JP2004045596A - Curing resin composition for semiconductor laser and resist pattern forming method using the composition - Google Patents

Curing resin composition for semiconductor laser and resist pattern forming method using the composition Download PDF

Info

Publication number
JP2004045596A
JP2004045596A JP2002201024A JP2002201024A JP2004045596A JP 2004045596 A JP2004045596 A JP 2004045596A JP 2002201024 A JP2002201024 A JP 2002201024A JP 2002201024 A JP2002201024 A JP 2002201024A JP 2004045596 A JP2004045596 A JP 2004045596A
Authority
JP
Japan
Prior art keywords
semiconductor laser
resin composition
light
resist pattern
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002201024A
Other languages
Japanese (ja)
Other versions
JP4043870B2 (en
Inventor
Koji Takezoe
竹添 浩司
Koichi Tamura
田村   孝一
Takeya Hasegawa
長谷川 剛也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2002201024A priority Critical patent/JP4043870B2/en
Priority to KR1020030046356A priority patent/KR100588326B1/en
Priority to TW092118665A priority patent/TWI234053B/en
Publication of JP2004045596A publication Critical patent/JP2004045596A/en
Application granted granted Critical
Publication of JP4043870B2 publication Critical patent/JP4043870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Polymerisation Methods In General (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a curing resin composition for semiconductor laser. <P>SOLUTION: A resist pattern forming method comprises a step (1) for forming a photosensitive coating film by applying the curing resin composition for the semiconductor laser on a base material, a step (2) for irradiating and curing the surface of the photosensitive coating film formed on the base material directly with a laser beam or with a light beam through a negative mask so that a desired resist coating film (an image) can be obtained thereon and a step (3) for forming the resist pattern on the base material by subjecting the resist coating film formed in the step (2) to development treatment. The curing resin composition for the semiconductor laser is characterized by containing a bisacylphosphine oxide as a photopolymerization initiator and also it is characterized in that visible light beams from which light beams having ≤440 nm wavelength in the emission spectrum of a light source are removed is used as safety light beams in at least one step of the steps from the step (1) to the step (3). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明は、最大波長が400nm〜410nmの範囲内にある半導体レーザーで硬化される樹脂組成物、440nm以下の波長を取除いた可視光線を安全光として使用される樹脂組成物、及び該樹脂組成物を使用したレジストパターン形成方法に関する。
【0002】
【従来の技術】半導体レーザーで硬化される樹脂組成物は、近年フォトレジスト、製版材等の感エネルギー線性画像形成材料の用途に使用され始めている。レーザーのような高エネルギー密度の光源を用いて直接描画することにより画像を形成する方法は、エネルギー変換効率がよくなるという利点だけでなく、画像形成工程が大幅に簡略化できるという利点がある。
【0003】
このため、寿命、強度の面で安定な発振線が得られるレーザーによって走査露光が可能でかつ高感度を有する青紫色レーザー硬化性組成物、特に、波長405nmに安定な発振線を持つ青紫色レーザーに対して高感度であるレーザー硬化性組成物の出現が望まれている。
【0004】
可視光488nmレーザーに適応するレジストとしては、従来から公知である。このレジストとしては、例えば、チタノセン化合物を重合開始剤として配合してなる樹脂組成物が、例えば、特開平3−223759号公報(=米国特許第5,045,434号明細書)、特開平6−301208号公報、特公平8−9644号公報等に開示されている。
【0005】
【発明が解決しようとする課題】従来、最大波長が400nm〜410nmの範囲内にある半導体レーザーで硬化される樹脂組成物を取り扱う場合には、暗赤色の着色剤を外管にコーテングもしくは暗赤色のフィルムを外管に巻き付けることにより着色した蛍光灯等の電灯を安全光(作業灯)として使用されている。しかしながら、このような暗赤色の安全光の環境下では、塗布後の塗膜状態の検査が容易ではないこと、塗装装置、照射装置、輸送装置等の検査が容易でないことなどから安全作業性、作業効率、製品品質安定性等が劣るといった問題点があった。また、従来の樹脂組成物では、イエロー光を安全灯として使用した場合には作業環境は明るく問題ないが、感光が必要のない箇所まで感光する恐れがあり、また、樹脂組成物が安全作業環境下で保存できないといった問題点もあった。
【0006】
イエロー安全光の作業環境下で取り扱うことができ、且つ最大波長が400nm〜410nmの範囲内にある半導体レーザー(青紫色レーザー)で硬化される樹脂組成物の開発を目的とする。
【0007】
【課題を解決するための手段】本発明者等は、上記した問題点を解消するために、最大波長が400nm〜410nmの範囲内にある半導体レーザーで硬化される樹脂組成物として特定の光重合開始剤を使用することにより、上記した問題点を全て解決できることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明は、最大波長が400nm〜410nmの範囲内にある半導体レーザーで硬化される樹脂組成物であって、(A)感光性樹脂、及び(B)下記
一般式1
【0009】
【化2】

