JP2004047236A - Color selection electrode thin plate, color selection mechanism, and cathode-ray tube - Google Patents

Color selection electrode thin plate, color selection mechanism, and cathode-ray tube Download PDF

Info

Publication number
JP2004047236A
JP2004047236A JP2002201807A JP2002201807A JP2004047236A JP 2004047236 A JP2004047236 A JP 2004047236A JP 2002201807 A JP2002201807 A JP 2002201807A JP 2002201807 A JP2002201807 A JP 2002201807A JP 2004047236 A JP2004047236 A JP 2004047236A
Authority
JP
Japan
Prior art keywords
color selection
masks
color
thin plate
selection mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002201807A
Other languages
Japanese (ja)
Inventor
Masanaga Tanaka
田中 正長
Koji Saida
採田 幸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002201807A priority Critical patent/JP2004047236A/en
Publication of JP2004047236A publication Critical patent/JP2004047236A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a color selection mechanism of a multiple-mask structure increasing restriction/attenuation effect and eliminating mis-alignment of bean transparent holes and to provide a cathode-ray tube having the color selection mechanism. <P>SOLUTION: A plurality of masks 51, 52 each having beam transparent holes 54, 57 at locations corresponding to each other are overlapped with each other. A color selection electrode thin plate 50 in which the overlapped masks 51, 52 are bonded between the end of the beam transparent holes 54, 57 and a welding part 61 toward a frame 46, is bridged and welded on the frame 46 to form the color selection mechanism 34. The cathode-ray tube comprises the color selection mechanism 34. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、陰極線管に使用される色選別用電極薄板、色選別機構及びこの色選別機構を備えた陰極線管に関する。
【0002】
【従来の技術】
カラー陰極線管の色選別機構として、例えば図5 に示すようなアパーチャグリルと称される色選別機構1が知られている。この色選別機構1は、1対の相対向する支持部材2及び3と、この支持部材2及び3の両端部間に差し渡された弾性賦与部材4及び5からなる枠状の金属フレーム6が設けられ、このフレーム6の相対向する支持部材間に一方向、即ち電子ビームのライン走査方向に沿って多数のスリット状のビーム透過孔9を有するマスク部材、即ち色選別用電極薄板10が架張されて成る。色選別用電極薄板10は、金属薄板から成り、多数の細い帯状のグリット素体8を上記一方向に所定ピッチをもって配列し、各隣り合うグリット素体8間に電子ビームのフィールド方向に長いスリット状のビーム透過孔9を形成して構成され、弾性賦与部材4及び5によってグリット素体8が所定張力をもって支持部材2及び3間に架張される。なお、フレーム6には、色選別機構1を陰極線管のパネル内に支持するために、スプリングホルダ14を介して端部にパネルピンに係合する係合孔15を有する支持スプリング16が取り付けられる。
【0003】
このような色選別機構1を備えたカラー陰極線管においては、管体内部が真空であるので空気抵抗がなく、その為、衝撃、スピーカからの音声出力等の外部からの強制振動で色選別機構1の電極薄板10が共振するのを防止する必要がある。即ち、この色選別機構1では、電極薄板10の振動を抑制する、あるいは一旦振動を始めても早期に減衰させるための機構が必要になる。よく知られている振動防止方法は、図5に示すように、色選別用電極薄板10の面に接触するようにグリッド素体8の配列方向に沿って例えば極細の鋼線からなるダンパー線11が架張される。このダンパー線11は、フレーム6の弾性賦与部材4及び5に取着したダンパースプリング12間に架張される。しかし、ダンパー線11は、画像上に極薄ながら影をつくる。また、色選別用電極薄板10がダンパー線11の接触面に対して法線方向に振動したときには、ダンパー線11による減衰効果が得にくい。
【0004】
一方、カラー陰極線管の大型化、高精細化に伴い、色選別機構のグリッド素体の振動をより効果的に減衰させることが望まれてきた。近年注目されている手法の一つとして、図6(要部の斜視図)及び図7(図6のA−A線上の断面図)に示す色選別機構21が提案されている(特開平7−182983号参照)。この色選別機構21は、互いに対応してビーム透過孔22a,23a、及びグリッド素体22b,23bを夫々有した2枚の薄板鋼板、即ちマスク22及び23を重ね合わせてなる色選別用電極薄板24をフレーム6の支持部材2及び3に溶接して構成される。この色選別機構21では、2枚のマスク22及び23同士の接触抵抗で互いが減衰し合うことで、高い減衰効果が得られる。また、色選別用電極薄板24の面に対し、法線方向の振動は互いのマスク22及び23がぶつかり合うことで減衰効果が得られる。従って、ダンパー線の省略が可能になり、良好な画像が得られる。
【0005】
【発明が解決しようとする課題】
ところで、図6及び図7に示す二重マスク構造の色選別機構21においては、2枚のマスク22及び23を重ねた状態でフレーム6の支持部材2及び3に溶接されるが、この色選別機構21に黒化処理を行った後に、夫々のマスク22、23に与えられる応力の分布の相違等により2枚のマスク22、23による色選別用電極薄板24に皺が発生し、2枚のマスク22及び23間の密着性が損なわれる。即ち、図6及び図8示すように、色選別用電極薄板24を構成する各マスク22、23のグリッド素体22b、23bを連結する連結部(いわゆるスリットが形成されない連続部)、つまりフレーム6への溶接部26とビーム透過孔22a,23aの端部との間の連結部27において、局所的(例えば数本のグリッド素体を含む領域L)に皺28が発生し、その領域の2枚のマスク22及び23のグリッド素体22b及び23b間に空隙29が発生し、密着性が損なわれる。
2枚のマスク22及び23がグリッド素体を含む全面で均一に接触していれば、制振・減衰効果が得られるが、その全面で均一の接触していないと、上記制振・減衰効果が得られない。
【0006】
