JP2004045158A - Ground movement measuring system - Google Patents

Ground movement measuring system Download PDF

Info

Publication number
JP2004045158A
JP2004045158A JP2002201733A JP2002201733A JP2004045158A JP 2004045158 A JP2004045158 A JP 2004045158A JP 2002201733 A JP2002201733 A JP 2002201733A JP 2002201733 A JP2002201733 A JP 2002201733A JP 2004045158 A JP2004045158 A JP 2004045158A
Authority
JP
Japan
Prior art keywords
ground
ground deformation
landslide
gps positioning
gps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002201733A
Other languages
Japanese (ja)
Other versions
JP3635270B2 (en
Inventor
Koji Ikebe
池邉 浩司
Satoru Kusunoki
楠 覚
Onori Takeda
武田 大典
Kenji Mishima
三島 研二
Toshio Kobayashi
小林 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pasco Corp
Original Assignee
Pasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pasco Corp filed Critical Pasco Corp
Priority to JP2002201733A priority Critical patent/JP3635270B2/en
Publication of JP2004045158A publication Critical patent/JP2004045158A/en
Application granted granted Critical
Publication of JP3635270B2 publication Critical patent/JP3635270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ground movement measuring system for selecting a plurality of methods for positioning ground surface displacement based on ground movement information acquired from a GPS positioning instrument and other ground movement observing instruments installed on a ground surface in a landslide area. <P>SOLUTION: The ground displacement at each install point is analyzed by using GPS positioning based on positioning data acquired from a plurality of the GPS positioning instruments installed at a landslide ground A of an observed object. When landslide movement is small, accuracy is enhanced. When the landslide movement is large, a processing time is reduced. The landslide movement is surely and accurately observed by selecting a static GPS positioning method and a real-time kinematic GPS positioning method and implementing a GPS positioning analysis process according to the ground movement information acquired from one or a plurality of a ground clinometer, an extensometer, a strain indicator, a well clinometer, a well water level indicator and a hyetometer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、地滑りを検知する地盤変動計測システムに関し、特に、地滑り地域の地盤表面に設置されたGPS受信器及び地盤変動観測機器から得られる地盤変動情報に基づいて、地盤表面変位に対する複数の測位法を選択するようにした地盤変動計測システムに関する。
【0002】
【従来の技術】
近年において、災害、例えば、大規模な地滑りが発生しそうな危険地域について、その活動状況を監視するため、種々の観測機材を設置して、常時観測する体制が採られている。
【0003】
そこで、従来において、このような地滑り危険地域に、地盤変動観測機器を設置した場合の様子を、図1に一例として示した。同図(a)は、地滑り危険地域を上方から見た地滑り地盤Aの平面図を示し、地滑り地盤Aをモデル化して表している。また、同図(b)は、その地滑り地盤Aの縦断面を示している。地滑りを起こす観測対象の地滑り地盤Aは、図1(b)に示されるように、地滑り地盤の表面に対してすべり面Bを有し、地滑り地盤Aの上部の領域は通常伸張域となっており、その下部の領域は圧縮域になっている。
【0004】
一般に、地盤の伸張域と圧縮域とにおける地盤変動を計測することにより、当該地盤の地滑りの様子を観測できるところから、観測対象の地滑り地盤Aの変動を観測するため、地滑り地盤Aの上部と下部とに伸縮計E1とE2を設置し、さらに、傾斜計D1とD2も設置されている。伸縮計E1では、ワイヤが地滑り地盤Aと地滑り周辺地盤との間に地滑り方向に張られ、各地盤の地表の2点間に係る伸縮を計測し、地滑り地盤Aの上部の様子を把握する。また、伸縮計E2では、地滑り地盤Aの下部地表面の2点間に、地滑り方向にワイヤが張られ、地滑り地盤Aにおける下部の伸縮の様子を把握する。さらに、地滑りが起こると当該地盤の地表面の傾斜も変化するところから、傾斜計D1とD2を地滑り地盤Aの上部と下部とにそれぞれ設置している。これらの計器は、地滑り地盤Aの地表面の動きを計測するものである。
【0005】
また、地滑りが起こると、地滑り地盤Aのすべり面Bにおいては、地滑り地盤Aを支えていた不動地盤との間に、ずれが発生する。そこで、図1(b)に示すように、地滑り時地盤Aを貫通する複数のボーリング孔H1、H2、H3を設け、各々のボーリング孔の曲がり具合について、孔内傾斜計又は歪計によって地盤のずれを計測する。このボーリング孔の数は、地滑りの規模に応じて適宜選定される。これらの計器は、すべり面Bによって地滑り地盤Aの動きを計測するものである。
【0006】
また、地滑りの現象においては、降雨量が重要な誘因であることから、雨量計Rを周辺地盤に設置し、雨量計測を行う。さらに、地盤によっては、雨水の浸透の度合いが異なるところから、ボーリング孔H1〜H3内に孔内水位計を設置して、当該地滑り地盤Aの地下水位を計測する。これらの計器は、地滑り面Aの動きではなく地滑りの誘因を計測するものである。
【0007】
ところで、地滑り地表面の動きを観測する伸縮計は0.1mm以下の変動も検知できる高精度なものであるが、例えば、計測ワイヤの張られた2地点が平行してずれたような場合には、その変動を計測することができない。このため、最近では、グローバル・ポジショニング・システム(GPS)による測位法が利用されて、設置場所の地盤の変位を計測することが行われるようになってきた。
【0008】
地殻変動や地滑り等で生じる変位は通常小さなものであるため、これら地盤変動の観測にGPSによる測位を利用する場合は、必要な測位精度を得るため専ら干渉測位法が使用されている。
【0009】
干渉測位手法は、GPS受信電波における搬送波の位相差を利用するものであり、1〜3cm程度の高い精度が得られる。この干渉測位手法には、さらに、スタティック方式とリアルタイムキネマティック方式の2つの方法がある。ここで、スタティック(以下STと称す)方式は、観測点で数十分から数時間の連続したGPS電波受信を行い、また複数の観測点間での網平均計算を行って、精度の高い(およそ4時間の連続受信で5mm程度)測位結果を得ることができるものである。