Figure 2004045596
【0010】
(式中、R1〜9は同一もしくは異なって水素原子、C1〜3のアルキル基を示す。)
で表されるビスアシルフォスフィンオキサイドを光重合開始剤として含有することを特徴とする半導体レーザー用硬化型樹脂組成物に係る。
【0011】
また、本発明は、440nm以下の波長を取除いた可視光線を安全光として使用し、そして最大波長が400nm〜410nmの範囲内にある半導体レーザーで硬化される樹脂組成物であって、(A)感光性樹脂、及び上記一般式(B)で表されるビスアシルフォスフィンオキサイドを光重合開始剤として含有することを特徴とする半導体レーザー用硬化型樹脂組成物に関する。
【0012】
更に、本発明は、下記
(1)基材上に半導体レーザー用硬化型樹脂組成物を塗布して感光性被膜を形成する工程、
(2)基材上に形成された感光性被膜表面に所望のレジスト被膜(画像)が得られるようにレーザー光線で直接もしくは光線でネガマスクを通して感光して硬化させる工程、
(3)上記(2)工程で形成されたレジスト被膜を現像処理して基板上にレジストパターンを形成する工程、
を含むレジストパターン形成方法において、該半導体レーザー用硬化型樹脂組成物が請求項1又は2に記載の組成物であって、前記した工程(1)〜(3)の少なくとも1つは光源の発光スペクトルが440nm以下の波長を取除いた可視光線を安全光として使用することを特徴とするレジストパターン形成方法
に関する。
【0013】
【発明の実施の形態】本発明樹脂組成物は、感光性樹脂(A)、及び上記した一般式1で表される光重合開始剤(B)を含有してなるものである。
【0014】
本発明樹脂組成物で使用する感光性樹脂(A)は、従来から公知のものを使用することができる。このものとしては、具体的には、(a)  感光性基として(メタ)アクリロイル基を有する光硬化性樹脂(A−1):本光硬化性樹脂(A−1)は、例えば、カルボキシル基を有するアクリル系樹脂にグリシジル基含有不飽和化合物を付加せしめることにより製造することができる。
【0015】
その際使用されるカルボキシル基を有するアクリル系樹脂は、例えば、アクリル酸、メタクリル酸等のα,β−エチレン性不飽和酸を必須単量体成分とし、これに(メタ)アクリル酸のエステル類、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート等;スチレン、(メタ)アクリロニトリル、(メタ)アクリルアミド等から選ばれる少なくとも1種の不飽和単量体を共重
合させることにより得ることができる。
【0016】
一方、上記カルボキシル基を有するアクリル系樹脂に付加せしめられるグリシジル基含有不飽和化合物としては、例えば、アクリル酸グリシジル、メタクリル酸グリシジル、アリルグリシジルエーテル等が挙げられる。
【0017】
前記したカルボキシル基を有するアクリル樹脂とグリシジル基含有不飽和化合物との付加反応は、それ自体既知の方法に従い、例えば、テトラエチルアンモニウムブロマイド等の触媒の存在下に80〜120℃で1〜5時間反応させることによって容易に行なうことができる。
【0018】
また、本光硬化性樹脂(A−1)は、ヒドロキシル基含有重合性不飽和化合物とジイソシアネート化合物との反応物を、ヒドロキシル基を含有するアクリル系樹脂に付加させることによっても製造することができる。
【0019】
その際使用されるヒドロキシル基含有重合性不飽和化合物としては、例えば、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルアクリレート等のヒドロキシアルキル(メタ)アクリレート;N−メチロールアクリルアミド等が挙げられ、また、ジイソシアネート化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネート等が挙げられる。さらに、ヒドロキシル基含有アクリル系樹脂は、上記のヒドロキシル基含有重合性不飽和化合物を必須単量体成分とし、これを前述の如き他の不飽和単量体の少なくとも1種とを共重合させることにより得ることができる。
【0020】
上記のヒドロキシル基含有重合性不飽和化合物とジイソシアネート化合物はほぼ等モル比で反応せしめられる。得られる反応物とヒドロキシル基含有アクリル系樹脂との付加反応は、それ自体既知の方法に従い、窒素ガス雰囲気中で50〜100℃の温度にて反応させることにより行なうことができる。
【0021】
(b)  感光性基としてシンナモイル基を含む光硬化性樹脂(A−2):本光硬化性樹脂(A−2)は、例えば、ヒドロキシル基を含有するアクリル系樹脂と置換もしくは未置換のケイ皮酸のハライドとを、塩基の存在下、例えば、ピリジン溶液中で反応せしめる
ことにより製造することができる。
【0022】
その際使用されるヒドロキシル基含有アクリル系樹脂は、前(a)項で述べた如きヒドロキシル基含有重合性不飽和化合物を必須単量体成分とし、これと、その他の不飽和単量体の少なくとも1種とを共重合させることにより得ることができる。
【0023】
また、置換もしくは未置換のケイ皮酸ハライドとしては、ベンゼン環上にニトロ基、低級アルコキシ基等から選ばれる置換基を1〜3個有していてもよいケイ皮酸ハライドが包含され、より具体的には、例えば、ケイ皮酸クロライド、p−ニトロケイ皮酸クロライド、p−メトキシケイ皮酸クロライド、p−エトキシケイ皮酸クロライド等が挙げられる。
【0024】
これら置換もしくは未置換のケイ皮酸ハライドは、一般に、上記ヒドロキシル基含有アクリル系樹脂100重量部あたり、6〜180重量部、好ましくは30〜140重量部の範囲内の量で使用することができ、そして上記のヒドロキシ基含有アクリル系樹脂と置換もしくは未置換のケイ皮酸ハライドとの反応は、それ自体既知の方法、例えば、ピリジン溶媒のような塩基の存在下に30〜70℃の温度で反応させることにより行なうことができる。
【0025】
(c)  感光性基としてアリル基を含む光硬化性樹脂(A−3):本光硬化性樹脂(A−3)は、例えば、前(a)項で述べた如きカルボキシル基を有するアクリル系樹脂にアリルグリシジルエーテルを付加せしめるか、又は前述のヒドロキシル基含有アクリル系樹脂に(メタ)アリルアルコールとジイソシアネート系化合物との反応物を付加させることによって製造することができる。
【0026】
(d)  その他
前記した樹脂の他に、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート等のプレポリマー等も光硬化性樹脂として使用することができる。
【0027】
本発明樹脂組成物で使用される光重合開始剤(B)は、上記した一般式1で表されるビスアシルフォスフィンオキサイドである。
【0028】
上記一般式1において、R1〜9は同一もしくは異なって水素原子、C1〜3のアルキル基を示す。アルキル基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。上記した一般式1において、特にR1〜9は水素原子が好ましい。該化合物としては、例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイドが挙げられる。
【0029】
光重合開始剤(B)は、上記感光性樹脂(A)100重量部に対して、1〜30重量部、特に2〜20重量部の範囲で配合される。感光性樹脂(A)の配合割合が1重量部未満になると硬化性が劣り、一方30重量部を超えるとコストが高くなり、また、これ以上配合しても格段の効果が発揮されない。
【0030】
本発明樹脂組成物には、上記した以外に必要に応じて従来から公知の光増感剤、エチレン性不飽和化合物(1〜4個のエチレン性不飽和基含有モノマーもしくはオリゴマーなど)、含窒素化合物、上記した以外の光重合開始剤、着色剤、可塑剤、平滑剤などを配合することができる。公知の光増感剤、エチレン性不飽和化合物、含窒素化合物としては、例えば、特開平11−288088号公報に記載のものが包含される。上記した以外の光重合開始剤としては、例えば、Lucirin TPO(BASF社製、商品名)、Irg907、Irg369、Irg651、Irg1700、Irg1800、,Irg1850、DAROCURE 1173(以上チバ・スペシャルティ・ケミカルズ社製、商品名)、KAYACURE DMBI、 KAYACURE DETX(以上日本化薬社製、商品名)、SPEED CURE ITX(日本シイベルヘグナー社製、商品名)などが挙げられる。
【0031】
本発明樹脂組成物は、一般に用いられているそれ自体既知の方法、例えば、上記の各成分を混合し、溶剤に溶解(着色剤に顔料を用いる場合は微粒子分散)させ、これを支持体上に、例えば、ローラー、ロールコーター、スピンコーター等の如き塗布機を用いて塗布し乾燥する方法により、半導体レーザー硬化性被膜とすることができる。
【0032】
その際に使用しうる溶剤としては、例えば、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン等)、エステル類(酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等)、エーテル類(テトラヒドロフラン、ジオキサン、ジメトキシエタン等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ、ジエチレングリコールモノメチルエーテル等)、芳香族炭化水素(ベンゼン、トルエン、キシレン、エチルベンゼン等)、ハロゲン化炭化水素(クロロホルム、トリクロロエチレン、ジクロロメタン等)、アルコール(エチルアルコール、ベンジルアルコール等)、その他(ジメチルホルムアミド、ジメチルスルホンオキシム等)等が挙げられる。
【0033】
また、支持体としては、例えば、アルミニウム、マグネシウム、銅、亜鉛、クロム、ニッケル、鉄等の金属又はそれらを成分とする合金のシート又はこれら金属で表面を処理したプリント基板、ポリマーシート、ガラス、シリコーンウェファー、カーボン等を用いることができる。
【0034】
上記の如くして支持体表面に形成される半導体レーザー硬化性被膜の厚さは、一般に1〜40μm 、好ましくは1〜30μm 、より好ましくは1〜20μm の範囲内とすることができる。また、得られる半導体レーザー硬化性被膜は、画像通りに半導体レーザーで露光して硬化させ、非露光部の未硬化塗膜を現像処理によって除去することにより支持体表面に画像(例えばレジストパターン)を形成することができる。
【0035】
露光のための半導体レーザーは、最大波長が400nm〜410nmの範囲内にある半導体レーザー(青紫色半導体レーザー)である。また、その露光量は膜厚等によって異なるが、一般には10〜200J/cm、好ましくは30〜150J/cm、さらに好ましくは50〜100J/cmの範囲内とすることができる。
【0036】
さらに、露光後の現像処理は、例えば、炭酸ナトリウムの0.5〜1重量%水溶液のようなアルカリ現像液中に、可視光レーザーで露光された塗膜を浸漬するか、又は該塗膜に該水溶液をスプレー塗布することによって行なうことができる。
【0037】
本発明の樹脂組成物は、フォトレジストをはじめ、平版や凸版用製版材、オフセット印刷用PS版、情報記録材料、レリーフ像作製材料等の幅広い用途に応用することができる。
【0038】
本発明の樹脂組成物は、上記した(A)感光性樹脂、及び上記一般式(B)で表されるビスアシルフォスフィンオキサイドを光重合開始剤として含有する半導体レーザー用硬化型樹脂組成物であって、そして440nm以下の波長を取除いた可視光線である安全光の照射環境下で使用され、、そして最大波長が400nm〜410nmの範囲内にある半導体レーザーで硬化される樹脂組成物である。
【0039】
440nm以下の波長を取除いた可視光線である安全光としては、特に好ましくはイエロー光である。
【0040】
本発明レジストパターン形成方法は、下記
(1)基材上に半導体レーザー用硬化型樹脂組成物を塗布して感光性被膜を形成する工程、
(2)基材上に形成された感光性被膜表面に所望のレジスト被膜(画像)が得られるようにレーザー光線で直接もしくは光線でネガマスクを通して感光して硬化させる工程、
(3)上記(2)工程で形成されたレジスト被膜を現像処理して基板上にレジストパターンを形成する工程、
を含むレジストパターン形成方法において、該半導体レーザー用硬化型樹脂組成物が上記した本発明の半導体レーザー用硬化型樹脂組成物であって、前記した工程(1)〜(3)の少なくとも1つは光源の発光スペクトルが440nm以下の波長を取除いた可視光線を安全光とし、この安全光の照射環境下でレジストパターン形成方法を行うことを特徴とするレジストパターン形成方法である。
【0041】
工程(1)で使用する基材としては、例えば、アルミニウム、マグネシウム、銅、亜鉛、クロム、ニッケル、鉄等の金属又はそれらを成分とする合金のシート又はこれら金属で表面を処理したプリント基板、ポリマーシート、ガラス、シリコーンウェファー、カーボン等を用いることができる。
【0042】
半導体レーザー用硬化型樹脂組成物を塗布は、例えば、ローラー、ロールコーター、スピンコーター等の如き塗布機を用いて塗布することができる。
【0043】
また、塗布されたレジスト用被膜は、必要に応じて乾燥(例えば、20〜100℃で10分〜2時間)することができる。
【0044】
半導体レーザー硬化性被膜の厚さは、一般に1〜40μm 、好ましくは1〜30μm 、より好ましくは1〜20μm の範囲内とすることができる。
【0045】
現像処理は、例えば、炭酸ナトリウムの0.5〜1重量%水溶液のようなアルカリ現像液中に、可視光レーザーで露光された塗膜を浸漬するか、又は該塗膜に該水溶液をスプレー塗布することによって行なうことができる。
【0046】
【発明の効果】以上述べたとおり、本発明の半導体レーザー用硬化型樹脂組成物は、最大波長が400nm〜410nmの範囲内にある半導体レーザーに対して高い感光性(微細な画像形成)を有する、イエロー光を安全光として使用することができる、イエロー光を安全灯として使用できるので作業環境が明るく安全作業性、作業効率、製品品質安定性等が向上するといった、顕著な効果を発揮する。
【0047】
【実施例】以下、実施例を挙げて本発明をさらに詳細に説明する。本発明は、実施例に限定されるものではない。尚、「部」及び「%」は「重量部」及び「重量%」を示す。
【0048】
光硬化性樹脂(A)の合成例
メチルメタクリレート40部、ブチルアクリレート40部、アクリル酸20部及びアゾビスイソブチロニトリル2部からなる混合液を、窒素ガス雰囲気下において110℃に保持したプロピレングリコールモノメチルエーテル90部中に3時間を要して滴下した。滴下後、1時間熟成させ、アゾビスジメチルバレロニトリル1部及びプロピレングリコールモノメチルエーテル10部からなる混合液を1時間要して滴下し、さらに5時間熟成させてアクリル樹脂溶液を得た。
【0049】
次に、この溶液にグリシジルメタクリレート24部、ハイドロキノン0.12部及びテトラエチルアンモニウムブロマイド0.6部を加えて、空気を吹き込みながら110℃で5時間反応させてガラス転移温度20℃、数平均分子量約20,000の光硬化性樹脂の溶液を得た。
【0050】
実施例1
上記の合成例で得た光硬化性樹脂溶液180部(固形分100部)を酢酸エチル290部に溶解させた後、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド10重量部をベンジルアルコール5部に溶解させた溶液を加えてよく撹拌して均一な混合溶液を得た。
【0051】
かくして得られた溶液を、銅厚18μm 、板厚2mm、大きさ350mm×460mm角のガラス繊維強化エポキシ基板にバーコーターで塗布し、60℃で10分間乾燥し、乾燥膜厚5μm のレジスト膜を得た。上記基板を波長405nmの青紫色レーザー照射装置によって幅10μmのパターン状にレーザー照射した。
【0052】
光照射後のレジスト塗布基板を、20℃の0.5%の炭酸ソーダ水溶液に30秒間浸漬し未硬化部分を除去した。このときの現像により10μmのパターン幅を得る為の必要光量(以下、同様の意味を示す。)は、80J/mであった。また、下記イエロー光安定性は良好であった。
【0053】
実施例2
実施例1において、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド10重量部に代えてビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド5重量部、KAYACURE DETX(日本化薬社製、商品名)2重量部を使用した以外は実施例1と同様にして配合及びパターン形成を行った。結果を表1に示す。
【0054】
実施例3
実施例1において、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド10重量部に代えてビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド5重量部、SPEED CURE ITX(日本シイベルヘグナー社製、商品名)2重量部を使用した以外は実施例1と同様にして配合及びパターン形成を行った。結果を表1に示す。
【0055】
比較例1
実施例1において、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド10重量部に代えて2−メチル−1[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オンを同量使用した以外は実施例1と同様にして配合及びパターン形成を行った。結果を表1に示す。
【0056】
比較例2
実施例1において、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド10重量部に代えてビス(η5−2,4−シクロペンタジェン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウムを同量使用した以外は実施例1と同様にして配合及びパターン形成を行った。結果を表1に示す。
表1
【0057】
【表1】
Figure 2004045596
【0058】
イエロー光での安定性:ローラー塗装したレジスト被膜に24時間照度40W放置したあと、20℃の0.5%の炭酸ソーダ水溶液に30秒間浸漬して現像性を調べた。未硬化で現像液により洗い流されたものを○、硬化して現像液により洗い流されないものを×とした。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin composition which is cured by a semiconductor laser having a maximum wavelength in the range of 400 nm to 410 nm, and a resin which uses visible light excluding wavelengths of 440 nm or less as safety light. The present invention relates to a composition and a method for forming a resist pattern using the resin composition.
[0002]
2. Description of the Related Art In recent years, resin compositions cured by a semiconductor laser have begun to be used for energy-sensitive image forming materials such as photoresists and plate-making materials. The method of forming an image by directly drawing using a light source having a high energy density such as a laser has an advantage that not only the energy conversion efficiency is improved but also that the image forming process can be greatly simplified.
[0003]
For this reason, a blue-violet laser curable composition which can be scanned and exposed by a laser capable of obtaining a stable oscillation line in terms of life and intensity and has high sensitivity, particularly a blue-violet laser having a stable oscillation line at a wavelength of 405 nm It has been desired to develop a laser-curable composition that is highly sensitive to the following.
[0004]
As a resist adapted to a visible light 488 nm laser, a resist is conventionally known. As the resist, for example, a resin composition prepared by blending a titanocene compound as a polymerization initiator is described in, for example, JP-A-3-223759 (= U.S. Pat. No. 5,045,434) and No. 3,301,208, Japanese Patent Publication No. Hei 8-9644, and the like.
[0005]
Conventionally, when handling a resin composition cured by a semiconductor laser having a maximum wavelength in the range of 400 nm to 410 nm, a dark red colorant is coated or dark red on the outer tube. An electric light such as a fluorescent light which is colored by winding the above film around an outer tube is used as a safety light (work light). However, under such a dark red safety light environment, it is not easy to inspect the state of the coating film after application, and it is not easy to inspect the coating device, irradiation device, transport device, etc. There is a problem that work efficiency, product quality stability and the like are inferior. In addition, in the conventional resin composition, when yellow light is used as a safety light, the working environment is bright and there is no problem, but there is a possibility that the photosensitive composition may be exposed to places where exposure is not required. There was also a problem that it could not be saved below.
[0006]
An object of the present invention is to develop a resin composition that can be handled in a working environment of yellow safety light and that is cured with a semiconductor laser (blue-violet laser) having a maximum wavelength within a range of 400 nm to 410 nm.
[0007]
In order to solve the above-mentioned problems, the present inventors have developed a specific photopolymerization as a resin composition which is cured by a semiconductor laser having a maximum wavelength in a range of 400 nm to 410 nm. It has been found that all of the above problems can be solved by using an initiator, and the present invention has been completed.
[0008]
That is, the present invention relates to a resin composition which is cured by a semiconductor laser having a maximum wavelength in a range of 400 nm to 410 nm, comprising: (A) a photosensitive resin;
[0009]
Embedded image
Figure 2004045596
[0010]
(In the formula, R1 to R9 are the same or different and each represent a hydrogen atom or a C1 to C3 alkyl group.)
The present invention relates to a curable resin composition for a semiconductor laser, comprising a bisacylphosphine oxide represented by the formula (1) as a photopolymerization initiator.
[0011]
The present invention also provides a resin composition cured by a semiconductor laser having a maximum wavelength in the range of 400 nm to 410 nm, using visible light having a wavelength of 440 nm or less removed as safety light, The present invention relates to a curable resin composition for a semiconductor laser, which comprises a photosensitive resin and a bisacylphosphine oxide represented by the general formula (B) as a photopolymerization initiator.
[0012]
Further, the present invention provides the following (1) a step of applying a curable resin composition for a semiconductor laser on a substrate to form a photosensitive film;
(2) a step of exposing and curing through a negative mask with a laser beam directly or with a laser beam so as to obtain a desired resist film (image) on the surface of the photosensitive film formed on the substrate;
(3) a step of developing the resist film formed in the step (2) to form a resist pattern on the substrate;
Wherein the curable resin composition for a semiconductor laser is the composition according to claim 1 or 2, wherein at least one of the steps (1) to (3) is light emission of a light source. The present invention relates to a method for forming a resist pattern, which comprises using visible light having a wavelength of 440 nm or less as safety light.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION The resin composition of the present invention comprises a photosensitive resin (A) and a photopolymerization initiator (B) represented by the general formula (1).
[0014]
As the photosensitive resin (A) used in the resin composition of the present invention, a conventionally known photosensitive resin can be used. Specific examples thereof include (a) a photocurable resin (A-1) having a (meth) acryloyl group as a photosensitive group: the present photocurable resin (A-1) includes, for example, a carboxyl group Can be produced by adding a glycidyl group-containing unsaturated compound to an acrylic resin having
[0015]
The acrylic resin having a carboxyl group used at that time is, for example, an α, β-ethylenically unsaturated acid such as acrylic acid or methacrylic acid as an essential monomer component, and an ester of (meth) acrylic acid. For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, hydroxyethyl (meth) acrylate and the like; styrene, (meth) acrylonitrile, ( It can be obtained by copolymerizing at least one unsaturated monomer selected from (meth) acrylamide and the like.
[0016]
On the other hand, examples of the glycidyl group-containing unsaturated compound to be added to the carboxyl group-containing acrylic resin include glycidyl acrylate, glycidyl methacrylate, and allyl glycidyl ether.
[0017]
The addition reaction between the acrylic resin having a carboxyl group and the glycidyl group-containing unsaturated compound is carried out according to a method known per se, for example, by reacting at 80 to 120 ° C. for 1 to 5 hours in the presence of a catalyst such as tetraethylammonium bromide. This can be easily performed.
[0018]
Further, the photocurable resin (A-1) can also be produced by adding a reaction product of a hydroxyl group-containing polymerizable unsaturated compound and a diisocyanate compound to a hydroxyl group-containing acrylic resin. .
[0019]
Examples of the hydroxyl group-containing polymerizable unsaturated compound used in this case include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and 2-hydroxypropyl acrylate; N-methylol acrylamide and the like. Examples of the diisocyanate compound include tolylene diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, and lysine diisocyanate. Further, the hydroxyl group-containing acrylic resin has the above-mentioned hydroxyl group-containing polymerizable unsaturated compound as an essential monomer component, and is copolymerized with at least one other unsaturated monomer as described above. Can be obtained by
[0020]
The hydroxyl group-containing polymerizable unsaturated compound and the diisocyanate compound are reacted in substantially equimolar ratio. The addition reaction between the obtained reactant and the hydroxyl group-containing acrylic resin can be carried out in a nitrogen gas atmosphere at a temperature of 50 to 100 ° C. according to a method known per se.
[0021]
(B) Photocurable resin (A-2) containing a cinnamoyl group as a photosensitive group: The present photocurable resin (A-2) is, for example, a silicone resin substituted or unsubstituted with an acrylic resin containing a hydroxyl group. It can be produced by reacting cinnamic acid with a halide in the presence of a base, for example, in a pyridine solution.
[0022]
The hydroxyl group-containing acrylic resin used at that time contains the hydroxyl group-containing polymerizable unsaturated compound as an essential monomer component as described in the above item (a), and at least one of the other unsaturated monomers. It can be obtained by copolymerizing with one kind.
[0023]
Further, the substituted or unsubstituted cinnamate halides include cinnamate halides which may have 1 to 3 substituents selected from a nitro group and a lower alkoxy group on a benzene ring. Specifically, for example, cinnamic acid chloride, p-nitrocinnamic acid chloride, p-methoxycinnamic acid chloride, p-ethoxycinnamic acid chloride and the like can be mentioned.
[0024]
These substituted or unsubstituted cinnamic halides can be used in an amount of generally 6 to 180 parts by weight, preferably 30 to 140 parts by weight, per 100 parts by weight of the hydroxyl group-containing acrylic resin. The reaction of the hydroxy-containing acrylic resin with the substituted or unsubstituted cinnamic halide is carried out by a method known per se, for example, at a temperature of 30 to 70 ° C. in the presence of a base such as a pyridine solvent. The reaction can be carried out.
[0025]
(C) Photocurable resin (A-3) containing an allyl group as a photosensitive group: The photocurable resin (A-3) is, for example, an acrylic resin having a carboxyl group as described in the above (a). It can be produced by adding allyl glycidyl ether to the resin or by adding a reactant of (meth) allyl alcohol and a diisocyanate compound to the above-mentioned hydroxyl group-containing acrylic resin.
[0026]
(D) In addition to the above-mentioned resins, prepolymers such as polyethylene glycol diacrylate and polypropylene glycol diacrylate can also be used as the photocurable resin.
[0027]
The photopolymerization initiator (B) used in the resin composition of the present invention is the bisacylphosphine oxide represented by the general formula 1 described above.
[0028]
