JP2004047799A - Connecting member and connecting structure - Google Patents

Connecting member and connecting structure Download PDF

Info

Publication number
JP2004047799A
JP2004047799A JP2002204218A JP2002204218A JP2004047799A JP 2004047799 A JP2004047799 A JP 2004047799A JP 2002204218 A JP2002204218 A JP 2002204218A JP 2002204218 A JP2002204218 A JP 2002204218A JP 2004047799 A JP2004047799 A JP 2004047799A
Authority
JP
Japan
Prior art keywords
semiconductor element
conductor
metal particles
connection
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002204218A
Other languages
Japanese (ja)
Inventor
Kyoichi Kinoshita
木下 恭一
Takashi Yoshida
吉田 貴司
Katsuaki Tanaka
田中 勝章
Tomohei Sugiyama
杉山 知平
Hidehiro Kudo
工藤 英弘
Manabu Miyoshi
三好 学
Eiji Kono
河野 栄次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2002204218A priority Critical patent/JP2004047799A/en
Publication of JP2004047799A publication Critical patent/JP2004047799A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L24/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connecting member which can prevent the occurrence of a connecting fault or damage due to thermal stress, and to provide a connecting structure. <P>SOLUTION: A plate shape conductor 24 is electrically connected to the end of an external electrode 14. The conductor 24 is made of Invar (R). The electrode 14 is connected to the conductor 24 by soldering or welding. Metal particles 25 are fixed to the surface 242 of the conductor 24. The conductor 24 is energized toward a semiconductor element 16 by the spring force of a compression spring 27. The particles 25 are brought into press-contact with a first element electrode 17 by the force of the spring 27. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、接続部材及び接続構造に係り、例えば半導体素子の素子電極と素子外部の電極との接続に好適な接続部材及び接続構造に関するものである。
【0002】
【従来の技術】
半導体素子における素子電極と外部電極とを電気的に接続するため、一般的には金属線(ボンディングワイヤ)によって素子電極と外部電極とを接続する。しかし、金属線による接続では、線接続になるために接続不良が生じやすい。特許第3216305号公報に開示の半導体装置では、半導体層上のボンディングパッドと素子外部の電極とを板状の導電性部材(アルミニウム製)によって接続している。板状の導電性部材による接続では、面接続になるために接続不良が金属線による接続に比べて生じにくい。又、ボンディングパッドに対する板状の導電性部材の接続は、ボンディングパッドに大きな応力のかからない半田接合や拡散接合等によって行われるため、ボンディング時に素子の損傷が生じない。
【0003】
【発明が解決しようとする課題】
しかし、導電性部材(アルミニウム製)と半導体素子(シリコン)との間の熱膨張率の差が大きいため、半導体装置の動作中の発熱、昇温によって熱応力が発生して半導体素子が損傷したり、断線したりするおそれがある。
【0004】
又、放熱性をよくするためにヒートスプレッダ上に半導体素子をはんだ付けした接続構造においても、ヒートスプレッダの熱膨張率と半導体素子の熱膨張率との差が大きい場合には、ヒートスプレッダと半導体素子との間の接続不良が生じて放熱性が低下したり、半導体素子が損傷したりする。
【0005】
本発明の目的は、熱応力による接続不良や損傷の発生を防止できる接続部材及び接続構造を提供することにある。
【0006】
【課題を解決するための手段】
そのために請求項1の発明では、接続対象に接続させる金属体の少なくとも接触領域に金属粒子を付着した接続部材を構成した。
【0007】
金属体は、金属粒子を介して接続対象に接続される。金属粒子と接続対象との接触面積は、金属体そのものと接続対象との面接触に比べて小さくなるので、接続対象と接続部材との間の静止摩擦力は、金属体そのものと接続対象との面接触に比べて小さくなる。そのため、接続対象の熱膨張率と金属体の熱膨張率とが大きく異なっていても、接続対象と接続部材とが互いに殆ど影響を受けずに熱膨張・収縮するので、断線や損傷のおそれが無くなる。
【0008】
請求項2の発明では、請求項1において、前記金属粒子は、球形状とした。
球形状の金属粒子と接続対象との接触は、点接触となるので、接続対象と接続部材との間の静止摩擦力は小さい。又、球形状の金属粒子は、アトマイズ方法等によって容易に作れる。
【0009】
請求項3の発明では、請求項1及び請求項2のいずれか1項において、前記金属粒子を付着させる前記金属体における付着表面は、平面とし、前記金属粒子の付着厚さを一定にした。
【0010】
金属粒子は、平面的に散らばることになり、接続対象の接触領域が平面であるときには、平面的に散らばった金属粒子と接続対象とが適正に接触する。
請求項4の発明では、請求項1乃至請求項3のいずれか1項において、前記金属体は、板形状とし、この板形状の板面に前記金属粒子を付着した。
【0011】
板形状とは、厚みよりも幅の大きい形状のことを言う。板面とは、幅の面のことを言う。厚みの小さい金属体の場合には、板形状の板面が金属粒子の付着場所として好適である。
【0012】
請求項5の発明では、半導体素子の素子電極と外部電極とを導電体によって電気的に接続した接続構造において、前記半導体素子の素子電極に前記導電体を接触させ、前記半導体素子の素子電極と前記導電体との接触を保持手段によって保持するようにした。
【0013】
導電体は、半導体素子の素子電極に接触され、この接触は、保持手段によって保持される。導電体と半導体素子の素子電極とは、単に接触しているのみであるので、半導体素子の熱膨張率と導電体の熱膨張率とが大きく異なっていても、接続対象と接続部材とが互いに殆ど影響を受けずに熱膨張・収縮する。その結果、断線や損傷のおそれが無くなる。なお、素子電極は、半導体素子の一部として半導体に含まれるものとする。
【0014】
請求項6の発明では、請求項5において、前記保持手段は、前記半導体素子の素子電極に前記導電体を押接するための付勢手段とした。
付勢手段は、例えば、ばね力によって半導体素子の素子電極に導電体を押し付ける手段である。このような付勢手段は、半導体素子の素子電極に導電体を適度の力で押し付けて素子電極と導電体との良好な電気的接続を確保する上で好適である。
【0015】
請求項7の発明では、請求項5及び請求項6のいずれか1項において、前記導電体として請求項4に記載の接続部材を用い、前記接続部材の前記金属粒子を前記半導体素子の素子電極に接触させた。
【0016】
導電性の接続部材は、金属粒子を介して半導体素子の素子電極に電気的に接続される。金属粒子と素子電極との接触面積は、金属体そのものと接続対象との面接触に比べて小さくなるので、半導体素子の素子電極と接続部材との間の静止摩擦力は、金属体そのものと半導体素子の素子電極との接触に比べて小さくなる。そのため、半導体素子の熱膨張率と接続部材の熱膨張率とが大きく異なっていても、半導体素子と接続部材とが互いに殆ど影響を受けずに熱膨張・収縮するので、断線や損傷のおそれが無くなる。
【0017】
【発明の実施の形態】
以下、本発明を具体化した第1の実施の形態を図1及び図2に従って説明する。
【0018】
図1に示すように、金属製の基板11に絶縁性の蓋12を結合してパッケージ10が構成されている。基板11は、例えば銅、アルミニウム等の熱伝導率の大きい材質からなる。基板11の表面は、絶縁性の絶縁層111によって被覆されている。基板11の結合部と蓋12との結合部との間には複数の外部電極14が挟み込まれている。外部電極14の一端は、パッケージ10内の収容室13へ入り込んでおり、外部電極14の他端は、パッケージ10外へ突出している。図の例では外部電極14を1つのみ図示している。基板11の結合部と蓋12の結合部との間は、両結合部間で挟まれている外部電極14の部位を包むように絶縁性の封止材15によってシールされている。
【0019】
収容室13には半導体素子16が収容されている。本実施の形態では、半導体素子16は、電界効果トランジスタ(FET)である。なお、FETに換えて、バイポーラ・トランジスタやIGBT(Insulated Gate Bipolar Transistor)、ダイオード等の半導体素子を用いた実施形態であっても同様に構成可能である。半導体素子16の一面(図1において半導体素子16の上側の面であって平面である)の全体にはドレイン用の第1の素子電極17が設けられている。半導体素子16の他面(図1において半導体素子16の下側の面であって平面である)にはソース用の第2の素子電極18とゲート用の第3の素子電極19とが設けられている。素子電極17,18,19は、半導体素子16の一部として半導体素子16に含まれるものとする。
【0020】
収容室13を形成する内底面131の上には導電層20,21が配設されている。導電層20,21は、銅あるいはアルミニウムでプリント配線して形成されている。導電層20は、図示しない外部電極に電気的に接続されており、導電層21は、図示しない別の外部電極に電気的に接続されている。第2の素子電極18は、半田22によって導電層20に接続されており、第3の素子電極19は、半田23によって導電層21に接続されている。
【0021】
収容室13内における外部電極14の端部には板形状の導電体24が電気的に接続されている。板形状とは、厚みt(図1に図示)よりも幅d(図2に図示)が大きい形状のことを言う。導電体24は、インバー(ニッケルと鉄との合金)製である。
【0022】
図2に示すように、導電体24の一端部(以下、接続端部241という)の板面242には金属粒子25が固着されている。金属粒子25は銅製であり、金属粒子25の粒子径は、100〜500μmである。金属粒子25を固着する板面242の領域243は、平面であり、この平面の領域243は、半導体素子16に接続させる導電体24の接続領域である。平面の接続領域243に固着(付着)されている金属粒子25の付着厚さは、接続領域243の全体にわたって一定にしてある。
【0023】
導電体24と金属粒子25とは、接続対象(半導体素子16)に接続させる金属体(導電体24)の少なくとも接続領域(241)に金属粒子を付着した接続部材26を構成する。
【0024】
図1に示すように、蓋12と導電体24の接続端部241との間には圧縮ばね27が介在されている。付勢手段としての圧縮ばね27のばね力は、導電体24の接続端部241を半導体素子16に向けて付勢する。接続領域243に固着された金属粒子25は、圧縮ばね27のばね力によって第1の素子電極17に接触し、導電体24と半導体素子16とが電気的に接続する。
【0025】
金属粒子25は、例えばアトマイズ方法によって形成される。アトマイズ方法は、例えばアルゴンガス中で金属粒子25の素材(本実施の形態では銅)の溶湯を噴射して粒子を形成する方法である。アトマイズ方法ではほぼ球形の粒子が得られる。
【0026】
導電体24に対する金属粒子25の固着は、焼結あるいは熱間圧延によって行われる。焼結による固着は、接続領域243を上に向けて接続領域243上に金属粒子25を一定の厚さでばらまき、加熱して導電体24に金属粒子25を固着する方法である。熱間圧延による固着は、接続領域243を上に向けて接続領域243上に金属粒子25をばらまき、一対の圧延ローラによって加熱・圧延して導電体24と金属粒子25とを一体化する方法である。
【0027】
第1の実施の形態では以下の効果が得られる。
(1−1)導電体24と半導体素子16とを半田で接続した場合、半導体素子16への通電による発熱・昇温により、半田が熱膨張する。半田の熱膨張率は、半導体素子16の熱膨張率よりもかなり大きい。半導体素子16の熱膨張率は、2〜5×10−6/°Cであり、錫と鉛との重量%の割合が10:90の半田の熱膨張率は、28.7×10−6/°Cである。又、導電体24の素材であるインバーの熱膨張率は、2.6×10−6/°C程度であり、半田の熱膨張率は、導電体24の熱膨張率よりもかなり大きい。そのため、半田が熱膨張すると、半導体素子16の熱膨張と半田の熱膨張との間に大きな膨張差が生じ、半田と半導体素子16との接合部で破断が生じたり、半導体素子16が損傷したり、半田にクラックが生じたりする。あるいは、導電体24の熱膨張と半田の熱膨張との間に大きな膨張差が生じ、半田と導電体24との接合部間で破断が生じたり、半田にクラックが生じたりする。
【0028】
本実施の形態では、金属粒子25が半導体素子16の第1の素子電極17に接触しているだけであるので、接続部材26の熱膨張と半導体素子16の熱膨張との間の膨張差は、第1の素子電極17に対する金属粒子25の接触位置の変動によって吸収される。その結果、半導体素子16と導電体24との間の接続不良や、接続対象である半導体素子16の損傷の発生が防止される。
【0029】
(1−2)半導体素子16の熱膨張率が例えば5×10−6/°Cである場合、導電体24の熱膨張は、半導体素子16の熱膨張よりも小さい。その場合、接続部材26と半導体素子16との間の静止摩擦力が大きいと仮定すると、半導体素子16側が接続部材26側の熱膨張・収縮に引きずられて半導体素子16が損傷するおそれがある。球形状の金属粒子25と半導体素子16との接触は、点接触となるので、半導体素子16と金属粒子25との間の静止摩擦力は小さい。そのため、半導体素子16側が接続部材26側の熱膨張・収縮に引きずられて半導体素子16が損傷するおそれはない。