【0010】
リアルタイムキネマティック(以下RTKと称す)方式では、座標既知の基準点と観測点でGPS電波を受信し、基準点と観測点間の基線長から観測点の測位を行うものであり、若干精度は落ちる(2〜3cm程度)ものの、観測点での電波受信は短時間(10秒程度)で済む。
【0011】
【発明が解決しようとする課題】
地盤変動を計測する計測器としては、上述したように、多種類の物理的な現象に各々対応して計測する計測器が存在するが、いずれもその検出対象が限定的であり、しかも、各々の計測器には、それぞれ長所短所があるため、地滑り現象を早期に検出するには、いくつかの計測器を組み合わせて使い、それらの観測計器の結果を総合的に判断する必要がある。現状は得られた個々の観測値を基に人間が総合的に評価して地滑りが生ずる危険があるか否かの判断を行っている。
【0012】
一方、GPSによる地盤の変動の計測方式としては、ST方式のGPS測位、RTK方式のGPS測位などがある。ST方式の測位手法を地滑り観測に適用した場合には、精度が高く微小な変位も検出でき、初期の地盤変動の検出には適したものとなるが、必要な測位精度を得るためには数時間の電波受信が必要なため、地盤の変動が活発になりだしたときには、その変動の検出が間に合わない。他方、RTK方式の測位手法を適用した場合には、秒オーダでの検出が可能となるが、変位の検出精度がcmオーダとなり、初期の微小な変位の発生を検出できない。
【0013】
地滑りのような地盤の変動現象は、地滑り初期においては、微小な変動が続き、ある時間を経過すると、急速に大きな変動が起こり出す。そこで、災害対策としては、初期の微小な変動を早期に検出して警戒態勢を取り、変動が大きくなり出したら防護処置を取るというような手順が必要である。そのため、地滑り対策としては、地滑りによる変動の状態に適合した精度で計測できる正確な地盤変動情報が必要となる。
【0014】
また、GPSによって計測できるのは地滑り地盤表面の動きであるから、すべり面の動きは知ることができない。更に、地下水位の上昇によって地滑りが活発化する兆候が現れた場合、地滑り地盤表面に変動が現れなくとも事前に警戒態勢を取っておく必要がある。
【0015】
従って、以上の状況を考慮して、本発明は、地滑り地盤を観測するために、使用する各計測器の特徴を活かし、地盤変動の状態に合せて、異なる手法による測位解析を適宜に選択し、地滑り地盤の変動を総合的に判断できるようにし、如何なる変動状況においても、確実に、かつ精度よく地盤の変動を観測できるシステムを提供することを目的とする。
【0016】
【課題を解決するための手段】
以上の課題を解決するため、本発明では、地滑り地域の地盤変動を観測する地盤変動計測システムにおいて、地盤表面に設置されたGPS受信器から得られた測位情報に基づいて、地盤変位量をGPS測位解析処理する処理手段と、地盤変動情報に応じて、前記処理手段に含まれている異なった手法による測位解析を選択する制御手段とを備えている。
【0017】
ここで、処理手段は、スタティックGPS測位法とリアルタイムキネマティックGPS測位法とによることとした。
【0018】
前記地盤変動情報は、前記処理手段により解析処理された地盤変位量を含み、更に、地盤傾斜計、伸縮計、歪計、孔内傾斜計、孔内水位計、雨量計のいずれか1つ又は複数から得られる地盤変動観測器の測定値を含むこととした。
【0019】
前記制御手段は、前記地盤変動情報に含まれる変位量又は地盤変動観測器の測定値が規定値以下の場合には、解析処理にスタティックGPS測位法を選択し、変位量又は地盤変動観測器の測定値が規定値を超える場合には、前記解析処理に前記リアルタイムキネマティックGPS測位法を選択することとした。この規定値は、地盤変動が地滑り危険域に入ったことを示す値に設定される。
【0020】
なお、GPS受信器及び地盤変動観測器は、前記処理手段から離れた場所に設置される。
【0021】
以上のような構成とすることにより、本発明の地盤変動観測システムでは、地滑り等の地盤変動を、精度よく、確実に把握することができるようになった。
【0022】
【発明の実施の形態】
次に、本発明による地盤変動計測システムの実施形態について、図2を参照しながら説明する。
【0023】
本実施形態においては、地盤変動を計測する計器の1つとして、GPSによる地盤変位の正確な計測方法を採用している。地盤変位のGPS解析処理手法として、2つの解析処理手法を採用し、夫々の解析方法の特徴と地盤変動の特徴とがマッチするように選択して使用するようにしている。また、この解析処理方法の選択に従来の観測計器も利用し、総合的な地盤変動計測システムとしている。
【0024】
図2に、本実施形態による地盤変動計測システムの全体構成例を示した。
【0025】
観測対象エリア1の中の1つの地滑り地盤Aにおいて、ST測位に必要な観測網を構成するため少なくとも3個の観測点の夫々に、GPS測位をするためのGPSアンテナ5とGPS受信器17を設置する。この観測点は、地滑り地盤Aにおける地塊の動きが活発な個所が選択される。更に、この各観測点の近傍に、従来からある物理的に地盤変動を検出する地盤観測計器の検出器、例えば、地盤傾斜計7、伸縮計8、歪計9、孔内傾斜計10、孔内水位計11、雨量計12の検出器など、の内のいくつかを必要に応じて設置する。
【0026】
これらのGPS受信器17からの信号及び地盤変動観測計器の検出器からの検出信号が、これらの観測点の近くに設置された地盤観測局2に集められ、ここで計測された計測値は、無線等を使用したデータ送信機6により遠隔にある地盤監視局4に送信される。
【0027】
また、地滑りの影響を受けない固定した場所には、RTK測位のために使用するGPS基準局3を設ける。GPS基準局3には、GPS測位のためのアンテナ13とGPS受信器18と受信データを監視局4に送信するデータ送信機14が収納されている。
【0028】
観測対象エリア1が広い場合には、地盤観測局2を2−1〜2−Nと適宜増やして設置する。
【0029】
地盤監視局4には、各観測局2−1〜2−N及び基準局3からの計測データを受信する受信機15と計測結果の解析及び結果出力を実施する電子計算機等を利用した解析処理装置16が収納されている。
【0030】
この地盤監視局4の解析処理装置16で実施されている機能の構成を図3に示す。
【0031】
解析処理装置16は、GPS解析処理方法の選択部32、ST解析処理部33、RTK解析処理部34、及び観測結果の保存・出力部35からなっており、地盤変動観測取得部31及びユーザによる測位法指定部36からの入力を取り込んでいる。
【0032】
地盤変動観測データ取得部31は、各地盤観測局2−1〜2−N及びGPS基準局3からのGPS受信データ及び地盤変動観測器からの計測データの取得処理を行う。この取得データは、GPS測位のためのデータと伸縮計、地盤傾斜計、歪計、孔内傾斜計、孔内水位計、雨量計などの観測器からの計測データとに分けられる。
【0033】
ST解析処理部33とRTK解析処理部34は、取得したGPS受信データから地盤変位を計算する。
【0034】
GPS解析処理方法選択32は、GPSによる測位値及び観測計器の観測値から以下に述べる選択手順に従いGPS解析処理の選択を実施する。
【0035】
ここで実施しているGPS解析処理の選択手順は、次の通りである。
【0036】
ST解析処理部33の処理は、前述したように結果が出るまで長い時間(4時間程度)がかかるが計測精度は高い(5mm程度)という特徴があり、RTK解析処理部34の処理はやや計測精度が落ちる(2〜3cm程度)が結果の出る時間が短い(10秒程度)という特徴がある。そこで、特に異常のない状態では、地盤変動が小さい状態にあるため、ST解析処理を行う。そして地盤変位値が危険範囲と判断される規定の範囲を超えた時には、変化に即応できるようにするため、RTK解析処理に選択される。これは、一般的に地盤変動は、初期は微小な変位がゆっくりと出るが、地盤が動き出すと急に大きな変位に変化する特徴があるということに対処するためである。
【0037】
一方、観測計器からの測定値が、危険範囲と判断された時にも、地盤変動が始まったと推測できる。この時には、いずれ発生する変位に即応できるようにGPS測位法はST解析処理部33の処理からRTK解析処理部34の処理に選択を切り替える。地盤変動観測計器のうち、伸縮計と地盤傾斜計、歪計と孔内傾斜計、孔内水位計と雨量計は、同類の現象の計測となるため、いずれか1つになる場合もある。
【0038】
地盤変動のいずれの異常も収まり、安定な状態に戻った場合には、GPS測位計算は、RTK解析処理部34の処理からST解析処理部33の処理に自動的に戻される。即ち、GPS測位による変位が規定値より少なくなり、その他の計測計器の値も安全範囲に戻った時に、測位解析はST解析処理部33の処理に戻される。
【0039】
また、測位指定部36によって、ユーザが指定した場合は、自動切替に優先して、GPS解析方法を選択しることもできる。
【0040】