In the general formula 1, R1 to R9 are the same or different and each represent a hydrogen atom or a C1 to C3 alkyl group. Examples of the alkyl group include a methyl group, an ethyl group, and a propyl group. In the above general formula 1, particularly, R1 to R9 are preferably hydrogen atoms. Examples of the compound include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
[0029]
The photopolymerization initiator (B) is blended in an amount of 1 to 30 parts by weight, particularly 2 to 20 parts by weight, based on 100 parts by weight of the photosensitive resin (A). If the blending ratio of the photosensitive resin (A) is less than 1 part by weight, the curability is inferior. On the other hand, if it exceeds 30 parts by weight, the cost becomes high.
[0030]
In addition to the above, the resin composition of the present invention may further comprise, if necessary, a conventionally known photosensitizer, an ethylenically unsaturated compound (e.g., a monomer or oligomer having 1 to 4 ethylenically unsaturated groups), and a nitrogen-containing compound. A compound, a photopolymerization initiator other than those described above, a coloring agent, a plasticizer, a leveling agent, and the like can be added. Known photosensitizers, ethylenically unsaturated compounds and nitrogen-containing compounds include, for example, those described in JP-A-11-288088. Examples of the photopolymerization initiator other than those described above include Lucirin TPO (trade name, manufactured by BASF), Irg907, Irg369, Irg651, Irg1700, Irg1800, Irg1850, DAROCURE 1173 (manufactured by Ciba Specialty Chemicals, Inc.) KAYACURE DMBI, KAYACURE DETX (product name, manufactured by Nippon Kayaku Co., Ltd.), SPEED CURE ITX (product name, manufactured by Nippon SiberHegner Co., Ltd.), and the like.
[0031]
The resin composition of the present invention is generally used in a manner known per se, for example, by mixing the above-mentioned components, dissolving in a solvent (in the case of using a pigment as a colorant, dispersing fine particles), and placing the mixture on a support. For example, a semiconductor laser curable coating can be obtained by a method of applying and drying using an applicator such as a roller, a roll coater, or a spin coater.
[0032]
Examples of solvents that can be used at that time include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), esters (ethyl acetate, butyl acetate, methyl benzoate, methyl propionate, etc.), and ethers (tetrahydrofuran, dioxane). , Dimethoxyethane, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, diethylene glycol monomethyl ether, etc.), aromatic hydrocarbons (benzene, toluene, xylene, ethylbenzene, etc.), halogenated hydrocarbons (chloroform, trichloroethylene, dichloromethane, etc.), alcohols (E.g., ethyl alcohol, benzyl alcohol) and others (e.g., dimethylformamide, dimethylsulfone oxime).
[0033]
Further, as the support, for example, aluminum, magnesium, copper, zinc, chromium, nickel, a sheet of an alloy containing them or an alloy thereof or a printed board, the surface of which is treated with these metals, a polymer sheet, glass, Silicone wafer, carbon, or the like can be used.
[0034]
The thickness of the semiconductor laser-curable coating formed on the surface of the support as described above can be generally in the range of 1 to 40 μm, preferably 1 to 30 μm, more preferably 1 to 20 μm. The resulting semiconductor laser-curable coating is exposed and cured with a semiconductor laser according to the image, and the uncured coating in the non-exposed area is removed by a development process to form an image (eg, a resist pattern) on the support surface. Can be formed.
[0035]
The semiconductor laser for exposure is a semiconductor laser (blue-violet semiconductor laser) having a maximum wavelength in the range of 400 nm to 410 nm. The exposure amount varies depending on the film thickness and the like, but is generally in the range of 10 to 200 J / cm 2 , preferably 30 to 150 J / cm 2 , and more preferably 50 to 100 J / cm 2 .
[0036]
Further, the development treatment after exposure is, for example, immersing the coating film exposed with the visible light laser in an alkali developing solution such as a 0.5 to 1% by weight aqueous solution of sodium carbonate, or It can be carried out by spraying the aqueous solution.
[0037]
The resin composition of the present invention can be applied to a wide range of uses such as a photoresist, a lithographic or letterpress plate-making material, a PS plate for offset printing, an information recording material, a relief image forming material, and the like.
[0038]
The resin composition of the present invention is a curable resin composition for a semiconductor laser containing the photosensitive resin (A) described above and the bisacylphosphine oxide represented by the general formula (B) as a photopolymerization initiator. A resin composition that is used under an environment of safe light, which is visible light with a wavelength of 440 nm or less removed, and that is cured with a semiconductor laser having a maximum wavelength within a range of 400 nm to 410 nm. .
[0039]
The safe light that is a visible light from which the wavelength of 440 nm or less has been removed is particularly preferably yellow light.
[0040]
The resist pattern forming method of the present invention comprises the following (1) a step of applying a curable resin composition for a semiconductor laser on a substrate to form a photosensitive film;
(2) a step of exposing and curing through a negative mask with a laser beam directly or with a laser beam so as to obtain a desired resist film (image) on the surface of the photosensitive film formed on the substrate;
(3) a step of developing the resist film formed in the step (2) to form a resist pattern on the substrate;
Wherein the curable resin composition for a semiconductor laser is the above-described curable resin composition for a semiconductor laser of the present invention, wherein at least one of the steps (1) to (3) is carried out. A method of forming a resist pattern, characterized in that visible light from which the emission spectrum of a light source has a wavelength of 440 nm or less is removed as safe light, and the resist pattern forming method is performed in an environment in which the safe light is irradiated.