また、2枚のマスク22及び23を重ねて同時にフレーム6に溶接するためには、溶接電流を多量に必要とし、その電流に見合う溶接加圧が必要となる。そのため、マスク22及び23は熱変形を起こしたり、2枚のマスク22及び23の位置ずれを起こし易くなる。2枚のマスク22及び23のビーム透過孔22a及び23aの位置がずれていなければ、図9Aに示すように、適正な量の電子ビームBが通過するが、2枚のマスク22及び23の位置がずれていれば、図9Bに示すように、適正な量の電子ビームBが通過できず、画像上の輝度や色度に不具合が生じる。
【0007】
本発明は、上述の点に鑑み、色選別用電極薄板の制振・減衰効果を高め、且つビーム透過孔の位置ずれをなくした、精度の高い色選別用電極薄板、色選別機構、及びこの色選別機構を備えた陰極線管を提供するものである。
【0008】
【課題を解決するための手段】
本発明に係る色選別用電極薄板は、互いに対応する位置にビーム透過孔が設けられた複数枚のマスクが重ね合わされ、重ね合わされたマスクがビーム透過孔の端部とフレームへの溶接部との間の位置で互いに接合された構成とする。
【0009】
本発明の色選別用電極薄板では、重ね合わされた複数枚のマスクがビーム透過孔の端部とフレームへの溶接部との間で互いに接合されるので、その接合部とビーム透過孔の端部との間の距離が小さくなる。従って、この色選別用電極薄板をフレームに溶接し、黒化処理したときには、黒化処理後に接合部とビーム透過孔の端部との間の領域において、複数枚のマスクの間で応力分布に差異が生じても、上記の距離が小さいので、複数枚のマスク間に空隙が形成されるような皺が生じない。これにより複数枚のマスクは全面で均一に密着される。複数枚のマスクの接合を例えば溶接等で行った場合にも、マスクが薄板であるので低溶接電流で済、熱変形が回避される。
【0010】
本発明に係る色選別機構は、互いに対応する位置にビーム透過孔が設けられた複数枚のマスクが重ね合わされ、重ね合わされたマスクが予めビーム透過孔の端部とフレームへの溶接部との間の位置で接合されてなる色選別用電極薄板を有し、この色選別用電極薄板がフレーム上に架張され溶接された構成とする。
【0011】
本発明の色選別機構では、予め、重ね合わされた複数枚のマスクをビーム透過孔の端部とフレームへの溶接部との間の位置で接合してなる色選別用電極薄板を設け、この色選別用電極薄板をフレーム上に溶接して構成するので、複数枚のマスク間で全面均一に密着され、外部から振動を受けても色選別用電極薄板の制振や減衰が良好に行える。
【0012】
本発明に係る陰極線管は、互いに対応する位置にビーム透過孔が設けられた複数枚のマスクが重ね合わされ、重ね合わされたマスクが予めビーム透過孔の端部とフレームへの溶接部との間の位置で接合されてなる色選別用電極薄板を有し、この色選別用電極薄板がフレーム上に架張され溶接されてなる色選別機構を、備えた構成とする。
【0013】
本発明の陰極線管では、色選別機構が上記構成を有するので、複数枚のマスクからなる色選別用電極薄板が互いに全面均一に密着され、外部から振動を受けても色選別用電極薄板の制振、減衰が良好に行われ、画質が損なわれない。
【0014】
【発明の実施の形態】
以下、図面を参照して説明する。
【0015】
図1は、本発明に係わるカラー陰極線管の一実施の形態を示す。
本実施の形態に係るカラー陰極線管31は、陰極線管体(例えばガラス管体)32のパネル32Pの内面に赤(R)、緑(G)及び青(B)の各色蛍光体層、例えば各色蛍光体ストライプからなるカラー蛍光面33が形成され、この蛍光面33に対向して後述の本発明による色選別機構34が配置され、ネック部32N内に電子銃35が配置されて成る。管体3の外側には、電子銃35からの各色の電子ビームBR ,BG ,BB をライン方向及びフィールド方向に偏向させる偏向ヨーク36が配置される。
【0016】
ここで、ライン方向とは、電子ビームを1ライン走査する方向であると定義し、フィールド方向とは、ライン走査した電子ビームを面として走査する方向、即ちライン方向と直交する方向であると定義する。従って、例えば図1に示す陰極線管31の場合は、ライン方向が画面水平方向をさし、フィールド方向が画面垂直方向を指す。また、図示せざるも、複数のネック部を有し、各ネック部内に電子銃を配置してなる、いわゆるマルチネック型陰極線管の場合は、電子ビームが画面垂直方向に走査しながら、画面水平方向に走査するので、ライン方向が画面垂直方向を指し、フィールド方向が画面水平方向を指す。
【0017】
このカラー陰極線管31では、電子銃35の各色に対応するカソードから出射された各電子ビームB〔BR ,BG ,BB 〕が複数の電極出形成された主電子レンズで収束され蛍光面33上でフォーカスされ、且つ集中(コンバージェンス)され、赤、緑、青の各色蛍光体ストライプに照射される。この電子ビームBR ,BG ,BB が偏向ヨーク36によって水平、垂直方向に偏向されて所要のカラー画像が表示される。
【0018】
図2〜図4は、かかるカラー陰極線管31における色選別機構34の一実施の形態を示す。本実施の形態はアパーチャグリルに適用した場合である。
本実施の形態に係る色選別機構34は、1対の相対向する断面L字型の支持部材42及び43と、この支持部材42及び43の両端部間に差し渡されたU字状の弾性賦与部材44及び45からなる枠状の金属フレーム46が設けられ、このフレーム46の相対向する支持部材42及び43間に一方向、即ち電子ビームのライン走査方向に沿って多数のスリット状のビーム透過孔を有する色選別用電極薄板50が架張されて成る。
【0019】
そして、本実施の形態においては、特に、色選別用電極薄板50が互いに対応する位置にビーム透過孔を有する複数枚、本例では2枚のマスク51及び52を重ね合わせて形成される。即ち、色選別用電極薄板50は、金属薄板からなり多数の細い帯状のグリッド素体53を上記一方向に所定ピッチをもって配列し、各隣り合うグリッド素体53間に電子ビームのフィールド走査方向に長いスリット状のビーム透過孔54が形成され、ビーム透過孔54の長手方向の両辺にグリッド素体53を連結する面状に連続した連結部55を有した第1のマスク51と、同様に、金属薄板からなり多数の細い帯状のグリッド素体56を上記一方向に所定ピッチをもって配列し、各隣り合うグリッド素体56間に電子ビームのフィールド走査方向に長いスリット状のビーム透過孔57が形成され、ビーム透過孔57の長手方向の両辺にグリッド素体56を連結する面状に連続した連結部58を有した第2のマスク52から成る。本例では、蛍光面側の第1のマスク51のグリッド素体53の幅W1 を、電子銃側の第2のマスク52のグリッド素体56の幅w2 より大にして、第1のマスク51を実質的な色選別電極とし、第2のマスク52を振動防止用とする。なお、第1のマスク51と第2のマスク52の配置を逆にすることも可能である。
【0020】
この2枚のマスク51及び52は、フレーム46に溶接される前に、予めフレーム46への溶接部61とビーム透過孔54、57の端部との間の位置(図3の破線位置)62でで互いに接合される。本例ではシーム溶接やレーザ溶接で接合(いわゆる仮溶接)する。接合位置62は、フレーム46の溶接部61とビーム透過孔54、57の端部との中間であれば良いが、好ましくはビーム透過孔54、57の端部から距離X=1〜4mm離れた位置とする。距離Xが4mmを越えると皺が発生する虞があり、距離Xが1mm未満では例えば接合を溶接で行ったときに熱でグリッド素体53、56が熱変形する虞がある。
2枚のマスク51及び52の接合に際して、均等で連続的に接合され、接合部62以外の金属薄板部が変形しないことが望ましいので、シーム溶接、レーザ溶接で行うことが考えられるが、上記の条件を満たせば、接合形態を特定しなくても効果は期待できる。
【0021】
このように予め2枚の第1及び第2のマスク51及び52を上記位置62において接合した状態で、かかる色選別用電極薄板50がフレーム56上に架張され、支持部材42及び43の上面に例えばシーム溶接で本溶接されて、色選別機構34が構成される。なお、図2において、フレーム46には、色選別機構1を陰極線管のパネル内に支持するために、スプリングホルダ64を介して端部にパネルピンに係合する係合孔65を有する支持スプリング66が取り付けられる。
【0022】
本実施の形態の2枚マスク構造の色選別機構34においては、外部からの振動を受けたときに、前述したと同様に、2枚のマスク51及び52同士の接触抵抗で互いが減衰し合うことで、高い減衰効果が得られる。また、色選別用電極薄板50の面に対し、法線方向の振動は互いのマスク51及び52がぶつかり合うことで減衰効果が得られる。
【0023】
上述の本実施の形態によれば、色選別機構34を構成する色選別用電極薄板として、2枚のマスク51及び52を重ね合わせ予めフレームへの溶接部61とビーム透過孔54、57の端部との中間の位置、好ましくはビーム透過孔端部から1〜4mm(=距離X)離れた位置で接合した色選別用電極薄板50を用いることにより、色選別機構34を形成し黒化処理した後において連結部55及び58に皺の発生が防止される。即ち、黒化処理後に例え2枚のマスク51及び52の応力分布に差異が生じても、マスク51及び52の接合部62とビーム透過孔54、57の端部との間の距離Xが小さいので、接合部62とビーム透過孔端部間の連結部が殆ど無いに等しく、2枚のマスク51及び52間に空間が空くような皺にはならない。従って、2枚のマスク51及び52は、全面で均等に密着し、外部から振動を受けても、色選別機構34のグリッド素体の振動を抑制することができる。即ち、2枚のマスク51及び52の密着性がよいと、色選別機構の制振や減衰が理想的に行われ、カラー陰極線管の画像を乱しにくい。本実施の形態の色選別機構50では、従来の振動抑止にためのダンパー線を省略することが可能になり、あるいはダンパー線の本数を削減することが可能になる。従って、ダンパー線の影の影響が低減し、高画質、高品質のカラー陰極線管を提供できる。
【0024】
2枚のマスク51及び52の接合では、金属薄板同士を溶接するので、金属薄板とフレームとの溶接に比べて、低溶接電流で実施することができる。従って、この接合によるマスク51及び52の熱変形は、非常に少なく無視できる程度であり、グリッド素体の領域に影響しない。従って画像の均一性を損なうことがない。2枚のマスク51及び52は低電流で溶接できるので、加圧力も少なくて済む。従って、2枚のマスク51及び52の相対位置を決めた後、溶接熱や加圧力による位置ずれが生じにくい。2枚のマスク51及び52の相対位置の精度を向上するとができ、各ビーム透過孔54及び57の相対位置がずれないので、色選別機構34のビーム透過孔を適正な量の電子ビームを通過させることができ、画像の輝度や色度を損なうことがない。
【0025】
2枚のマスク51及び52を予め仮接合して一体化するので、この後に色選別用電極薄板50をフレーム46に溶接して色選別機構34を組み立てる時には、あたかも1枚の色選別用電極薄板を溶接する時と同様の作業にて、いわゆる2重マスク構造の色選別機構34を製造することができる。
【0026】
本発明の上述の色選別機構は、マルチネック型カラー陰極線管用の色選別機構にも適用できる。マルチネック型カラー陰極線管は、図示せざるも複数、例えば2つのネック部を有するファンネルと、大画面を形成するパネルとからなる管体が設けられ、パネル内面のカラー蛍光面に対向して例えばアパーチャグリルにより色選別機構が配置され、各ネック部内に夫々電子銃が配置されて成る。パネルは一体形成され画面水平方向を長軸とし、画面垂直方向を短軸とする横長形状に形成される。これに伴って、色選別機構は、パネルの大画面領域に対して共通に形成され、画面水平方向に長いスリット状のビーム透過孔を形成した色選別用電極薄板をフレーム上に架張して溶接されて成る。このマルチネック型カラー陰極線管は、各電子銃からの電子ビームをパネルのそれぞれの小画像領域に対して画面垂直方向にライン走査させながら、画面水平方向にフィールド走査させて大画面を表示するようになされる。この色選別機構を上述の実施の形態で示す2重マスク構造の色選別機構で構成することが可能である。
さらに、本発明の上述の色選別機構は、シャドウマスク型のカラー陰極線管に使用される所謂スロットマスクにも適用することができる。
【0027】
本発明は、上述の色選別機構を備えたカラー陰極線管をセットに組み込み、テレビジョン受像機、コンピュータ用ディスプレイ等の表示装置として構成することができる。
【0028】
【発明の効果】
本発明に係る色選別用電極薄板によれば、複数、例えば2枚のマスクを重ね合わせ、フレームへの溶接部とビーム透過孔端部との間で接合して一体化しているので、これをフレーム上に溶接して色選別機構を作製したとき、皺の発生をなくし、マスク間の密着性を向上させることができる。マスクの接合部をビーム透過孔の端部から1〜4mm離れた位置に設けるときは、より確実に皺の発生をなくし、マスク間の密着性を向上することができる。
予め薄い複数のマスクを接合するので、溶接で接合するときは低溶接電流で済み、溶接熱によるマスクの変形を回避することができる。複数のマスク間の相対位置の精度を向上させることができる。複数のマスクが接合され一体化されるので、色選別機構を組み立てるときに、通常の1枚の色選別用電極薄板を組み立てる時と同様の手段で組み立てることができる。
【0029】
本発明に係る色選別機構によれば、色選別用電極薄板を構成する複数、例えば2枚のマスクを全面均一に密着させることができ、外部からの振動を受けても、色選別用電極薄板に対する制振、減衰を理想的に行うことができる。ダンパー線の省略、あるいは本数の削減が可能になり、画面上でのダンパー線の影を無くす、あるいは低減することができる。マスク間のビーム透過孔の相対位置の精度が向上するので、適正な量の電子ビームをビーム透過孔から通過させることができる。
【0030】
本発明に係る陰極線管によれば、上記色選別機構を備えるので、外部からの振動を受けても色選別機構の振動が抑制され、画像を乱すことがない。色選別機構のビーム透過孔から適正量の電子ビームが透過できるので、画像の輝度や色度を損なうことがない。色選別機構のグリッド素体が熱変形することがないので、画像の均一性を損なうことがない。従って、高画質、高品質の陰極線管を提供することができ、例えば大型化、高精細化されたカラー陰極線管の実施を可能にする。
【図面の簡単な説明】
【図1】本発明に係るカラー陰極線管の一実施の形態を示す構成図である。
【図2】本発明に係る色選別機構の一実施の形態を示す構成図である。
【図3】図2の要部の拡大図である。
【図4】図3のD−D線上の断面図である。
【図5】従来の色選別機構の一例を示す構成図である。
【図6】従来の色選別機構の他の例を示す要部の拡大図である。
【図7】図6のAーA線上の断面図である。
【図8】A 図6の色選別機構の問題点の説明に供する図6のB−B線上の断面図である。B 図6のC−C線上の断面図である。
【図9】A〜B 図6の色選別機構の問題点の説明に供する説明図である。
【符号の説明】
31・・・カラー陰極線管、32・・・管体、32P・・・パネル、32N・・・ネック部、33・・・蛍光面、34・・・色選別機構、35・・・電子銃、36・・・偏向ヨーク、B〔BR ,BG ,BB 〕・・・電子ビーム、42、43・・・支持部材、44、45・・・弾性賦与部材、46・・・フレーム、50・・・色選別用電極薄板、51、52・・・マスク、53、56・・・グリッド素体、54、57・・・ビーム透過孔、55、58・・・連結部、61・・・溶接部、62・・・接合部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a color selecting electrode thin plate used for a cathode ray tube, a color selecting mechanism, and a cathode ray tube provided with the color selecting mechanism.
[0002]
[Prior art]
As a color selection mechanism of a color cathode ray tube, for example, a color selection mechanism 1 called an aperture grill as shown in FIG. 5 is known. The color selection mechanism 1 includes a frame-shaped metal frame 6 including a pair of opposed support members 2 and 3 and elasticity imparting members 4 and 5 extending between both ends of the support members 2 and 3. A mask member having a large number of slit-shaped beam transmitting holes 9 in one direction, that is, along the electron beam line scanning direction, that is, a color selecting electrode thin plate 10 is provided between opposed supporting members of the frame 6. It is stretched. The electrode thin plate 10 for color selection is made of a thin metal plate, and has a large number of narrow band-like grid elements 8 arranged at a predetermined pitch in the above-mentioned one direction, and a long slit between each adjacent grid elements 8 in the field direction of the electron beam. The grit element 8 is stretched between the support members 2 and 3 with a predetermined tension by the elasticity imparting members 4 and 5. The frame 6 is provided with a support spring 16 having an engaging hole 15 for engaging a panel pin at an end via a spring holder 14 in order to support the color selection mechanism 1 in the panel of the cathode ray tube.
[0003]
In a color cathode ray tube provided with such a color selection mechanism 1, there is no air resistance because the inside of the tube is a vacuum, and therefore, the color selection mechanism is subjected to an external forced vibration such as an impact or a sound output from a speaker. It is necessary to prevent one electrode thin plate 10 from resonating. That is, the color selection mechanism 1 requires a mechanism for suppressing the vibration of the electrode thin plate 10 or for attenuating the vibration once the vibration starts. As shown in FIG. 5, a well-known method of preventing vibration is a damper wire 11 made of, for example, a very fine steel wire along the arrangement direction of the grid element body 8 so as to contact the surface of the color selecting electrode thin plate 10. Is stretched. The damper wire 11 is stretched between damper springs 12 attached to the elastic members 4 and 5 of the frame 6. However, the damper line 11 creates a shadow on the image while being extremely thin. Further, when the color selecting electrode thin plate 10 vibrates in the normal direction with respect to the contact surface of the damper wire 11, the damping effect by the damper wire 11 is hardly obtained.
[0004]
On the other hand, with the increase in size and definition of color cathode ray tubes, it has been desired to more effectively attenuate the vibration of the grid element of the color selection mechanism. As one of the techniques that have been attracting attention in recent years, a color selection mechanism 21 shown in FIG. 6 (a perspective view of a main part) and FIG. 182983). The color selection mechanism 21 includes two thin steel plates each having a beam transmission hole 22a, 23a and a grid element body 22b, 23b corresponding to each other, that is, a color selection electrode thin plate formed by superposing masks 22 and 23. 24 is welded to the support members 2 and 3 of the frame 6. In the color selection mechanism 21, the two masks 22 and 23 attenuate each other due to the contact resistance between the two masks 22 and 23, thereby obtaining a high attenuation effect. Further, the vibration in the normal direction to the surface of the color selecting electrode thin plate 24 can attenuate by the collision of the masks 22 and 23 with each other. Therefore, the damper line can be omitted, and a good image can be obtained.
[0005]
[Problems to be solved by the invention]
By the way, in the color selection mechanism 21 having the double mask structure shown in FIGS. 6 and 7, the two masks 22 and 23 are welded to the support members 2 and 3 of the frame 6 in a state of being overlapped. After performing the blackening process on the mechanism 21, wrinkles are generated on the color selecting electrode thin plate 24 by the two masks 22 and 23 due to a difference in distribution of stress applied to the respective masks 22 and 23, and the two Adhesion between masks 22 and 23 is impaired. That is, as shown in FIGS. 6 and 8, a connecting portion (a continuous portion where no slit is formed) connecting the grid elements 22 b and 23 b of the masks 22 and 23 constituting the color selecting electrode thin plate 24, that is, the frame 6. A wrinkle 28 is locally generated (for example, in a region L including several grid elements) at a connecting portion 27 between the welded portion 26 to the end of the beam transmitting holes 22a and 23a, A gap 29 is generated between the grid element bodies 22b and 23b of the masks 22 and 23, and the adhesion is impaired.
If the two masks 22 and 23 are in uniform contact over the entire surface including the grid element, a vibration damping / damping effect can be obtained. Can not be obtained.
[0006]
Further, in order to overlap the two masks 22 and 23 and weld them to the frame 6 at the same time, a large amount of welding current is required, and welding pressure corresponding to the current is required. Therefore, the masks 22 and 23 are easily deformed by heat, and the two masks 22 and 23 are easily displaced. If the positions of the beam transmission holes 22a and 23a of the two masks 22 and 23 are not shifted, an appropriate amount of the electron beam B passes as shown in FIG. 9A, but the positions of the two masks 22 and 23 are 9B, an appropriate amount of the electron beam B cannot pass through, as shown in FIG. 9B, causing a problem in luminance and chromaticity on an image.
[0007]
In view of the above, the present invention enhances the vibration-damping / attenuation effect of the color-selecting electrode thin plate, and eliminates the displacement of the beam transmission hole, and provides a highly accurate color-selecting electrode thin plate, a color selecting mechanism, and the like. An object of the present invention is to provide a cathode ray tube having a color selection mechanism.
[0008]
[Means for Solving the Problems]
In the electrode plate for color selection according to the present invention, a plurality of masks provided with beam transmitting holes at positions corresponding to each other are superimposed, and the superimposed mask is formed between the end of the beam transmitting hole and the welded portion to the frame. It is configured to be joined to each other at a position between them.
[0009]
In the color-selecting electrode thin plate of the present invention, a plurality of superposed masks are joined to each other between the end of the beam transmitting hole and the welded portion to the frame. And the distance between them becomes smaller. Therefore, when the electrode plate for color selection is welded to the frame and subjected to blackening, the stress distribution between the plurality of masks in the region between the joint and the end of the beam transmission hole after the blackening treatment. Even if there is a difference, since the above-mentioned distance is small, wrinkles that form a gap between a plurality of masks do not occur. As a result, the plurality of masks are uniformly adhered over the entire surface. Even when a plurality of masks are joined by, for example, welding, the mask is a thin plate, so that a low welding current is sufficient and thermal deformation is avoided.
[0010]
In the color selection mechanism according to the present invention, a plurality of masks each having a beam transmission hole provided at a position corresponding to each other are overlapped, and the overlapped mask is placed between an end of the beam transmission hole and a welded portion to a frame in advance. The electrode plate for color selection which is joined at the position of the above is provided, and the electrode plate for color selection is stretched on a frame and welded.
[0011]
In the color selection mechanism of the present invention, there is provided a color selection electrode thin plate in which a plurality of superimposed masks are joined in advance at a position between an end of the beam transmission hole and a welded portion to the frame. Since the selection electrode plate is welded on the frame, the entire mask is uniformly adhered between the plurality of masks, and the color selection electrode plate can be satisfactorily controlled and attenuated even when subjected to external vibration.
[0012]
In the cathode ray tube according to the present invention, a plurality of masks provided with beam transmitting holes at positions corresponding to each other are superimposed, and the superimposed mask is previously disposed between the end of the beam transmitting hole and the welded portion to the frame. It has a color-selecting electrode thin plate which is joined at a position, and has a color-selecting mechanism which is formed by stretching and welding the color-selecting electrode thin plate on a frame.
[0013]
In the cathode ray tube of the present invention, since the color selection mechanism has the above-described structure, the color selection electrode thin plates including a plurality of masks are uniformly adhered to each other over the entire surface, so that the color selection electrode thin plates can be controlled even when subjected to external vibration. Vibration and attenuation are satisfactorily performed, and the image quality is not impaired.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, description will be made with reference to the drawings.
[0015]
FIG. 1 shows an embodiment of a color cathode ray tube according to the present invention.
The color cathode-ray tube 31 according to the present embodiment has red (R), green (G), and blue (B) phosphor layers, for example, each color, on an inner surface of a panel 32P of a cathode-ray tube (eg, a glass tube) 32. A color phosphor screen 33 composed of a phosphor stripe is formed, a color selection mechanism 34 according to the present invention described later is arranged opposite to the phosphor screen 33, and an electron gun 35 is arranged in the neck 32N. On the outside of the tube 3, the colors of the electron beam B R from the electron gun 35, B G, the deflection yoke 36 for deflecting the B B in the line direction and field direction are arranged.
[0016]
Here, the line direction is defined as a direction in which the electron beam is scanned by one line, and the field direction is defined as a direction in which the line-scanned electron beam is scanned as a surface, that is, a direction orthogonal to the line direction. I do. Therefore, for example, in the case of the cathode ray tube 31 shown in FIG. 1, the line direction indicates the horizontal direction of the screen, and the field direction indicates the vertical direction of the screen. Although not shown, in the case of a so-called multi-neck type cathode ray tube having a plurality of neck portions and an electron gun arranged in each neck portion, the electron beam scans in the screen vertical direction while the screen is horizontal. Since scanning is performed in the direction, the line direction indicates the screen vertical direction, and the field direction indicates the screen horizontal direction.
[0017]
In this color cathode ray tube 31, each electron beam B [ BR , BG , BB ] emitted from the cathode corresponding to each color of the electron gun 35 is converged by the main electron lens formed with a plurality of electrodes, and the phosphor screen is formed. The focus, focus, and convergence are made on 33, and the red, green, and blue phosphor stripes are irradiated. The electron beams B R , B G , and B B are deflected in the horizontal and vertical directions by the deflection yoke 36 to display a required color image.
[0018]
2 to 4 show one embodiment of the color selection mechanism 34 in the color cathode ray tube 31. FIG. This embodiment is a case where the present invention is applied to an aperture grill.
The color selection mechanism 34 according to the present embodiment includes a pair of opposed L-shaped support members 42 and 43 and a U-shaped elastic member inserted between both ends of the support members 42 and 43. A frame-shaped metal frame 46 including application members 44 and 45 is provided, and a large number of slit-shaped beams are provided between opposed support members 42 and 43 of the frame 46 in one direction, that is, in the line scanning direction of the electron beam. A color selection electrode thin plate 50 having a transmission hole is stretched.
[0019]
In the present embodiment, in particular, the color selecting electrode thin plates 50 are formed by superposing a plurality of masks 51 and 52 having beam transmitting holes at positions corresponding to each other, in this example, two masks 51 and 52. That is, the color selecting electrode thin plate 50 is composed of a metal thin plate, and a large number of thin strip-shaped grid elements 53 are arranged at a predetermined pitch in the above-mentioned one direction, and between the adjacent grid elements 53 in the field scanning direction of the electron beam. Similarly to the first mask 51 in which a long slit-shaped beam transmission hole 54 is formed, and a planar continuous connection portion 55 that connects the grid element 53 to both sides in the longitudinal direction of the beam transmission hole 54, A large number of thin strip-shaped grid elements 56 made of a thin metal plate are arranged at a predetermined pitch in the above-mentioned one direction, and a slit-shaped beam transmitting hole 57 long in the field scanning direction of the electron beam is formed between adjacent grid elements 56. The second mask 52 has a planarly continuous connecting portion 58 for connecting the grid element body 56 to both sides in the longitudinal direction of the beam transmitting hole 57. In this example, the width W1 of the grid element 53 of the first mask 51 on the phosphor screen side is made larger than the width w2 of the grid element 56 of the second mask 52 on the electron gun side, and the first mask 51 is formed. Are used as substantial color selection electrodes, and the second mask 52 is used for preventing vibration. Note that the arrangement of the first mask 51 and the second mask 52 can be reversed.
[0020]
Before the two masks 51 and 52 are welded to the frame 46, a position (a broken line position in FIG. 3) 62 between the welded portion 61 to the frame 46 and the ends of the beam transmitting holes 54 and 57 in advance. At each other. In the present embodiment, joining (so-called temporary welding) is performed by seam welding or laser welding. The joining position 62 may be intermediate between the welded portion 61 of the frame 46 and the ends of the beam transmitting holes 54 and 57, but is preferably separated from the ends of the beam transmitting holes 54 and 57 by a distance X = 1 to 4 mm. Position. If the distance X exceeds 4 mm, wrinkles may occur. If the distance X is less than 1 mm, the grid elements 53 and 56 may be thermally deformed by heat, for example, when welding is performed.
At the time of joining the two masks 51 and 52, it is desirable to join them evenly and continuously, and it is desirable that the metal sheet portion other than the joining portion 62 is not deformed. If the conditions are satisfied, the effect can be expected without specifying the joining mode.
[0021]
With the two first and second masks 51 and 52 previously bonded at the position 62 in this manner, the color selecting electrode thin plate 50 is stretched over the frame 56 and the upper surfaces of the support members 42 and 43 are provided. The color selection mechanism 34 is formed by, for example, seam welding. In FIG. 2, the frame 46 has a support spring 66 having an engagement hole 65 for engaging the panel pin at an end via a spring holder 64 in order to support the color selection mechanism 1 in the panel of the cathode ray tube. Is attached.
[0022]
In the color selection mechanism 34 having the two-mask structure of the present embodiment, when subjected to vibration from the outside, the two masks 51 and 52 attenuate each other due to the contact resistance between the two masks 51 and 52 as described above. Thus, a high damping effect can be obtained. In addition, the vibration in the normal direction to the surface of the color selecting electrode thin plate 50 has an attenuating effect because the masks 51 and 52 collide with each other.
[0023]
According to the above-described embodiment, two masks 51 and 52 are overlapped as a color selection electrode thin plate constituting the color selection mechanism 34, and a welded portion 61 to the frame and ends of the beam transmission holes 54 and 57 are previously formed. The color selection mechanism 34 is formed by using the color selection electrode thin plate 50 which is joined at a position intermediate with the portion, preferably at a position 1 to 4 mm (= distance X) away from the end of the beam transmission hole, and the blackening process is performed. After that, wrinkles are prevented from being generated in the connecting portions 55 and 58. That is, even if a difference occurs in the stress distribution between the two masks 51 and 52 after the blackening process, the distance X between the joint 62 of the masks 51 and 52 and the ends of the beam transmitting holes 54 and 57 is small. Therefore, there is almost no connecting portion between the joining portion 62 and the end of the beam transmitting hole, and the wrinkle that makes a space between the two masks 51 and 52 does not occur. Therefore, the two masks 51 and 52 are evenly adhered to each other over the entire surface, and even if external vibration is applied, vibration of the grid element of the color selection mechanism 34 can be suppressed. That is, if the two masks 51 and 52 have good adhesion, the vibration control and attenuation of the color selection mechanism are ideally performed, and the image of the color cathode ray tube is hardly disturbed. In the color selection mechanism 50 according to the present embodiment, it is possible to omit the conventional damper wire for suppressing vibration, or to reduce the number of damper wires. Therefore, the influence of the shadow of the damper line is reduced, and a high quality and high quality color cathode ray tube can be provided.
[0024]
In joining the two masks 51 and 52, the metal thin plates are welded to each other, so that the welding can be performed with a lower welding current than the welding of the metal thin plate and the frame. Therefore, the thermal deformation of the masks 51 and 52 due to this bonding is very small and negligible, and does not affect the area of the grid element body. Therefore, the uniformity of the image is not impaired. Since the two masks 51 and 52 can be welded with a low current, the pressing force can be reduced. Therefore, after the relative positions of the two masks 51 and 52 are determined, a displacement due to welding heat or pressure hardly occurs. The accuracy of the relative position of the two masks 51 and 52 can be improved, and the relative positions of the beam transmitting holes 54 and 57 do not shift, so that an appropriate amount of electron beam passes through the beam transmitting holes of the color selection mechanism 34. And the brightness and chromaticity of the image are not impaired.
[0025]
Since the two masks 51 and 52 are preliminarily joined by preliminarily joining them, when the color selection electrode plate 50 is subsequently welded to the frame 46 to assemble the color selection mechanism 34, it is as if one color selection electrode plate was used. In the same operation as when welding is performed, the color selection mechanism 34 having a so-called double mask structure can be manufactured.
[0026]
The above-described color selection mechanism of the present invention can also be applied to a color selection mechanism for a multi-neck type color cathode ray tube. The multi-neck type color cathode ray tube is provided with a tube body composed of a plurality of, for example, a funnel having two necks, not shown, and a panel forming a large screen. A color selection mechanism is arranged by an aperture grill, and an electron gun is arranged in each neck. The panel is formed integrally and is formed in a horizontally long shape having a screen horizontal direction as a long axis and a screen vertical direction as a short axis. Along with this, the color selection mechanism is formed in common to the large screen area of the panel, and stretches the color selection electrode thin plate, which has a long slit-shaped beam transmission hole in the horizontal direction of the screen, on the frame. It is made by welding. This multi-neck type color cathode ray tube performs a field scan in a screen horizontal direction while an electron beam from each electron gun performs a line scan in a screen vertical direction with respect to each small image area of a panel to display a large screen. Is made. This color selection mechanism can be constituted by the color selection mechanism having the double mask structure described in the above embodiment.
Further, the above-described color selection mechanism of the present invention can be applied to a so-called slot mask used for a shadow mask type color cathode ray tube.
[0027]
The present invention can be configured as a display device such as a television receiver or a computer display by incorporating a color cathode ray tube having the above-described color selection mechanism into a set.
[0028]
【The invention's effect】
According to the color-selecting electrode thin plate according to the present invention, a plurality of, for example, two masks are superimposed, and a welded portion to the frame and an end portion of the beam transmission hole are joined and integrated, so that this is integrated. When a color selection mechanism is produced by welding on a frame, wrinkles can be eliminated and the adhesion between masks can be improved. When the bonding portion of the mask is provided at a position 1 to 4 mm away from the end of the beam transmission hole, wrinkles can be more reliably eliminated, and the adhesion between the masks can be improved.
Since a plurality of thin masks are joined in advance, a low welding current is sufficient when joining by welding, and deformation of the mask due to welding heat can be avoided. The accuracy of the relative position between the plurality of masks can be improved. Since a plurality of masks are joined and integrated, when assembling the color selection mechanism, it is possible to assemble them by the same means as when assembling a single normal color selection electrode thin plate.
[0029]
According to the color selection mechanism according to the present invention, a plurality of, for example, two masks constituting the color selection electrode thin plate can be uniformly brought into close contact with each other, and even when subjected to external vibration, the color selection electrode thin plate And damping can be ideally performed. Omitting or reducing the number of damper lines becomes possible, and the shadow of the damper lines on the screen can be eliminated or reduced. Since the accuracy of the relative position of the beam transmitting hole between the masks is improved, an appropriate amount of the electron beam can pass through the beam transmitting hole.
[0030]
According to the cathode ray tube of the present invention, since the above-described color selection mechanism is provided, the vibration of the color selection mechanism is suppressed even when external vibration is received, and the image is not disturbed. Since an appropriate amount of electron beam can pass through the beam transmission hole of the color selection mechanism, the brightness and chromaticity of the image are not impaired. Since the grid element of the color selection mechanism is not thermally deformed, the uniformity of the image is not impaired. Accordingly, it is possible to provide a cathode ray tube having high image quality and high quality, and for example, it is possible to implement a color cathode ray tube having a large size and a high definition.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a color cathode ray tube according to the present invention.
FIG. 2 is a configuration diagram illustrating an embodiment of a color selection mechanism according to the present invention.
FIG. 3 is an enlarged view of a main part of FIG. 2;
FIG. 4 is a cross-sectional view taken along line DD of FIG. 3;
FIG. 5 is a configuration diagram illustrating an example of a conventional color selection mechanism.
FIG. 6 is an enlarged view of a main part showing another example of a conventional color selection mechanism.
FIG. 7 is a sectional view taken along line AA of FIG. 6;
8A is a cross-sectional view taken along the line BB of FIG. 6 for explaining a problem of the color selection mechanism of FIG. 6; FIG. 7B is a cross-sectional view taken along line CC of FIG. 6.
9A and 9B are explanatory diagrams for explaining a problem of the color selection mechanism of FIG. 6;
[Explanation of symbols]
31 ... color cathode ray tube, 32 ... tube, 32P ... panel, 32N ... neck, 33 ... phosphor screen, 34 ... color selection mechanism, 35 ... electron gun 36 ... deflection yoke, B [B R, B G, B B] .. electron beam, 42, 43 ... support member, 44, 45 ... elasticity imparting member, 46 ... frame, 50 ... Color-selecting electrode thin plates, 51, 52 ... Mask, 53,56 ... Grid body, 54,57 ... Beam transmission holes, 55,58 ... Connecting parts, 61 ... Weld, 62 ... joint

Claims (9)

互いに対応する位置にビーム透過孔が設けられた複数枚のマスクが重ね合わされ、
前記重ね合わされたマスクが、前記ビーム透過孔の端部とフレームへの溶接部との間の位置で、互いに接合されて成る
ことを特徴とする色選別用電極薄板。
A plurality of masks provided with beam transmission holes at positions corresponding to each other are superimposed,
The electrode plate for color selection, wherein the superposed masks are joined to each other at a position between an end of the beam transmission hole and a welded portion to a frame.
2枚のマスクが重ね合わされて成る
ことを特徴とする請求項1記載の色選別用電極薄板。
2. The electrode plate for color selection according to claim 1, wherein two masks are overlapped.
前記マスクの接合部は、前記ビーム透過孔の端部から1〜4mm離れた位置に有る
ことを特徴とする請求項1記載の色選別用電極薄板。
2. The electrode plate for color selection according to claim 1, wherein the bonding portion of the mask is located at a distance of 1 to 4 mm from an end of the beam transmission hole.
互いに対応する位置にビーム透過孔が設けられ複数枚のマスクが重ね合わされ、該重ね合わされたマスクが予め前記ビーム透過孔の端部とフレームの溶接部との位置で接合されてなる色選別用電極薄板を有し、
前記色選別用電極薄板が前記フレーム上に架張されて溶接されて成ることを特徴とする色選別機構。
A beam selection hole is provided at a position corresponding to each other, a plurality of masks are overlapped, and the overlapped mask is previously joined at a position between an end portion of the beam transmission hole and a welded portion of a frame. Having a thin plate,
A color selection mechanism, wherein the color selection electrode thin plate is stretched and welded on the frame.
前記色選別用電極薄板は、2枚重ねのマスクで形成されて成ることを特徴とする請求項4記載の色選別機構。The color selection mechanism according to claim 4, wherein the color selection electrode thin plate is formed by a two-layered mask. 前記色選別用電極薄板における前記マスクの接合部は、前記ビーム透過孔の端部から1〜4mm離れた位置に有る
ことを特徴とする請求項4記載の色選別機構。
5. The color selection mechanism according to claim 4, wherein a bonding portion of the mask on the color selection electrode thin plate is located at a distance of 1 to 4 mm from an end of the beam transmission hole.
互いに対応する位置にビーム透過孔が設けられた複数枚のマスクが重ね合わされ、該重ね合わされたマスクが予め前記ビーム透過孔の端部とフレームへの溶接部との間の位置で接合されてなる色選別用電極薄板を有し、該色選別用電極薄板が前記フレーム上に架張されて溶接されてなる色選別機構を、備えて成る
ことを特徴とする陰極線管。
A plurality of masks provided with beam transmitting holes at positions corresponding to each other are superimposed, and the superimposed masks are previously joined at a position between an end of the beam transmitting hole and a welded portion to a frame. A cathode ray tube comprising: a color selection electrode thin plate; and a color selection mechanism in which the color selection electrode thin plate is stretched and welded on the frame.
前記色選別機構の色選別用電極薄板は、2枚重ねのマスクで形成されて成る
ことを特徴とする請求項7記載の陰極線管。
The cathode ray tube according to claim 7, wherein the color selecting electrode thin plate of the color selecting mechanism is formed by a two-layered mask.
前記色選別機構の色選別用電極薄板における前記マスクの接合部は、前記ビーム透過孔の端部から1〜4mm離れた位置に有る
ことを特徴とする請求項7記載の陰極線管。
8. The cathode ray tube according to claim 7, wherein a joining portion of the mask in the color selecting electrode thin plate of the color selecting mechanism is located at a distance of 1 to 4 mm from an end of the beam transmitting hole.
JP2002201807A 2002-07-10 2002-07-10 Color selection electrode thin plate, color selection mechanism, and cathode-ray tube Pending JP2004047236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201807A JP2004047236A (en) 2002-07-10 2002-07-10 Color selection electrode thin plate, color selection mechanism, and cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201807A JP2004047236A (en) 2002-07-10 2002-07-10 Color selection electrode thin plate, color selection mechanism, and cathode-ray tube

Publications (1)

Publication Number Publication Date
JP2004047236A true JP2004047236A (en) 2004-02-12

Family

ID=31708231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201807A Pending JP2004047236A (en) 2002-07-10 2002-07-10 Color selection electrode thin plate, color selection mechanism, and cathode-ray tube

Country Status (1)

Country Link
JP (1) JP2004047236A (en)

Similar Documents

Publication Publication Date Title
JP3927826B2 (en) CRT with vibration damping part for tension mask
JP2001126636A (en) Cathode-ray tube
JP2004047236A (en) Color selection electrode thin plate, color selection mechanism, and cathode-ray tube
US6111349A (en) Aperture grille structure for a cathode ray tube
JP3961485B2 (en) CRT with shadow mask vibration damper
JP3476947B2 (en) Color cathode ray tube
EP1223601A1 (en) Cathode-ray tube and image display comprising the same
JPH0945256A (en) Color cathode-ray tube provided with shadow mask
JPH09274867A (en) Color cathode-ray tube
KR20010040222A (en) Shadow mask assembly for use in a color crt
JP2005515587A (en) Cathode ray tube with tension mask with microphonic control function
JP2003109499A (en) Manufacturing method for color cathode-ray tube
JPH07230772A (en) Color cathode-ray tube
JP2000048736A (en) Color selection mechanism, and color cathode-ray tube receiver
JP2003346679A (en) Color cathode-ray tube and production process thereof
KR20030035937A (en) Tension mask for a cathode-ray-tube
JP2008135293A (en) Color cathode-ray tube, color sorting mechanism, and temperature compensation method of color sorting mechanism
JP2001250487A (en) Color cathode ray tube
JPH09274868A (en) Color cathode-ray tube
WO2004003958A2 (en) Cathode-ray tube having warp-free dual compliant tension mask frame
JP2004335115A (en) Mask structure for color cathode-ray tube, and color cathode-ray tube
JP2001035407A (en) Color cathode-ray tube
JPH10233173A (en) Color picture tube
JP2004207072A (en) Color selection mechanism, spring holder for color selection mechanism, and method for welding spring holder and support spring
JPH11224615A (en) Vibration damper device for color selection electrode for cathode-ray tube