【0030】
(1−3)平面と平面との接触部は、通電による温度上昇によって酸化して凝着するので、電気抵抗が増える。半導体素子16と金属粒子25とは点接触となるため、半導体素子16と金属粒子25との間の接触圧は、平面板同士の間の接触圧に比べて高くなる。そのため、半導体素子16と金属粒子25とを接触させる構成では、半導体素子16と金属粒子25との間の接触部における電気抵抗(接触抵抗)が上昇しにくいという利点がある。
【0031】
(1−4)球形状の金属粒子25は、アトマイズ方法等によって容易に作ることができる。容易に作ることができ、しかも接続対象に対して常に点接触となる球形状の粒子は、金属粒子25の形状として好適である。
【0032】
(1−5)平面の接続領域243は、金属粒子25を付着させる導電体24における付着表面である。金属粒子25は、付着表面としての接続領域243上で一定の厚さで導電体24に付着している。つまり、金属粒子25は、接続領域243上で平面的に散らばることになる。一方、接続対象である半導体素子16の第1の素子電極17の表面は、平面である。平面的に散らばった金属粒子25は、第1の素子電極17の平面の表面に接触する。このような接触では、金属粒子25と半導体素子16とが接続領域243の全体にわたって均等に接触することになるので、半導体素子16と金属粒子25とが電気的な接続として適正に接触する。
【0033】
(1−6)付着厚さが同一の場合、接続領域243における単位面積当たりの金属粒子25の個数が多いほど、半導体素子16と導電体24との電気的接続は良くなる。金属体としての導電体24は、板形状である。金属粒子25は、この板形状の導電体24の板面242(図2に図示)に付着される。導電体24の厚みtよりも大きい幅dの板面242は、付着厚さを変えないで単位面積当たりの個数を増やすように金属粒子25を平面的に散らばらせる上で、金属粒子25の付着場所として好適である。
【0034】
(1−7)金属粒子25は、圧縮ばね27のばね力によって半導体素子16に押接される。そのため、金属粒子25と半導体素子16とは、確実に接触する。
(1−8)導電体24の材質であるインバーの熱膨張率は、2.6×10−6/°Cであって半導体素子16の素材であるシリコンの熱膨張率に近い。そのため、半導体素子16と導電体24との間での熱膨張の差が小さく、熱膨張差による半導体素子16と金属粒子25との間の摺接が少ない。半導体素子16と金属粒子25との間の摺接の少なさは、半導体素子16の損傷を回避する上で有利である。従って、インバーは、導電体24の素材として好適である。
【0035】
(1−9)銅は、導電性に優れているので、導電体24に付着させる金属粒子25の材質として好適である。
次に、図3の第2の実施の形態を説明する。第1の実施の形態と同じ構成部には同じ符号が用いてある。
【0036】
半導体素子16と導電体24との間には導電性接着剤28が介在されている。導電性接着剤28は、第1の素子電極17に結合していると共に、接続領域243に結合している。
【0037】
第2の実施の形態では以下の効果が得られる。
(2−1)半導体素子16に導電性接着剤28を塗布した後に金属粒子25を半導体素子16に押しつけると、導電性接着剤28内の導電性粒子281が金属粒子25と半導体素子16との間で集団状態で挟まれる。そのため、導電性粒子281が第1の素子電極17と金属粒子25との両方に高い接触圧で接触する。第1の素子電極17に対する導電性粒子281の接触面積、及び金属粒子25に対する導電性粒子281の接触面積は、いずれも金属粒子25と第1の素子電極17との接触面積よりも大きくなる。その結果、接触抵抗が導電性接着剤28を使用しない場合に比べて低減する。
【0038】
(2−2)導電性接着剤28の厚みが接続領域243の全体にわたって均一でなかったり、製品毎に導電性接着剤28の厚みが異なるといった場合には、導電性接着剤28における電気抵抗が製品毎にばらつく。金属粒子25の付着厚さが例えば金属粒子25の粒子径(粒子径は一定とする)と同じであるとすると、導電性接着剤28の厚みは、接続領域243の全体にわたって金属粒子25の粒子径程度というほぼ一定値になる。そのため、導電性接着剤28における電気抵抗が製品毎にばらつくような問題は生じない。
【0039】
(2−3)半導体素子16と導電体24との接続に導電性接着剤28を用いた場合、半田による接続に比べると、導電性粒子281の接触により、電気的接続が確保され信頼性が向上するといった効果がある。
【0040】
次に、図4の第3の実施の形態を説明する。第1の実施の形態と同じ構成部には同じ符号が用いてある。
内底面131の上には板形状のリード29、30が配設されている。リード29,30は、インバー製である。導電体としてのリード29は、外部電極31に電気的に接続されており、リード30は、図示しない別の外部電極に電気的に接続されている。リード29,30と外部電極とは、半田あるいは溶接によって接続される。
【0041】
半導体素子16に接続するリード29,30の板面291,301側の接続領域292,302には金属粒子25Aが固着されている。金属粒子25Aは、リード29,30の板面291,301に平面的に散らばらせてある。金属粒子25Aは、金属粒子25と同じ形状をしており、材質も同じである。金属粒子25Aは、圧縮ばね27のばね力によって半導体素子16に押接される。リード29と金属粒子25Aとは、半導体素子16に接続するための接続部材32を構成する。リード30と金属粒子25Aとは、接続対象である半導体素子16に接続するための接続部材33を構成する。
【0042】
半導体素子16とリード29,30との間に関して、第1の実施の形態と同じような効果が得られる。
本発明では以下のような実施の形態も可能である。
【0043】
(1)図5に第4の実施の形態として示すように、導電体24を半導体素子16に向けて付勢する手段としてゴム製の弾性体34を用いてもよい。弾性体34は、蓋12の裏面に止着されている。弾性体34の材質としては、耐熱性に優れたシリコーンゴムが好適である。
【0044】
(2)図6に第5の実施の形態として示すように、導電体24の接続端部241の直上において、蓋12の裏面に押さえ突起121を一体形成し、基板11に蓋12を結合したときには、押さえ突起121が導電体24の接続端部241に当接して半導体素子16に金属粒子25を押し付けるようにすること。この場合、圧縮ばね27や弾性体34のような付勢手段が不要となり、部品点数が減る。突起121は、半導体素子16の第1の素子電極17と導電体24との接触を保持するための保持手段となる。
【0045】
(3)第1〜第5の実施の形態において、外部電極14と導電体24とを同じ材質で一体に形成すること。この場合、外部電極14と導電体24とを接続するための作業工程が不要になる。
【0046】
(4)第3の実施の形態において、リード29,30と外部電極とを同じ材質で一体に形成すること。この場合、外部電極とリード29,30とを接続するための作業工程が不要になる。
【0047】
(5)第1の実施の形態において、圧縮ばね27を無くして導電体24の接続端部241と半導体素子16の第1の素子電極17側とを絶縁樹脂でくるむこと。接続端部241と半導体素子16とに結合する絶縁樹脂は、半導体素子16と導電体24の接続端部241との接続を保持する保持手段となる。
【0048】
(6)導電体24、リード29,30の材質として、銅、アルミニウムを用いること。導電性に優れた銅、アルミニウムは、導電体24、リード29,30の材質として好適である。
【0049】
(7)金属粒子25,25Aの材質として、銅以外の金属(例えば、アルミニウム、インバー等)を用いること。
(8)金属粒子を付着していない板形状の導電体の接続領域を粗面に形成し、この粗面の接続領域を半導体素子に接触させて半導体素子と導電体とを電気的に接続すること。
【0050】
(9)金属粒子を付着していない板形状の導電体を半導体素子に面接触させて半導体素子と導電体とを電気的に接続すること。
(10)前記各実施の形態では、半導体素子の両面に本発明の接続部材を用いたが、半導体素子の片面のみに本発明の接続部材を用いてもよい。
【0051】
(11)本発明の接続部材を半導体素子16に対するヒートスプレッダとして用いること。
前記した実施の形態から把握できる発明について以下に記載する。
【0052】
〔1〕請求項7において、前記金属粒子を付着した前記導電体の接続領域と前記半導体素子との間に導電性接着剤を介在した接続構造。
【0053】
【発明の効果】
以上詳述したように、本発明によれば、熱応力による接続不良や損傷の発生を防止することができる。
【図面の簡単な説明】
【図1】第1の実施の形態を示す側断面図。
【図2】要部底面図。
【図3】第2の実施の形態を示す要部拡大側断面図。
【図4】第3の実施の形態を示す側断面図。
【図5】第4の実施の形態を示す要部拡大側断面図。
【図6】第5の実施の形態を示す要部拡大側断面図。
【符号の説明】
121…保持手段としての突起。14…外部電極。16…接続対象としての半導体素子。17,18,19…素子電極。24…金属体としての導電体。242,291,301…板面。243,292,302…接続領域。25,25A…金属粒子。26,32,33…接続部材。27…付勢手段としての圧縮ばね。29,30…導電体としてのリード。34…付勢手段としての弾性体。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a connection member and a connection structure, and more particularly to a connection member and a connection structure suitable for connection between a device electrode of a semiconductor device and an electrode outside the device.
[0002]
[Prior art]
In order to electrically connect a device electrode and an external electrode in a semiconductor device, the device electrode and the external electrode are generally connected by a metal wire (bonding wire). However, in the connection using a metal wire, a connection failure is likely to occur due to the line connection. In the semiconductor device disclosed in Japanese Patent No. 3216305, a bonding pad on a semiconductor layer and an electrode outside the element are connected by a plate-shaped conductive member (made of aluminum). In connection using a plate-shaped conductive member, surface connection is performed, so that poor connection is less likely to occur than connection using metal wires. Further, the connection of the plate-shaped conductive member to the bonding pad is performed by soldering, diffusion bonding, or the like, which does not apply a large stress to the bonding pad, so that the element is not damaged during bonding.
[0003]
[Problems to be solved by the invention]
However, since the difference in coefficient of thermal expansion between the conductive member (made of aluminum) and the semiconductor element (silicon) is large, thermal stress occurs due to heat generation and temperature rise during operation of the semiconductor device, and the semiconductor element is damaged. Or disconnection may occur.
[0004]
Also, even in a connection structure in which a semiconductor element is soldered on a heat spreader to improve heat dissipation, if the difference between the coefficient of thermal expansion of the heat spreader and the coefficient of thermal expansion of the semiconductor element is large, the connection between the heat spreader and the semiconductor element is made. A poor connection between them may result in reduced heat dissipation or damage to the semiconductor element.
[0005]
An object of the present invention is to provide a connection member and a connection structure that can prevent the occurrence of connection failure and damage due to thermal stress.
[0006]
[Means for Solving the Problems]
For this purpose, in the first aspect of the present invention, the connecting member is formed by attaching metal particles to at least the contact area of the metal body to be connected to the connection target.
[0007]
The metal body is connected to the connection target via the metal particles. Since the contact area between the metal particles and the connection target is smaller than the surface contact between the metal body itself and the connection target, the static friction force between the connection target and the connection member is smaller than that between the metal body itself and the connection target. Smaller than surface contact. Therefore, even if the coefficient of thermal expansion of the object to be connected and the coefficient of thermal expansion of the metal body are significantly different, the object to be connected and the connecting member thermally expand and contract with little effect on each other, and there is a risk of disconnection or damage. Disappears.
[0008]
According to a second aspect of the present invention, in the first aspect, the metal particles have a spherical shape.
Since the contact between the spherical metal particles and the connection target is a point contact, the static friction force between the connection target and the connection member is small. Further, spherical metal particles can be easily produced by an atomizing method or the like.
[0009]
According to a third aspect of the present invention, in any one of the first and second aspects, the attachment surface of the metal body to which the metal particles are attached is flat, and the attachment thickness of the metal particles is constant.
[0010]
The metal particles are scattered in a plane, and when the contact area of the connection target is a plane, the metal particles scattered in a plane and the connection target properly contact.
According to a fourth aspect of the present invention, in any one of the first to third aspects, the metal body has a plate shape, and the metal particles are attached to a plate surface of the plate shape.
[0011]
The plate shape refers to a shape having a width larger than the thickness. The board surface refers to a surface having a width. In the case of a metal body having a small thickness, a plate-shaped plate surface is suitable as a place where metal particles adhere.
[0012]
According to a fifth aspect of the present invention, in the connection structure in which the element electrode of the semiconductor element and the external electrode are electrically connected by a conductor, the conductor is brought into contact with the element electrode of the semiconductor element, and the element electrode of the semiconductor element is The contact with the conductor is held by holding means.
[0013]
The conductor is brought into contact with an element electrode of the semiconductor element, and this contact is held by holding means. Since the conductor and the device electrode of the semiconductor element are merely in contact with each other, even if the coefficient of thermal expansion of the semiconductor element is significantly different from the coefficient of thermal expansion of the conductor, the connection target and the connection member are not in contact with each other. Thermal expansion and contraction with little effect. As a result, there is no possibility of disconnection or damage. Note that the element electrode is included in the semiconductor as a part of the semiconductor element.
[0014]
In the invention of claim 6, in claim 5, the holding means is an urging means for pressing the conductor on an element electrode of the semiconductor element.
The urging unit is a unit that presses the conductor against the element electrode of the semiconductor element by a spring force, for example. Such a biasing means is suitable for securing a good electrical connection between the element electrode and the conductor by pressing the conductor against the element electrode of the semiconductor element with an appropriate force.
[0015]
According to a seventh aspect of the present invention, in any one of the fifth and sixth aspects, the connection member according to the fourth aspect is used as the conductor, and the metal particles of the connection member are connected to an element electrode of the semiconductor element. Was contacted.
[0016]
The conductive connection member is electrically connected to the device electrode of the semiconductor device via the metal particles. Since the contact area between the metal particles and the device electrode is smaller than the surface contact between the metal body itself and the connection target, the static friction force between the device electrode of the semiconductor device and the connection member is equal to the metal body itself and the semiconductor. It is smaller than the contact of the element with the element electrode. Therefore, even if the coefficient of thermal expansion of the semiconductor element and the coefficient of thermal expansion of the connection member are significantly different, the semiconductor element and the connection member thermally expand and contract with little effect on each other, which may cause disconnection or damage. Disappears.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
[0018]
As shown in FIG. 1, a package 10 is formed by connecting an insulating lid 12 to a metal substrate 11. The substrate 11 is made of a material having a high thermal conductivity, such as copper and aluminum. The surface of the substrate 11 is covered with an insulating insulating layer 111. A plurality of external electrodes 14 are interposed between the joint of the substrate 11 and the joint of the lid 12. One end of the external electrode 14 enters the accommodation room 13 in the package 10, and the other end of the external electrode 14 projects outside the package 10. In the example of the figure, only one external electrode 14 is shown. A portion between the connecting portion of the substrate 11 and the connecting portion of the lid 12 is sealed by an insulating sealing material 15 so as to cover a portion of the external electrode 14 sandwiched between the connecting portions.
[0019]
The semiconductor element 16 is accommodated in the accommodation room 13. In the present embodiment, the semiconductor element 16 is a field effect transistor (FET). It should be noted that an embodiment using a semiconductor element such as a bipolar transistor, an IGBT (Insulated Gate Bipolar Transistor), or a diode instead of the FET can be similarly configured. A first device electrode 17 for drain is provided on the entire surface of the semiconductor element 16 (the upper surface of the semiconductor element 16 in FIG. 1 and which is a plane). On the other surface of the semiconductor element 16 (a lower surface of the semiconductor element 16 in FIG. 1 and a plane), a second element electrode 18 for a source and a third element electrode 19 for a gate are provided. ing. The device electrodes 17, 18, and 19 are included in the semiconductor device 16 as a part of the semiconductor device 16.
[0020]
The conductive layers 20 and 21 are provided on the inner bottom surface 131 that forms the housing chamber 13. The conductive layers 20 and 21 are formed by printed wiring with copper or aluminum. The conductive layer 20 is electrically connected to an external electrode (not shown), and the conductive layer 21 is electrically connected to another external electrode (not shown). The second element electrode 18 is connected to the conductive layer 20 by solder 22, and the third element electrode 19 is connected to the conductive layer 21 by solder 23.
[0021]
A plate-shaped conductor 24 is electrically connected to an end of the external electrode 14 in the accommodation chamber 13. The plate shape refers to a shape in which the width d (shown in FIG. 2) is larger than the thickness t (shown in FIG. 1). The conductor 24 is made of Invar (an alloy of nickel and iron).
[0022]
As shown in FIG. 2, metal particles 25 are fixed to a plate surface 242 of one end (hereinafter, referred to as a connection end 241) of the conductor 24. The metal particles 25 are made of copper, and the particle size of the metal particles 25 is 100 to 500 μm. The region 243 of the plate surface 242 to which the metal particles 25 are fixed is a flat surface, and the flat region 243 is a connection region of the conductor 24 to be connected to the semiconductor element 16. The thickness of the metal particles 25 fixed (adhered) to the flat connection region 243 is constant over the entire connection region 243.
[0023]
The conductor 24 and the metal particles 25 constitute a connection member 26 in which the metal particles are attached to at least the connection region (241) of the metal body (conductor 24) to be connected to the connection target (semiconductor element 16).
[0024]
As shown in FIG. 1, a compression spring 27 is interposed between the lid 12 and the connection end 241 of the conductor 24. The spring force of the compression spring 27 as the urging means urges the connection end 241 of the conductor 24 toward the semiconductor element 16. The metal particles 25 fixed to the connection region 243 come into contact with the first element electrode 17 by the spring force of the compression spring 27, and the conductor 24 and the semiconductor element 16 are electrically connected.
[0025]
The metal particles 25 are formed by, for example, an atomizing method. The atomizing method is a method of forming particles by injecting a molten metal (copper in the present embodiment) of the metal particles 25 in, for example, argon gas. With the atomizing method, substantially spherical particles are obtained.
[0026]
The metal particles 25 are fixed to the conductor 24 by sintering or hot rolling. The fixation by sintering is a method in which the metal particles 25 are scattered in a certain thickness on the connection region 243 with the connection region 243 facing upward, and the metal particles 25 are fixed to the conductor 24 by heating. The fixation by hot rolling is performed by dispersing the metal particles 25 on the connection region 243 with the connection region 243 facing upward, and heating and rolling by a pair of rolling rollers to integrate the conductor 24 and the metal particles 25. is there.
[0027]
In the first embodiment, the following effects can be obtained.
(1-1) When the conductor 24 and the semiconductor element 16 are connected by solder, the solder thermally expands due to heat generation and temperature rise due to energization of the semiconductor element 16. The coefficient of thermal expansion of the solder is considerably larger than the coefficient of thermal expansion of the semiconductor element 16. The coefficient of thermal expansion of the semiconductor element 16 is 2 to 5 × 10 −6 / ° C., and the coefficient of thermal expansion of the solder having a weight ratio of tin and lead of 10:90 is 28.7 × 10 −6. / ° C. The thermal expansion coefficient of Invar, which is a material of the conductor 24, is about 2.6 × 10 −6 / ° C., and the thermal expansion coefficient of the solder is considerably larger than that of the conductor 24. Therefore, when the solder thermally expands, a large expansion difference occurs between the thermal expansion of the semiconductor element 16 and the thermal expansion of the solder, and a break occurs at the joint between the solder and the semiconductor element 16 or the semiconductor element 16 is damaged. Or cracks occur in the solder. Alternatively, a large expansion difference occurs between the thermal expansion of the conductor 24 and the thermal expansion of the solder, so that a break occurs between joints between the solder and the conductor 24 or cracks occur in the solder.
[0028]
In the present embodiment, since the metal particles 25 are only in contact with the first element electrode 17 of the semiconductor element 16, the difference in expansion between the thermal expansion of the connection member 26 and the thermal expansion of the semiconductor element 16 is Is absorbed by the variation of the contact position of the metal particles 25 with the first element electrode 17. As a result, poor connection between the semiconductor element 16 and the conductor 24 and damage to the semiconductor element 16 to be connected can be prevented.
[0029]
(1-2) When the coefficient of thermal expansion of the semiconductor element 16 is, for example, 5 × 10 −6 / ° C., the thermal expansion of the conductor 24 is smaller than that of the semiconductor element 16. In this case, assuming that the static friction force between the connection member 26 and the semiconductor element 16 is large, the semiconductor element 16 may be dragged by the thermal expansion and contraction of the connection member 26 and the semiconductor element 16 may be damaged. Since the contact between the spherical metal particles 25 and the semiconductor element 16 is a point contact, the static friction force between the semiconductor element 16 and the metal particles 25 is small. Therefore, there is no possibility that the semiconductor element 16 side is dragged by the thermal expansion and contraction of the connection member 26 side and the semiconductor element 16 is damaged.
[0030]
(1-3) Since the contact portion between the flat surfaces is oxidized and adhered due to a temperature rise due to energization, the electric resistance increases. Since the semiconductor element 16 and the metal particles 25 are in point contact, the contact pressure between the semiconductor element 16 and the metal particles 25 is higher than the contact pressure between the flat plates. Therefore, the configuration in which the semiconductor element 16 and the metal particles 25 are in contact with each other has an advantage that the electric resistance (contact resistance) at the contact portion between the semiconductor element 16 and the metal particles 25 is unlikely to increase.
[0031]
(1-4) The spherical metal particles 25 can be easily produced by an atomizing method or the like. Spherical particles that can be easily formed and are always in point contact with the connection target are suitable as the shape of the metal particles 25.
[0032]
The (1-5) plane connection region 243 is an attachment surface of the conductor 24 to which the metal particles 25 are attached. The metal particles 25 are attached to the conductor 24 at a constant thickness on the connection region 243 as an attachment surface. That is, the metal particles 25 are scattered two-dimensionally on the connection region 243. On the other hand, the surface of the first element electrode 17 of the semiconductor element 16 to be connected is a flat surface. The metal particles 25 scattered in a plane come into contact with the plane surface of the first element electrode 17. In such a contact, the metal particles 25 and the semiconductor element 16 come into uniform contact over the entire connection region 243, so that the semiconductor element 16 and the metal particles 25 properly contact as an electrical connection.
[0033]
(1-6) When the adhesion thickness is the same, the larger the number of metal particles 25 per unit area in the connection region 243, the better the electrical connection between the semiconductor element 16 and the conductor 24. The conductor 24 as a metal body has a plate shape. The metal particles 25 are attached to a plate surface 242 (shown in FIG. 2) of the plate-shaped conductor 24. The plate surface 242 having a width d larger than the thickness t of the conductor 24 allows the metal particles 25 to be scattered two-dimensionally so as to increase the number per unit area without changing the adhesion thickness. It is suitable as an attachment place.
[0034]
(1-7) The metal particles 25 are pressed against the semiconductor element 16 by the spring force of the compression spring 27. Therefore, the metal particles 25 and the semiconductor element 16 are securely in contact with each other.
(1-8) The coefficient of thermal expansion of Invar, which is the material of the conductor 24, is 2.6 × 10 −6 / ° C., which is close to the coefficient of thermal expansion of silicon, which is the material of the semiconductor element 16. Therefore, the difference in thermal expansion between the semiconductor element 16 and the conductor 24 is small, and the sliding contact between the semiconductor element 16 and the metal particles 25 due to the difference in thermal expansion is small. The low sliding contact between the semiconductor element 16 and the metal particles 25 is advantageous in avoiding damage to the semiconductor element 16. Therefore, Invar is suitable as a material of the conductor 24.
[0035]
(1-9) Copper is suitable as a material of the metal particles 25 to be attached to the conductor 24 because copper has excellent conductivity.
Next, a second embodiment of FIG. 3 will be described. The same components as those in the first embodiment are denoted by the same reference numerals.
[0036]
A conductive adhesive 28 is interposed between the semiconductor element 16 and the conductor 24. The conductive adhesive 28 is connected to the first element electrode 17 and to the connection region 243.
[0037]
The second embodiment has the following advantages.
(2-1) When the metal particles 25 are pressed against the semiconductor element 16 after the conductive adhesive 28 is applied to the semiconductor element 16, the conductive particles 281 in the conductive adhesive 28 cause the metal particles 25 and the semiconductor element 16 to adhere to each other. It is sandwiched between groups. Therefore, the conductive particles 281 contact both the first element electrode 17 and the metal particles 25 with a high contact pressure. Both the contact area of the conductive particles 281 with the first element electrode 17 and the contact area of the conductive particles 281 with the metal particles 25 are larger than the contact area between the metal particles 25 and the first element electrode 17. As a result, the contact resistance is reduced as compared with the case where the conductive adhesive 28 is not used.
[0038]
(2-2) In the case where the thickness of the conductive adhesive 28 is not uniform over the entire connection region 243 or the thickness of the conductive adhesive 28 differs for each product, the electric resistance of the conductive adhesive 28 is reduced. It varies from product to product. Assuming that the adhesion thickness of the metal particles 25 is, for example, the same as the particle diameter of the metal particles 25 (the particle diameter is constant), the thickness of the conductive adhesive 28 is It has a substantially constant value of about the diameter. Therefore, there is no problem that the electric resistance of the conductive adhesive 28 varies from product to product.
[0039]
(2-3) When the conductive adhesive 28 is used to connect the semiconductor element 16 and the conductor 24, the electrical connection is ensured by the contact of the conductive particles 281 as compared with the connection by solder, and the reliability is improved. It has the effect of improving.
[0040]
Next, a third embodiment of FIG. 4 will be described. The same components as those in the first embodiment are denoted by the same reference numerals.
Plate-shaped leads 29 and 30 are provided on the inner bottom surface 131. The leads 29 and 30 are made of Invar. The lead 29 as a conductor is electrically connected to the external electrode 31, and the lead 30 is electrically connected to another external electrode (not shown). The leads 29 and 30 and the external electrodes are connected by soldering or welding.
[0041]
Metal particles 25A are fixed to connection regions 292, 302 of the leads 29, 30 connected to the semiconductor element 16 on the plate surfaces 291, 301 side. The metal particles 25A are scattered in a plane on the plate surfaces 291 and 301 of the leads 29 and 30. The metal particles 25A have the same shape as the metal particles 25, and have the same material. The metal particles 25 </ b> A are pressed against the semiconductor element 16 by the spring force of the compression spring 27. The lead 29 and the metal particles 25A form a connection member 32 for connecting to the semiconductor element 16. The lead 30 and the metal particles 25A constitute a connection member 33 for connecting to the semiconductor element 16 to be connected.
[0042]
An effect similar to that of the first embodiment can be obtained between the semiconductor element 16 and the leads 29 and 30.
In the present invention, the following embodiments are also possible.
[0043]
(1) As shown in FIG. 5 as a fourth embodiment, a rubber elastic body 34 may be used as means for urging the conductor 24 toward the semiconductor element 16. The elastic body 34 is fixed to the back surface of the lid 12. As a material of the elastic body 34, silicone rubber having excellent heat resistance is preferable.
[0044]
(2) As shown in FIG. 6 as the fifth embodiment, a pressing projection 121 is integrally formed on the back surface of the lid 12 immediately above the connection end 241 of the conductor 24, and the lid 12 is joined to the substrate 11. In some cases, the pressing protrusion 121 contacts the connection end 241 of the conductor 24 to press the metal particles 25 against the semiconductor element 16. In this case, no urging means such as the compression spring 27 or the elastic body 34 is required, and the number of components is reduced. The protrusion 121 serves as holding means for holding the contact between the first element electrode 17 of the semiconductor element 16 and the conductor 24.
[0045]
(3) In the first to fifth embodiments, the external electrode 14 and the conductor 24 are integrally formed of the same material. In this case, an operation process for connecting the external electrode 14 and the conductor 24 becomes unnecessary.
[0046]
(4) In the third embodiment, the leads 29, 30 and the external electrode are integrally formed of the same material. In this case, a work process for connecting the external electrodes and the leads 29 and 30 is not required.
[0047]
(5) In the first embodiment, the connection end 241 of the conductor 24 and the first element electrode 17 side of the semiconductor element 16 are wrapped with insulating resin without the compression spring 27. The insulating resin bonded to the connection end 241 and the semiconductor element 16 serves as holding means for holding the connection between the semiconductor element 16 and the connection end 241 of the conductor 24.
[0048]
(6) Copper and aluminum are used as the material of the conductor 24 and the leads 29 and 30. Copper and aluminum having excellent conductivity are suitable as materials for the conductor 24 and the leads 29 and 30.
[0049]
(7) As the material of the metal particles 25, 25A, a metal other than copper (for example, aluminum, invar, or the like) is used.
(8) A connection region of a plate-shaped conductor on which metal particles are not adhered is formed on a rough surface, and the rough connection region is brought into contact with the semiconductor element to electrically connect the semiconductor element and the conductor. thing.
[0050]
(9) The semiconductor element and the conductor are electrically connected by bringing a plate-shaped conductor having no metal particles attached into surface contact with the semiconductor element.
(10) In the above embodiments, the connecting member of the present invention is used on both surfaces of the semiconductor element. However, the connecting member of the present invention may be used only on one surface of the semiconductor element.
[0051]
(11) The connection member of the present invention is used as a heat spreader for the semiconductor element 16.
The invention that can be grasped from the above-described embodiment will be described below.
[0052]
[1] The connection structure according to claim 7, wherein a conductive adhesive is interposed between a connection region of the conductor to which the metal particles are attached and the semiconductor element.
[0053]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to prevent the occurrence of connection failure or damage due to thermal stress.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a first embodiment.
FIG. 2 is a bottom view of a main part.
FIG. 3 is an enlarged side sectional view of a main part showing a second embodiment.
FIG. 4 is a side sectional view showing a third embodiment.
FIG. 5 is an enlarged side sectional view of a main part showing a fourth embodiment.
FIG. 6 is an enlarged side sectional view of a main part showing a fifth embodiment.
[Explanation of symbols]
121: Projection as holding means. 14 ... External electrodes. 16 ... Semiconductor element to be connected. 17, 18, 19: Device electrodes. 24 ... A conductor as a metal body. 242, 291, 301 ... plate surface. 243, 292, 302 ... connection area. 25, 25A: Metal particles. 26, 32, 33 ... connecting members. 27: Compression spring as urging means. 29, 30... Leads as conductors. 34 ... elastic body as urging means.

Claims (7)

接続対象に接続させる金属体の少なくとも接続領域に金属粒子を付着した接続部材。A connection member in which metal particles are attached to at least a connection region of a metal body to be connected to a connection target. 前記金属粒子は、球形状である請求項1に記載の接続部材。The connection member according to claim 1, wherein the metal particles have a spherical shape. 前記金属粒子を付着させる前記金属体の付着表面は、平面とし、前記金属粒子の付着厚さを一定にした請求項1及び請求項2のいずれか1項に記載の接続部材。The connecting member according to claim 1, wherein an attachment surface of the metal body to which the metal particles are attached is flat, and an attachment thickness of the metal particles is constant. 前記金属体は、板形状とし、この板形状の板面に前記金属粒子を付着した請求項1乃至請求項3のいずれか1項に記載の接続部材。The connection member according to any one of claims 1 to 3, wherein the metal body has a plate shape, and the metal particles are attached to a plate surface of the plate shape. 半導体素子の素子電極と外部電極とを導電体によって電気的に接続した接続構造において、
前記半導体素子の素子電極に前記導電体を接触させ、前記半導体素子の素子電極と前記導電体との接触を保持するための保持手段を備えた接続構造。
In a connection structure in which an element electrode of a semiconductor element and an external electrode are electrically connected by a conductor,
A connection structure comprising: holding means for bringing the conductor into contact with an element electrode of the semiconductor element and holding contact between the element electrode of the semiconductor element and the conductor.
前記保持手段は、前記半導体素子の素子電極に向けて前記導電体を付勢する付勢手段である請求項5に記載の接続構造。The connection structure according to claim 5, wherein the holding unit is a biasing unit that biases the conductor toward an element electrode of the semiconductor element. 前記導電体として請求項4に記載の接続部材を用い、前記接続部材の前記金属粒子を前記半導体素子の素子電極に接触させた請求項5及び請求項6のいずれか1項に記載の接続構造。7. The connection structure according to claim 5, wherein the connection member according to claim 4 is used as the conductor, and the metal particles of the connection member are brought into contact with an element electrode of the semiconductor element. .
JP2002204218A 2002-07-12 2002-07-12 Connecting member and connecting structure Pending JP2004047799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002204218A JP2004047799A (en) 2002-07-12 2002-07-12 Connecting member and connecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204218A JP2004047799A (en) 2002-07-12 2002-07-12 Connecting member and connecting structure

Publications (1)

Publication Number Publication Date
JP2004047799A true JP2004047799A (en) 2004-02-12

Family

ID=31709880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204218A Pending JP2004047799A (en) 2002-07-12 2002-07-12 Connecting member and connecting structure

Country Status (1)

Country Link
JP (1) JP2004047799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972953B1 (en) 2005-05-17 2010-07-29 주식회사 만도 Connecting structure for torque sensor of steering system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972953B1 (en) 2005-05-17 2010-07-29 주식회사 만도 Connecting structure for torque sensor of steering system

Similar Documents

Publication Publication Date Title
US8324720B2 (en) Power semiconductor module assembly with heat dissipating element
JP2004047883A (en) Electric power semiconductor device
JPH11195680A (en) Semiconductor device connection structure and method
JP4226200B2 (en) Semiconductor device and manufacturing method thereof
JPS59141249A (en) Power chip package
JP2001102400A (en) Electronic device and manufacturing method therefor
WO2011092859A1 (en) Method for manufacturing semiconductor device and semiconductor device
WO2005117116A1 (en) Semiconductor device
JP3614079B2 (en) Semiconductor device and manufacturing method thereof
JP5218009B2 (en) Semiconductor device
US7816690B2 (en) Light-emitting device
US20080079109A1 (en) Thermoelectric device and method for making the same
JP2004014599A (en) Semiconductor device and its manufacturing method
JP2001267475A (en) Mounting structure of semiconductor device and its mounting method
JPH10189657A (en) Connection between terminals, mounting of semiconductor chip, bonding of semiconductor chip and connection structure between terminals
JP5840102B2 (en) Power semiconductor device
JP2004047799A (en) Connecting member and connecting structure
JP2009231685A (en) Power semiconductor device
JP2000307058A (en) Power semiconductor module
JP2013179231A (en) Semiconductor module
JP3522975B2 (en) Semiconductor device
JP7322467B2 (en) semiconductor equipment
JPH08125092A (en) Semiconductor device and manufacture thereof
JP2007242962A (en) Semiconductor device
JP2007109857A (en) Insulating structure of semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404