[0041]
Examples of the base material used in the step (1) include a sheet of a metal such as aluminum, magnesium, copper, zinc, chromium, nickel, and iron or an alloy containing them as a component, a printed circuit board whose surface is treated with these metals, A polymer sheet, glass, silicone wafer, carbon, or the like can be used.
[0042]
The curable resin composition for a semiconductor laser can be applied by using an applicator such as a roller, a roll coater, or a spin coater.
[0043]
Further, the applied resist coating can be dried (for example, at 20 to 100 ° C. for 10 minutes to 2 hours) as necessary.
[0044]
The thickness of the semiconductor laser-curable coating can be generally in the range of 1 to 40 μm, preferably 1 to 30 μm, more preferably 1 to 20 μm.
[0045]
The developing treatment is performed, for example, by dipping the coating film exposed with a visible light laser in an alkali developing solution such as a 0.5 to 1% by weight aqueous solution of sodium carbonate, or by spraying the coating film with the aqueous solution. This can be done by doing
[0046]
As described above, the curable resin composition for a semiconductor laser of the present invention has high photosensitivity (fine image formation) to a semiconductor laser having a maximum wavelength in the range of 400 nm to 410 nm. Since yellow light can be used as a safety light, and yellow light can be used as a safety light, a remarkable effect is exhibited such that the working environment is bright and safe workability, work efficiency, and product quality stability are improved.
[0047]
The present invention will be described below in more detail with reference to examples. The present invention is not limited to the embodiments. In addition, “part” and “%” indicate “part by weight” and “% by weight”.
[0048]
Synthesis Example of Photocurable Resin (A) Propylene kept at 110 ° C. under a nitrogen gas atmosphere by using a mixed liquid composed of 40 parts of methyl methacrylate, 40 parts of butyl acrylate, 20 parts of acrylic acid, and 2 parts of azobisisobutyronitrile. It was added dropwise to 90 parts of glycol monomethyl ether over 3 hours. After the dropwise addition, the mixture was aged for 1 hour, and a mixed solution composed of 1 part of azobisdimethylvaleronitrile and 10 parts of propylene glycol monomethyl ether was added dropwise for 1 hour, and aged for 5 hours to obtain an acrylic resin solution.
[0049]
Next, 24 parts of glycidyl methacrylate, 0.12 parts of hydroquinone and 0.6 parts of tetraethylammonium bromide were added to the solution, and the mixture was reacted at 110 ° C. for 5 hours while blowing air to obtain a glass transition temperature of 20 ° C. and a number average molecular weight of about 20,000 photocurable resin solutions were obtained.
[0050]
Example 1
After dissolving 180 parts (solid content: 100 parts) of the photocurable resin solution obtained in the above synthesis example in 290 parts of ethyl acetate, 10 parts by weight of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide are dissolved. Was dissolved in 5 parts of benzyl alcohol, and the mixture was stirred well to obtain a uniform mixed solution.
[0051]
The solution thus obtained was applied to a glass fiber reinforced epoxy substrate having a copper thickness of 18 μm, a plate thickness of 2 mm, and a size of 350 mm × 460 mm square with a bar coater, and dried at 60 ° C. for 10 minutes to form a resist film having a dry film thickness of 5 μm. Obtained. The substrate was laser-irradiated in a pattern having a width of 10 μm by a blue-violet laser irradiation device having a wavelength of 405 nm.
[0052]
The resist-coated substrate after light irradiation was immersed in a 0.5% aqueous sodium carbonate solution at 20 ° C. for 30 seconds to remove uncured portions. At this time, the necessary amount of light for obtaining a pattern width of 10 μm by development (hereinafter, the same meaning is shown) was 80 J / m 2 . Further, the following yellow light stability was good.
[0053]
Example 2
In Example 1, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide was replaced with 10 parts by weight, but bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide was 5 parts by weight, KAYACURE DETX ( Compounding and pattern formation were carried out in the same manner as in Example 1 except that 2 parts by weight (trade name, manufactured by Nippon Kayaku Co., Ltd.) was used. Table 1 shows the results.
[0054]
Example 3
In Example 1, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide was replaced with 10 parts by weight, and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide was 5 parts by weight. SPEED CURE ITX Compounding and pattern formation were carried out in the same manner as in Example 1 except that 2 parts by weight (manufactured by Nippon Siebel-Hegner KK) was used. Table 1 shows the results.
[0055]
Comparative Example 1
In Example 1, 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one was used in place of 10 parts by weight of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide. And the pattern formation was carried out in the same manner as in Example 1 except that the same amount was used. Table 1 shows the results.
[0056]
Comparative Example 2
In Example 1, bis (η5-2,4-cyclopentagen-1-yl) -bis (2,6-diphenylbenzoyl) -phenylphosphine oxide was replaced with 10 parts by weight of bis (η5-2,4-cyclopentagen-1-yl) -bis (2,6-trimethylbenzoyl) -phenylphosphine oxide. Mixing and pattern formation were carried out in the same manner as in Example 1 except that the same amount of difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium was used. Table 1 shows the results.
Table 1
[0057]
[Table 1]
Figure 2004045596
[0058]
Stability under yellow light: After leaving the roller-coated resist film for 24 hours at an illuminance of 40 W, it was immersed in a 0.5% aqueous sodium carbonate solution at 20 ° C. for 30 seconds to examine the developability. The uncured and washed away with the developing solution was rated as ○, and the cured and unwashed with the developing solution was rated as ×.

Claims (3)

最大波長が400nm〜410nmの範囲内にある半導体レーザーで硬化される樹脂組成物であって、(A)感光性樹脂、及び(B)下記
一般式1
Figure 2004045596
(式中、R1〜9は同一もしくは異なって水素原子、C1〜3のアルキル基を示す。)
で表されるビスアシルフォスフィンオキサイドを光重合開始剤として含有することを特徴とする半導体レーザー用硬化型樹脂組成物。
A resin composition curable by a semiconductor laser having a maximum wavelength within a range of 400 nm to 410 nm, comprising: (A) a photosensitive resin;
Figure 2004045596
(In the formula, R1 to R9 are the same or different and represent a hydrogen atom or a C1 to C3 alkyl group.)
A curable resin composition for a semiconductor laser, comprising a bisacylphosphine oxide represented by the formula: as a photopolymerization initiator.
440nm以下の波長を取除いた可視光線を安全光として使用し、そして最大波長が400nm〜410nmの範囲内にある半導体レーザーで硬化される樹脂組成物であって、(A)感光性樹脂、及び上記一般式(B)で表されるビスアシルフォスフィンオキサイドを光重合開始剤として含有することを特徴とする半導体レーザー用硬化型樹脂組成物。A resin composition cured by a semiconductor laser having a maximum wavelength in the range of 400 nm to 410 nm, wherein visible light excluding a wavelength of 440 nm or less is used as safety light, and (A) a photosensitive resin; A curable resin composition for a semiconductor laser, comprising the bisacylphosphine oxide represented by the general formula (B) as a photopolymerization initiator. 下記
(1)基材上に半導体レーザー用硬化型樹脂組成物を塗布して感光性被膜を形成する工程、
(2)基材上に形成された感光性被膜表面に所望のレジスト被膜(画像)が得られるようにレーザー光線で直接もしくは光線でネガマスクを通して感光して硬化させる工程、
(3)上記(2)工程で形成されたレジスト被膜を現像処理して基板上にレジストパターンを形成する工程、
を含むレジストパターン形成方法において、該半導体レーザー用硬化型樹脂組成物が請求項1又は2に記載の組成物であって、前記した工程(1)〜(3)の少なくとも1つは光源の発光スペクトルが440nm以下の波長を取除いた可視光線を安全光として使用することを特徴とするレジストパターン形成方法。
The following (1) a step of applying a curable resin composition for a semiconductor laser on a substrate to form a photosensitive film,
(2) a step of exposing and hardening the surface of the photosensitive film formed on the base material directly or directly with a laser beam through a negative mask so that a desired resist film (image) is obtained;
(3) a step of developing the resist film formed in the step (2) to form a resist pattern on the substrate;
Wherein the curable resin composition for a semiconductor laser is the composition according to claim 1 or 2, wherein at least one of the steps (1) to (3) is light emission of a light source. A method of forming a resist pattern, comprising using visible light having a wavelength of 440 nm or less as a safety light.
JP2002201024A 2002-07-10 2002-07-10 Curable resin composition for semiconductor laser and resist pattern forming method using the composition Expired - Fee Related JP4043870B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002201024A JP4043870B2 (en) 2002-07-10 2002-07-10 Curable resin composition for semiconductor laser and resist pattern forming method using the composition
KR1020030046356A KR100588326B1 (en) 2002-07-10 2003-07-09 Semiconductor laser-curable resin composition and resist patter-forming method by use of the same
TW092118665A TWI234053B (en) 2002-07-10 2003-07-09 Semiconductor laser-curable resin composition and resist pattern-forming method by use of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201024A JP4043870B2 (en) 2002-07-10 2002-07-10 Curable resin composition for semiconductor laser and resist pattern forming method using the composition

Publications (2)

Publication Number Publication Date
JP2004045596A true JP2004045596A (en) 2004-02-12
JP4043870B2 JP4043870B2 (en) 2008-02-06

Family

ID=31707677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201024A Expired - Fee Related JP4043870B2 (en) 2002-07-10 2002-07-10 Curable resin composition for semiconductor laser and resist pattern forming method using the composition

Country Status (3)

Country Link
JP (1) JP4043870B2 (en)
KR (1) KR100588326B1 (en)
TW (1) TWI234053B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517632B2 (en) 2005-07-13 2009-04-14 Taiyo Ink Mfg. Co., Ltd. Silver paste composition, method of forming conductive pattern by using the same, and the conductive pattern formed
US7648814B2 (en) 2005-07-13 2010-01-19 Taiyo Ink Mfg. Co., Ltd. Black paste composition, method of forming black matrix pattern by using the same, and the black matrix pattern formed
US7993809B2 (en) 2005-05-23 2011-08-09 Hitachi Chemical Company, Ltd. Photosensitive resin composition, photosensitive element, method for forming resist pattern and method for producing printed wiring board
JP2020033470A (en) * 2018-08-30 2020-03-05 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed board, and semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993809B2 (en) 2005-05-23 2011-08-09 Hitachi Chemical Company, Ltd. Photosensitive resin composition, photosensitive element, method for forming resist pattern and method for producing printed wiring board
US8192916B2 (en) 2005-05-23 2012-06-05 Hitachi Chemical Company, Ltd. Photosensitive resin composition, photosensitive element, method for forming resist pattern and method for producing printed wiring board
US8198008B2 (en) 2005-05-23 2012-06-12 Hitachi Chemical Company, Ltd. Photosensitive resin composition, photosensitive element, method for forming resist pattern and method for producing printed wiring board
US7517632B2 (en) 2005-07-13 2009-04-14 Taiyo Ink Mfg. Co., Ltd. Silver paste composition, method of forming conductive pattern by using the same, and the conductive pattern formed
US7648814B2 (en) 2005-07-13 2010-01-19 Taiyo Ink Mfg. Co., Ltd. Black paste composition, method of forming black matrix pattern by using the same, and the black matrix pattern formed
JP2020033470A (en) * 2018-08-30 2020-03-05 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed board, and semiconductor device
JP7240586B2 (en) 2018-08-30 2023-03-16 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed wiring board and semiconductor device

Also Published As

Publication number Publication date
KR100588326B1 (en) 2006-06-12
JP4043870B2 (en) 2008-02-06
TWI234053B (en) 2005-06-11
TW200403527A (en) 2004-03-01
KR20040026118A (en) 2004-03-27

Similar Documents

Publication Publication Date Title
JP5617941B2 (en) Photosensitive resin composition, photosensitive element, resist pattern forming method, and printed wiring board manufacturing method
JPH07159983A (en) Photosensitive printing plate
KR101514900B1 (en) Photosensitive resin composition and photosensitive element, resist pattern formation method and printed circuit board production method each utilizing same
JPH11271969A (en) Photopolymerizable composition and photosensitive lithographic printing plate
JP2010107886A (en) Hard coat composition for photomask, photomask and method for producing the same
WO2016184429A1 (en) Pyrazoline sensitizer and preparation method and use thereof
JP2001033960A (en) Photosensitive resin composition for photoresist and resist pattern forming method
JPH0611765B2 (en) Photopolymerization initiator composition
JP4043870B2 (en) Curable resin composition for semiconductor laser and resist pattern forming method using the composition
JP2004191938A (en) Blue-violet laser photosensitive composition, image forming material using the same, imaging material and method for forming image
JP2824188B2 (en) Method for producing photosensitive composition and pattern
JP2930403B2 (en) Photosensitive composition
JP4320076B2 (en) Visible light laser curable composition
JP4294988B2 (en) Photoradical polymerization initiator and photosensitive resin composition
JP2004149759A (en) Photo-radical polymerization initiator and photosensitive resin composition
JP3940962B2 (en) Liquid photosensitive composition
JP2004176035A (en) Free radical generator and photosensitive resin composition
JP2000284478A (en) Photocuring composition
JP2002287345A (en) Photosensitive coating material composition and pattern forming method
US6093518A (en) Visible laser-curable composition
US5939148A (en) Visible laser-curable composition
JP5251523B2 (en) Photosensitive resin composition, photosensitive element using the same, resist pattern forming method, and printed wiring board manufacturing method
JPH06313134A (en) Water-based photosensitive composition and formation of pattern therewith
JPH09227547A (en) Visible light photosensitive resin composition and its use
JPH10142790A (en) Composition curable with visible light laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees