter of the present invention.
FIG. 3 is a frequency characteristic diagram of a gain of a low noise amplifier in a satellite broadcast receiving downconverter of the present invention.
FIG. 4 is a frequency characteristic diagram of an intermediate frequency signal output from a mixer in the satellite broadcast receiving downconverter of the present invention.
FIG. 5 is a frequency characteristic diagram of the gain of the intermediate frequency amplifier in the satellite broadcast receiving downconverter of the present invention.
FIG. 6 is a frequency characteristic diagram of overall gain in the satellite broadcast receiving downconverter of the present invention.
FIG. 7 is a circuit diagram showing a configuration of a conventional down converter for receiving satellite broadcasting.
FIG. 8 is a diagram showing the frequency relationship among a satellite broadcast band, an intermediate frequency band, and a local oscillation signal in a conventional satellite broadcast receiving downconverter.
FIG. 9 is a frequency characteristic diagram of gain of a low noise amplifier in a conventional satellite broadcast receiving downconverter.
FIG. 10 is a frequency characteristic diagram of a gain of an intermediate frequency amplifier in a conventional satellite broadcast receiving downconverter.
FIG. 11 is a frequency characteristic diagram of the overall gain in a conventional satellite broadcast receiving downconverter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st low noise amplifier 2 1st band pass filter 3 1st mixer 4 1st intermediate frequency amplifier 11 2nd low noise amplifier 12 2nd band pass filter 13 2nd mixer 14 2nd Intermediate frequency amplifier 21 oscillator 22 switching means

Claims (3)

衛星放送帯における衛星放送信号を増幅する低雑音増幅器と、前記低雑音増幅器の後段に設けられると共に、前記衛星放送信号を前記衛星放送帯よりも低い帯域であって前記衛星放送帯の帯域幅と同じ帯域幅の中間周波帯にブロック変換する混合器と、前記混合器に周波数が固定の局部発振信号を供給する発振器と、前記中間周波帯における中間周波信号を増幅する中間周波増幅器とを備え、前記局部発振信号の周波数を前記衛星放送帯における最高周波数よりも高くしたことを特徴とする衛星放送受信用ダウンコンバータ。A low-noise amplifier that amplifies a satellite broadcast signal in a satellite broadcast band, and a low-noise amplifier that is provided at a stage subsequent to the low-noise amplifier. A mixer that performs block conversion into an intermediate frequency band having the same bandwidth, an oscillator that supplies a local oscillation signal having a fixed frequency to the mixer, and an intermediate frequency amplifier that amplifies the intermediate frequency signal in the intermediate frequency band, A downconverter for receiving satellite broadcasting, wherein a frequency of the local oscillation signal is higher than a highest frequency in the satellite broadcasting band. 前記低雑音増幅器の前記衛星放送帯における最高周波数の利得と最低周波数における利得との偏差と前記中間周波増幅器の前記中間周波帯における最高周波数の利得と最低周波数の利得との偏差とをほぼ等しくしたことを特徴とする請求項1に記載の衛星放送受信用ダウンコンバータThe deviation between the gain of the highest frequency and the lowest frequency in the satellite broadcasting band of the low-noise amplifier and the difference between the highest frequency gain and the lowest frequency gain of the intermediate frequency amplifier in the intermediate frequency band were made substantially equal. 2. The down converter for receiving satellite broadcasting according to claim 1, wherein 前記局部発振信号の周波数を前記衛星放送帯における最高周波数よりもほぼ1GHz高くしたことを特徴とする請求項1又は2に記載の衛星放送受信用ダウンコンバータ。3. The down converter for receiving satellite broadcasting according to claim 1, wherein the frequency of the local oscillation signal is set to be approximately 1 GHz higher than the highest frequency in the satellite broadcasting band.
JP2002199382A 2002-07-09 2002-07-09 Down converter for satellite broadcasting reception Withdrawn JP2004048122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199382A JP2004048122A (en) 2002-07-09 2002-07-09 Down converter for satellite broadcasting reception

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199382A JP2004048122A (en) 2002-07-09 2002-07-09 Down converter for satellite broadcasting reception

Publications (1)

Publication Number Publication Date
JP2004048122A true JP2004048122A (en) 2004-02-12

Family

ID=31706532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199382A Withdrawn JP2004048122A (en) 2002-07-09 2002-07-09 Down converter for satellite broadcasting reception

Country Status (1)

Country Link
JP (1) JP2004048122A (en)

Similar Documents

Publication Publication Date Title
JP2006166277A (en) Transmission/reception apparatus and module
WO2012014343A1 (en) Semiconductor integrated circuit and tuner system provided with same
US6397051B1 (en) Dual image-reject mixer receiver for multiple channel reception and processing
US9825661B2 (en) Multi-user satellite receiving system and method thereof
US20070087717A1 (en) Radio receiver
US20070117532A1 (en) Terrestrial-Digital Multimedia Broadcasting And Digital Audio Broadcasting Low Intermediate Frequency Receiver
US20070042742A1 (en) Terrestrial-Digital Multimedia Broadcasting And Digital Audio Broadcasting Low Intermediate Frequency Receiver
US20090061805A1 (en) Rf receiver and method for removing interference signal
US20080051049A1 (en) Reception circuit and receiver
JP2006121710A (en) Double band tuner
TW201008141A (en) Method for reducing inter-modulation interference and signal receiver using the same
JP6952040B2 (en) Receiver and receiving system
US20070042730A1 (en) Terrestrial-Digital Multimedia Broadcasting And Digital Audio Broadcasting Low Intermediate Frequency Receiver
JP2003218711A (en) Agc circuit of fm receiver
JP2005130279A (en) Tuner for diversity reception
JP2004048122A (en) Down converter for satellite broadcasting reception
JP4385661B2 (en) TV multidirectional receiver
US20090186591A1 (en) Receiver
GB2342238A (en) Digital terrestrial TV tuner
US11811435B2 (en) Semiconductor chip and receiving apparatus
JP5169677B2 (en) Receiver
JP2001292445A (en) Satellite digital broadcast down-converter for head end
KR20130063953A (en) Tuner module
JP2993001B2 (en) UHF tuner and its equipment
KR20110051866A (en) Rf signal processing circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060926