結果の保存及び出力部35は、これらのGPS測位結果及びその他観測結果を記憶部に保存し、定期的又は要求によりディスプレイやプリンタ、通信回線等への出力を行う。出力の際には、地盤変動の挙動をわかりやすくするため、グラフ表示するなどの視覚化を図ってもよい。
【0041】
図4は、前記のGPS解析処理の切替方法をフローチャートで表現した図である。
【0042】
GPS受信データ取得ステップS1でGPS受信データを取得し、測位解析のステップS2に進む。このステップS2において、通常ST解析処理により各観測点の位置を解析する。ここで、GPS測位法がSTであれRTKであれ使用される受信データは同一のものであるから、システムの内部において両方の処理を実行させてもよい。この場合ステップS2からは、どちらの解析処理によるものかという識別の付された測位解析結果が、STではおよそ4時間毎に、RTKではおよそ10秒毎に、出力される違いがあるだけである。
【0043】
また、地盤変動が活発化した際に、RTK測位解析の結果をリアルタイムに取得しつつ、ST測位解析結果が出力された時点で、より精度の高い変位量を取得できるという効果もある。
【0044】
規定の時間間隔でこの解析を続けた後、ステップS3において測位解析結果の変位量を求める。この測位の変位量が、地盤変動の危険があると判断される規定値より小さいと判断された時に、ST解析処理優先の選択要求が出され、測位の変位量が規定値より大きいと判断された時に、RTK解析処理優先の選択要求が出され、次の測位法を決定するためのステップ6へ進む。
【0045】
一方、地盤変動観測データの取得がステップS5において行われ、この観測データが危険範囲を示す場合は、いずれ地表の変位が急速に大きくなる可能性があるため、測位の即応性を向上するように、ステップS4においてRTK解析処理優先の選択要求が出され、逆に安全範囲を示す場合はST解析処理優先の選択要求が出され、その要求は測位法を決定するためのステップS6に送られる。
【0046】
また、ユーザの判断によりGPS解析処理部を選択する要求もステップS7において受け入れられるようになっており、この要求も測位法を決定するためのステップS6に送られる。
【0047】
ステップS6では、これらの各測位法選択要求の中から優先度の高いものに測位法を決定し、ステップS2に戻り、決定した測位法による解析が行われる。
【0048】
ステップS6における測位法の選択要求の決定基準としては、早期警戒を目的とするためGPS測位による変位量が規定値を超える、又は地盤変動観測値が規定値を超える、又はユーザによる選択のいずれかによりRTK解析処理の要求がある場合は、RTK解析処理を選択し、GPS測位による変位量、地盤変動観測値のいずれもが正常値に戻った場合には、ST解析処理を選択する、である。
【0049】
以上に説明したように、ステップS2乃至ステップS7の手順がサイクル的に決められた周期で定期的に繰り返される。
【0050】
【発明の効果】
本発明によれば、GPS測位法により微小な地盤変動から急速な地盤変動まで連続して監視ができ、早期の警戒や避難の判断が行えるシステムとすることができる。また、GPS測位の解析処理法として、初期に変動の兆候がゆっくりと現れ、変動が拡大すると一気に崩壊するという地滑りの特徴に合わせて適切なGPS解析処理方法が選択できるようにしたので、地滑り等の地盤変動を精度よく、かつ確実に把握することができる。特に、スタティック測位によっても捉えきれないような初期の微小変動や、すべり面の動き、地すべり誘因の計測値と連動させることで、より総合的な監視のできるシステムとなっている。
【図面の簡単な説明】
【図1】従来の地盤変動観測機器の設置状況を示す図である。
【図2】本発明の1実施例の全体構成を示した図である。
【図3】解析処理装置で実施されている機能の構成を示した図である。
【図4】GPS解析処理選択し方法を示したフローチャートである。
【符号の説明】
1…観測対象エリア
2…地盤観測局
3…GPS基準局
4…地盤監視局
5、13…GPSアンテナ
6、14…データ送信機
7、D1、D2…地盤傾斜計
8、E1、E2…伸縮計
9…歪計
10…孔内傾斜計
11…孔内水位計
12、R…雨量計
15…データ受信機
16…解析処理装置
17、18…GPS受信器
A…地滑り地盤表面
B…地滑り地盤すべり面
H1、H2、H3…ボーリング孔
31〜36…処理ブロック
S1〜S8…処理ステップ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ground deformation measurement system for detecting a landslide, and in particular, a plurality of positioning methods for a ground surface displacement based on ground change information obtained from a GPS receiver and a ground change observation device installed on a ground surface in a landslide area. The present invention relates to a ground deformation measurement system for selecting a method.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in order to monitor the activity of a dangerous area where a disaster, for example, a large-scale landslide is likely to occur, various observation equipments are installed and a system for constantly observing is adopted.
[0003]
In view of the above, in the related art, a situation where a ground deformation observation device is installed in such a landslide-hazardous area is shown as an example in FIG. FIG. 2A is a plan view of the landslide ground A when the landslide danger area is viewed from above, and the landslide ground A is modeled and represented. FIG. 2B shows a vertical cross section of the landslide ground A. As shown in FIG. 1 (b), the landslide ground A to be observed has a slip surface B with respect to the surface of the landslide ground, and the upper area of the landslide ground A is a normal extension area. And the area below it is a compression area.
[0004]
In general, by measuring the ground deformation in the extension area and the compression area of the ground, the state of the landslide of the ground can be observed. Extensometers E1 and E2 are installed at the lower part, and inclinometers D1 and D2 are also installed. In the extensometer E1, a wire is stretched in the direction of the landslide between the landslide ground A and the landslide peripheral ground, and the expansion and contraction between two points on the ground surface of each lands is measured to grasp the state of the upper part of the landslide ground A. In the extensometer E2, a wire is stretched in the landslide direction between two points on the lower ground surface of the landslide ground A, and the state of expansion and contraction of the lower part of the landslide ground A is grasped. Furthermore, since the slope of the ground surface of the ground changes when a landslide occurs, inclinometers D1 and D2 are installed on the upper and lower sides of the landslide ground A, respectively. These instruments measure the movement of the ground surface of the landslide ground A.
[0005]
Further, when a landslide occurs, a slip occurs on the slip surface B of the landslide ground A with the immovable ground that supported the landslide ground A. Therefore, as shown in FIG. 1 (b), a plurality of boring holes H1, H2, H3 penetrating through the ground A at the time of landslide are provided, and the degree of bending of each boring hole is determined by an inclinometer or strain gauge. Measure the deviation. The number of the boring holes is appropriately selected according to the scale of the landslide. These instruments measure the movement of the landslide ground A using the slip surface B.
[0006]
In the landslide phenomenon, since the amount of rainfall is an important factor, the rainfall gauge R is installed on the surrounding ground to measure the rainfall. Further, depending on the ground, the degree of permeation of rainwater differs, so that a borehole water level gauge is installed in the boreholes H1 to H3 to measure the groundwater level of the landslide ground A. These instruments measure the trigger of the landslide, not the movement of the landslide surface A.
[0007]
By the way, an extensometer that observes the movement of a landslide surface is a high-precision one that can detect fluctuations of 0.1 mm or less. For example, when two points where measurement wires are stretched are displaced in parallel. Cannot measure the variation. For this reason, recently, a positioning method based on a global positioning system (GPS) has been used to measure the displacement of the ground at the installation location.
[0008]
Since displacements caused by crustal deformation, landslides, and the like are usually small, when GPS-based positioning is used to observe these ground deformations, an interference positioning method is exclusively used to obtain necessary positioning accuracy.
[0009]
The interference positioning method uses a phase difference of a carrier wave in a GPS reception radio wave, and can obtain a high accuracy of about 1 to 3 cm. The interference positioning method further includes two methods, a static method and a real-time kinematic method. Here, the static (hereinafter, referred to as ST) method performs GPS signal reception continuously for several tens of minutes to several hours at an observation point, and performs network average calculation between a plurality of observation points to achieve high accuracy ( The positioning result can be obtained (approximately 5 mm in continuous reception for about 4 hours).
[0010]
The real-time kinematic (hereinafter referred to as RTK) method receives GPS radio waves at a reference point and an observation point whose coordinates are known, and performs positioning of the observation point based on the base line length between the reference point and the observation point. Although it falls (about 2 to 3 cm), radio wave reception at the observation point can be completed in a short time (about 10 seconds).
[0011]
[Problems to be solved by the invention]
As described above, as a measuring instrument for measuring ground deformation, there is a measuring instrument that measures each of various types of physical phenomena. Each of these instruments has their strengths and weaknesses, so in order to detect landslide phenomena early, it is necessary to use several instruments in combination and judge the results of those instruments comprehensively. At present, humans make comprehensive assessments based on the individual observations obtained to determine whether there is a risk of landslides.
[0012]
On the other hand, as a method of measuring ground fluctuation by GPS, there are GPS positioning by ST method and GPS positioning by RTK method. When the ST method is applied to landslide observation, it can detect very small displacements with high accuracy, making it suitable for detecting initial ground movements. Since the radio wave needs to be received for a time, when the ground changes become active, the detection of the changes cannot be made in time. On the other hand, when the RTK positioning method is applied, the detection can be performed on the order of seconds, but the detection accuracy of the displacement is on the order of cm, and the occurrence of an initial minute displacement cannot be detected.
[0013]
Ground fluctuation phenomena such as landslides continue to be minute in the early stages of the landslide, and after a certain period of time, large fluctuations occur rapidly. Therefore, as a countermeasure against disasters, it is necessary to take steps such as detecting early minute fluctuations at an early stage and taking an alert state, and taking a protective action when the fluctuations become large. Therefore, as a countermeasure against landslide, accurate ground change information that can be measured with an accuracy suitable for a state of change due to landslide is required.
[0014]
In addition, since the movement of the landslide ground surface can be measured by the GPS, the movement of the slip surface cannot be known. Furthermore, when there is a sign that landslides become active due to a rise in the groundwater level, it is necessary to be alert beforehand even if the landslide surface does not change.
[0015]
Therefore, in consideration of the above situation, the present invention takes advantage of the characteristics of each measuring instrument used to observe the landslide ground, and appropriately selects a positioning analysis by a different method according to the state of the ground deformation. It is an object of the present invention to provide a system capable of comprehensively judging a change in a landslide ground and observing a change in the ground reliably and accurately in any change state.
[0016]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a ground deformation measurement system for observing ground deformation in a landslide area, in which a ground displacement amount is determined based on positioning information obtained from a GPS receiver installed on the ground surface. There are provided processing means for performing positioning analysis processing, and control means for selecting positioning analysis by a different method included in the processing means in accordance with ground deformation information.
[0017]
Here, the processing means is based on the static GPS positioning method and the real-time kinematic GPS positioning method.
[0018]
The ground deformation information includes a ground displacement amount analyzed and processed by the processing unit, and further, any one of a ground inclinometer, an extensometer, a strain gauge, an inclinometer in a hole, a water level gauge in a hole, a rain gauge or It includes the measured values of the ground deformation observing instruments obtained from a plurality.
[0019]
The control means selects a static GPS positioning method for the analysis process when the displacement amount or the measured value of the ground deformation observation device included in the ground deformation information is equal to or less than a specified value, and When the measured value exceeds the specified value, the real-time kinematic GPS positioning method is selected for the analysis processing. This specified value is set to a value indicating that the ground deformation has entered the landslide risk area.
[0020]
Note that the GPS receiver and the ground deformation observation device are installed at a location away from the processing means.
[0021]
With the above configuration, the ground deformation observation system of the present invention can accurately and reliably grasp the ground deformation such as a landslide.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of a ground deformation measurement system according to the present invention will be described with reference to FIG.
[0023]
In the present embodiment, an accurate method of measuring the ground displacement by GPS is employed as one of the instruments for measuring the ground deformation. Two analysis processing methods are adopted as GPS analysis processing methods for ground displacement, and the characteristics of each analysis method and the characteristics of ground deformation are selected and used so as to match. In addition, conventional observation instruments are also used to select this analysis processing method, and the system is a comprehensive ground deformation measurement system.
[0024]
FIG. 2 shows an example of the overall configuration of the ground deformation measurement system according to the present embodiment.
[0025]
In one landslide ground A in the observation target area 1, a GPS antenna 5 and a GPS receiver 17 for GPS positioning are provided at each of at least three observation points to form an observation network required for ST positioning. Install. As this observation point, a place where the movement of the mass in the landslide ground A is active is selected. Further, in the vicinity of each observation point, a detector of a conventional ground observation instrument for physically detecting ground deformation, for example, a ground inclinometer 7, an extensometer 8, a strain gauge 9, an inclinometer 10, and a hole Some of the inner water level gauge 11, the detector of the rain gauge 12, and the like are installed as necessary.
[0026]
The signals from these GPS receivers 17 and the detection signals from the detectors of the ground deformation observation instruments are collected by the ground observation station 2 installed near these observation points, and the measured values measured here are: The data is transmitted to a remote ground monitoring station 4 by a data transmitter 6 using a radio or the like.
[0027]
A GPS reference station 3 used for RTK positioning is provided in a fixed place not affected by landslides. The GPS reference station 3 contains an antenna 13 for GPS positioning, a GPS receiver 18, and a data transmitter 14 for transmitting received data to the monitoring station 4.
[0028]
If the observation target area 1 is large, the ground observation stations 2 are installed as appropriate, 2-1 to 2-N.
[0029]
The ground monitoring station 4 includes a receiver 15 that receives measurement data from each of the observation stations 2-1 to 2-N and the reference station 3, and an analysis processing device that uses an electronic computer or the like that analyzes the measurement results and outputs the results. 16 are stored.
[0030]
FIG. 3 shows the configuration of the functions performed by the analysis processing device 16 of the ground monitoring station 4.
[0031]
The analysis processing device 16 includes a GPS analysis processing method selection unit 32, an ST analysis processing unit 33, an RTK analysis processing unit 34, and an observation result storage / output unit 35. The input from the positioning method specifying unit 36 is taken in.
[0032]
The ground deformation observation data acquisition unit 31 performs a process of acquiring GPS reception data from each of the ground observation stations 2-1 to 2-N and the GPS reference station 3 and measurement data from the ground deformation observation device. This acquired data is divided into data for GPS positioning and measurement data from observation devices such as an extensometer, a ground inclinometer, a strain gauge, a borehole inclinometer, a borehole water gauge, and a rain gauge.
[0033]
The ST analysis processing unit 33 and the RTK analysis processing unit 34 calculate the ground displacement from the acquired GPS reception data.
[0034]
In the GPS analysis processing method selection 32, the GPS analysis processing is selected in accordance with a selection procedure described below from the positioning value by GPS and the observation value of the observation instrument.
[0035]
The procedure for selecting the GPS analysis processing performed here is as follows.
[0036]
As described above, the processing of the ST analysis processing unit 33 takes a long time (about 4 hours) until a result is obtained, but the measurement accuracy is high (about 5 mm), and the processing of the RTK analysis processing unit 34 is slightly measured. It is characterized in that the accuracy is reduced (about 2 to 3 cm), but the time to obtain the result is short (about 10 seconds). Therefore, in a state where there is no particular abnormality, since the ground fluctuation is small, the ST analysis processing is performed. Then, when the ground displacement value exceeds a specified range determined as a dangerous range, it is selected for an RTK analysis process in order to be able to respond immediately to the change. This is in order to deal with the fact that, in general, ground deformation has a feature in which a small displacement appears slowly in the initial stage, but suddenly changes to a large displacement when the ground starts to move.
[0037]
On the other hand, when the measured value from the observation instrument is determined to be in the dangerous range, it can be estimated that the ground deformation has started. At this time, the GPS positioning method switches the selection from the processing of the ST analysis processing unit 33 to the processing of the RTK analysis processing unit 34 so as to immediately respond to the displacement that will occur. Among the ground movement observation instruments, the extensometer and the ground inclinometer, the strain gauge and the inclinometer in the hole, the water level gauge in the hole and the rain gauge are the same types of phenomena, and may be any one of them.
[0038]
When any abnormality of the ground deformation has subsided and the state returns to the stable state, the GPS positioning calculation is automatically returned from the processing of the RTK analysis processing unit 34 to the processing of the ST analysis processing unit 33. That is, when the displacement due to the GPS positioning becomes smaller than the specified value and the values of other measuring instruments also return to the safe range, the positioning analysis is returned to the processing of the ST analysis processing unit 33.
[0039]
Further, when the positioning is specified by the positioning specifying unit 36, the GPS analysis method can be selected in preference to the automatic switching.
[0040]
The result storage and output unit 35 stores these GPS positioning results and other observation results in a storage unit, and outputs the results to a display, a printer, a communication line, or the like periodically or upon request. At the time of output, in order to make the behavior of the ground deformation easy to understand, visualization such as graph display may be performed.
[0041]
FIG. 4 is a flow chart showing a method for switching the GPS analysis processing.
[0042]
The GPS reception data is acquired in the GPS reception data acquisition step S1, and the process proceeds to the positioning analysis step S2. In this step S2, the position of each observation point is analyzed by normal ST analysis processing. Here, since the received data used by the GPS positioning method is the same regardless of whether it is ST or RTK, both processes may be executed inside the system. In this case, from step S2, there is only a difference that the positioning analysis result with the identification of which analysis process is performed is output approximately every 4 hours in ST and approximately every 10 seconds in RTK. .
[0043]
Further, there is an effect that, when the ground deformation is activated, the displacement amount with higher accuracy can be acquired at the time when the ST positioning analysis result is output, while acquiring the result of the RTK positioning analysis in real time.
[0044]
After continuing this analysis at a specified time interval, the displacement amount of the positioning analysis result is obtained in step S3. When it is determined that the displacement amount of the positioning is smaller than a specified value at which there is a danger of ground deformation, a request for selecting ST analysis processing is issued, and it is determined that the displacement amount of the positioning is larger than the specified value. At this time, a request for selecting the RTK analysis processing priority is issued, and the process proceeds to step 6 for determining the next positioning method.
[0045]
On the other hand, acquisition of ground deformation observation data is performed in step S5, and if this observation data indicates a dangerous range, the displacement of the ground surface may increase rapidly, so that the responsiveness of positioning is improved. In step S4, a request for selecting the RTK analysis process is given, and if it indicates a safe range, a request for selecting the ST analysis process is given. The request is sent to step S6 for determining the positioning method.
[0046]
Also, a request to select a GPS analysis processing unit at the discretion of the user is accepted in step S7, and this request is also sent to step S6 for determining a positioning method.
[0047]
In step S6, the positioning method is determined to be the one with the highest priority from among these positioning method selection requests, and the process returns to step S2 to perform analysis using the determined positioning method.
[0048]
As a criterion for the selection request of the positioning method in step S6, for the purpose of early warning, the displacement amount by the GPS positioning exceeds the specified value, or the ground deformation observation value exceeds the specified value, or the user selects one of the following. When there is a request for RTK analysis processing, the RTK analysis processing is selected, and when both the displacement amount by GPS positioning and the ground deformation observation value return to normal values, the ST analysis processing is selected. .
[0049]
As described above, the procedure of steps S2 to S7 is periodically repeated at a cycle determined in a cycle.
[0050]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it can be set as the system which can continuously monitor from a small ground change to a rapid ground change by a GPS positioning method, and can perform early warning and evacuation judgment. In addition, as an analysis processing method for GPS positioning, an appropriate GPS analysis processing method can be selected according to the characteristics of a landslide where signs of change appear slowly at an initial stage and collapse at a stretch when the change expands. Of the ground can be accurately and reliably grasped. In particular, it is a system that enables more comprehensive monitoring by linking it to the initial minute fluctuations that cannot be captured even by static positioning, the movement of the slip surface, and the measured value of the landslide trigger.
[Brief description of the drawings]
FIG. 1 is a diagram showing a state of installation of a conventional ground deformation observation device.
FIG. 2 is a diagram showing an overall configuration of one embodiment of the present invention.
FIG. 3 is a diagram showing a configuration of a function implemented in the analysis processing device.
FIG. 4 is a flowchart showing a method for selecting a GPS analysis process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Observation target area 2 ... Ground observation station 3 ... GPS reference station 4 ... Ground monitoring station 5, 13 ... GPS antenna 6, 14 ... Data transmitter 7, D1, D2 ... Ground inclinometer 8, E1, E2 ... Extensometer 9 ... Strain gauge 10 ... In-hole inclinometer 11 ... In-hole water level meter 12, R ... Rain gauge 15 ... Data receiver 16 ... Analysis processor 17,18 ... GPS receiver A ... Landslide ground surface B ... Landslide ground slide surface H1 , H2, H3 ... boring holes 31 to 36 ... processing blocks S1 to S8 ... processing steps

Claims (8)

地盤表面に設置されたGPS受信器から得られた測位情報に基づいて、地盤変位量をGPS測位解析処理する処理手段と、
地盤変動情報に応じて、前記処理手段に含まれ異なる手法による測位解析に選択する制御手段を有する地盤変動計測システム。
Processing means for performing GPS positioning analysis processing on the amount of ground displacement based on positioning information obtained from a GPS receiver installed on the ground surface;
A ground deformation measurement system including a control unit that is included in the processing unit and selects a positioning analysis by a different method in accordance with ground deformation information.
前記処理手段は、スタティックGPS測位法によるものと、リアルタイムキネマティックGPS測位法によるものとを有することを特徴とする請求項1に記載の地盤変動計測システム。2. The ground deformation measurement system according to claim 1, wherein the processing unit includes a unit based on a static GPS positioning method and a unit based on a real-time kinematic GPS positioning method. 前記地盤変動情報は、前記処理手段により解析処理された前記地盤変位量を含むことを特徴とする請求項1又は2に記載の地盤変動計測システム。The ground deformation measurement system according to claim 1, wherein the ground deformation information includes the ground displacement amount analyzed by the processing unit. 前記地盤変位量が、スタティックGPS測位解析処理によるものか、リアルタイムキネマティックGPS測位解析処理によるものかを識別することを特徴とする請求項1乃至3のいずれか一項に記載の地盤変動計測システム。The ground deformation measurement system according to any one of claims 1 to 3, wherein it is determined whether the ground displacement amount is based on a static GPS positioning analysis process or a real-time kinematic GPS positioning analysis process. . 前記地盤変動情報は、更に、地盤傾斜計、伸縮計、歪計、孔内傾斜計、孔内水位計、雨量計のいずれか1つ又は複数から得られる地盤変動観測器の測定値を含むことを特徴とする請求項1又は2のいずれかに記載の地盤変動計測システム。The ground deformation information may further include a measured value of a ground deformation observing instrument obtained from one or more of a ground inclinometer, an extensometer, a strain gauge, a borehole inclinometer, a borehole water gauge, and a rain gauge. The ground deformation measurement system according to claim 1, wherein: 前記制御手段は、前記地盤変動情報に含まれる前記変位量及び前記地盤変動観測器の測定値が規定値以下の場合には、前記解析処理に前記スタティックGPS測位法を選択し、前記変位量又は前記地盤変動観測器の測定値が規定値を超える場合には、前記解析処理に前記リアルタイムキネマティックGPS測位法を選択することを特徴とする3乃至5のいずれか一項に記載の地盤変動計測システム。The control means selects the static GPS positioning method for the analysis processing when the displacement amount included in the ground deformation information and the measurement value of the ground deformation observation device are equal to or less than a specified value, and the displacement amount or The ground deformation measurement according to any one of claims 3 to 5, wherein the real-time kinematic GPS positioning method is selected for the analysis processing when the measured value of the ground deformation observation device exceeds a prescribed value. system. 前記規定値は、前記地盤変動が活発化したか、又は活発化することを示す値に設定されることを特徴とする請求項6に記載の地盤変動計測システム。The ground deformation measurement system according to claim 6, wherein the specified value is set to a value indicating that the ground deformation has become active or active. 前記GPS受信器及び前記地盤変動観測器は、前記処理手段と前記制御手段から離れた場所に設置されることを特徴とする請求項1乃至7のいずれか一項に記載の地盤変動計測システム。The ground deformation measurement system according to any one of claims 1 to 7, wherein the GPS receiver and the ground deformation observation device are installed at a location separated from the processing unit and the control unit.
JP2002201733A 2002-07-10 2002-07-10 Ground deformation measurement system Expired - Fee Related JP3635270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201733A JP3635270B2 (en) 2002-07-10 2002-07-10 Ground deformation measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201733A JP3635270B2 (en) 2002-07-10 2002-07-10 Ground deformation measurement system

Publications (2)

Publication Number Publication Date
JP2004045158A true JP2004045158A (en) 2004-02-12
JP3635270B2 JP3635270B2 (en) 2005-04-06

Family

ID=31708185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201733A Expired - Fee Related JP3635270B2 (en) 2002-07-10 2002-07-10 Ground deformation measurement system

Country Status (1)

Country Link
JP (1) JP3635270B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139195A (en) * 2006-12-04 2008-06-19 Yunitekku:Kk Landslide measuring method
JP2012013613A (en) * 2010-07-02 2012-01-19 Furuno Electric Co Ltd System, apparatus and program for gnss analysis
JP2015162095A (en) * 2014-02-27 2015-09-07 中国電力株式会社 Landslide maintenance management system and landslide maintenance management method
CN107796484A (en) * 2017-01-11 2018-03-13 中南大学 One kind is based on BDStar navigation system signal-to-noise ratio data observed stage changing method
JP2018146546A (en) * 2017-03-09 2018-09-20 エアロセンス株式会社 Information processing system, information processing device, and information processing method
CN109444463A (en) * 2018-11-05 2019-03-08 北京理工大学 A kind of ore-rock moving monitoring system and method
CN111461009A (en) * 2020-03-31 2020-07-28 四川九洲北斗导航与位置服务有限公司 Landslide risk assessment method and device based on high-resolution SAR technology and electronic equipment
CN113216219A (en) * 2021-04-09 2021-08-06 中国电建集团西北勘测设计研究院有限公司 Method for controlling slope deformation by limiting reservoir water level lifting rate
CN114076568A (en) * 2022-01-19 2022-02-22 中铁第一勘察设计院集团有限公司 Air-ground-depth integrated visual slope automatic monitoring system and method
JP7466883B1 (en) 2024-01-19 2024-04-15 浙江大学 Rainfall-induced landslide monitoring and early warning method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987057A (en) * 2021-03-02 2021-06-18 上海华测导航技术股份有限公司 Landslide disaster monitoring equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146112A (en) * 1994-11-18 1996-06-07 Furuno Electric Co Ltd Locating system
JPH09184719A (en) * 1995-12-28 1997-07-15 Chubu Electric Power Co Inc Landslide detection device
JPH11352210A (en) * 1998-06-05 1999-12-24 Nishimatsu Constr Co Ltd Displacement measuring method, position measuring method by gps, and displacement and position measuring apparatus
JP2000018982A (en) * 1998-07-02 2000-01-21 Toshiba Corp System and sensor for detection of movement of soil and stone, dropping control device for coordinate positioning apparatus and dropping-type coordinate positioning apparatus
JP2000337932A (en) * 1999-05-25 2000-12-08 Japan Radio Co Ltd System for monitoring and alarming landslide utilizing satellite positioning
JP2001041782A (en) * 1999-07-29 2001-02-16 Mitsui Bussan Plant Kk Ground monitoring system and detector therefor
JP2003194915A (en) * 2001-12-27 2003-07-09 Furuno Electric Co Ltd Positioning apparatus and system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146112A (en) * 1994-11-18 1996-06-07 Furuno Electric Co Ltd Locating system
JPH09184719A (en) * 1995-12-28 1997-07-15 Chubu Electric Power Co Inc Landslide detection device
JPH11352210A (en) * 1998-06-05 1999-12-24 Nishimatsu Constr Co Ltd Displacement measuring method, position measuring method by gps, and displacement and position measuring apparatus
JP2000018982A (en) * 1998-07-02 2000-01-21 Toshiba Corp System and sensor for detection of movement of soil and stone, dropping control device for coordinate positioning apparatus and dropping-type coordinate positioning apparatus
JP2000337932A (en) * 1999-05-25 2000-12-08 Japan Radio Co Ltd System for monitoring and alarming landslide utilizing satellite positioning
JP2001041782A (en) * 1999-07-29 2001-02-16 Mitsui Bussan Plant Kk Ground monitoring system and detector therefor
JP2003194915A (en) * 2001-12-27 2003-07-09 Furuno Electric Co Ltd Positioning apparatus and system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139195A (en) * 2006-12-04 2008-06-19 Yunitekku:Kk Landslide measuring method
JP2012013613A (en) * 2010-07-02 2012-01-19 Furuno Electric Co Ltd System, apparatus and program for gnss analysis
JP2015162095A (en) * 2014-02-27 2015-09-07 中国電力株式会社 Landslide maintenance management system and landslide maintenance management method
CN107796484A (en) * 2017-01-11 2018-03-13 中南大学 One kind is based on BDStar navigation system signal-to-noise ratio data observed stage changing method
JP2021165762A (en) * 2017-03-09 2021-10-14 エアロセンス株式会社 Information processing system, information processing device and information processing method
JP2018146546A (en) * 2017-03-09 2018-09-20 エアロセンス株式会社 Information processing system, information processing device, and information processing method
JP7168733B2 (en) 2017-03-09 2022-11-09 エアロセンス株式会社 Information processing system, information processing device, and information processing method
CN109444463A (en) * 2018-11-05 2019-03-08 北京理工大学 A kind of ore-rock moving monitoring system and method
CN111461009A (en) * 2020-03-31 2020-07-28 四川九洲北斗导航与位置服务有限公司 Landslide risk assessment method and device based on high-resolution SAR technology and electronic equipment
CN111461009B (en) * 2020-03-31 2023-10-24 四川九洲北斗导航与位置服务有限公司 Landslide risk assessment method and device based on high-score SAR technology and electronic equipment
CN113216219A (en) * 2021-04-09 2021-08-06 中国电建集团西北勘测设计研究院有限公司 Method for controlling slope deformation by limiting reservoir water level lifting rate
CN113216219B (en) * 2021-04-09 2023-03-07 中国电建集团西北勘测设计研究院有限公司 Method for controlling slope deformation by limiting reservoir water level lifting rate
CN114076568A (en) * 2022-01-19 2022-02-22 中铁第一勘察设计院集团有限公司 Air-ground-depth integrated visual slope automatic monitoring system and method
JP7466883B1 (en) 2024-01-19 2024-04-15 浙江大学 Rainfall-induced landslide monitoring and early warning method and system

Also Published As

Publication number Publication date
JP3635270B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
CN112364802B (en) Deformation monitoring method for collapse landslide disaster body
EP3001225B1 (en) Safety diagnosis system for structure
CN106846736A (en) A kind of sensing system of landslide Geological Hazards Monitoring
KR102290183B1 (en) System for monitoring a collapse of mine pit using ground deformation sensor
KR101763337B1 (en) Disaster Warning System and Method based on Vibration-type accelerometer and Displacement measurement system
JP2004045158A (en) Ground movement measuring system
JPH11230791A (en) Monitor
CN105204092A (en) Thunder and lightening prewarning system with honeycomb layout
US20130291637A1 (en) System and Method For Monitoring Mechanically Coupled Structures
JP2004280204A (en) Slope collapse prediction system
JP2008215913A (en) Falling stone risk determination system
CN206959776U (en) High-rise building safe monitoring system based on big-dipper satellite
JP7405378B2 (en) Displacement measurement method and displacement measurement system
CN111382195B (en) Foundation pit safety monitoring data analysis method and system
JP2001041782A (en) Ground monitoring system and detector therefor
KR102016378B1 (en) A method and system for detection of slope collapse using position information of sensor
KR102365368B1 (en) System for monitoring displacement of slope
CN110865425B (en) Rain gauge gross error detection method based on prior information
CN108062848A (en) Landslide based on laser ranging monitors and urgent prior-warning device and method for early warning automatically
KR101584963B1 (en) Appratus and method for prediction of collapse symptom of slope using GPS
KR100812541B1 (en) Measuring System of Structure Using GNSS Network adjustment
JP2003214849A (en) Disaster-prevention monitoring system
CN111796113B (en) Slope damage time determination method and system based on angular velocity reciprocal method
KR20050102604A (en) Structure construction management system using gnss
JP2003329492A (en) Displacement measuring method of slope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees