JP2004044116A - Remaining life estimating method for bridge - Google Patents

Remaining life estimating method for bridge Download PDF

Info

Publication number
JP2004044116A
JP2004044116A JP2002199885A JP2002199885A JP2004044116A JP 2004044116 A JP2004044116 A JP 2004044116A JP 2002199885 A JP2002199885 A JP 2002199885A JP 2002199885 A JP2002199885 A JP 2002199885A JP 2004044116 A JP2004044116 A JP 2004044116A
Authority
JP
Japan
Prior art keywords
bridge
fatigue damage
future
degree
remaining life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002199885A
Other languages
Japanese (ja)
Inventor
Seiichi Noda
野田 整一
Nobuo Amano
天野 信雄
Hiroshi Katsuura
勝浦 啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002199885A priority Critical patent/JP2004044116A/en
Publication of JP2004044116A publication Critical patent/JP2004044116A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To hold down the waste of costs required for re-bridging and to minimize social and economical loss of re-bridging work by estimating the remaining life of a bridge in consideration of development of damage and deciding a precise maintenance and repairing plan. <P>SOLUTION: Concerning a bridge as an object, the degree of fatigue damage at the moment is obtained by measuring the traffic number of passing vehicles by each vehicle weight, the development of fatigue damage in future concerning the bridge is estimated from the degree of fatigue damage at the moment, and on the other hand, according to the future urban plan for the periphery of the bridge, a change in number of passing vehicles by each vehicle weight of the future traffic amount caused in the bridge is estimated, and the change of the degree of fatigue damage caused by the change of the future traffic amount is reflected in the development of the previously estimated future fatigue damage to correct the development of the degree of future fatigue damage. The remaining life of the bridge is estimated from the development of the degree of corrected future fatigue damage. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、橋梁の余寿命を予測する技術に関する。
【0002】
【従来の技術】
高度成長期に相次いで建設された橋梁の多くは、当初見込まれた耐用年数の半ばを過ぎてその老朽化が目立つようになり、補修工事が必要となったり場合によっては架け替えの対象になったりすることがある。しかしながら、それらすべてを架け替えるには莫大な費用がかかるだけでなく、長期にわたる架け替え工事によって周辺の都市機能が停滞して社会的、経済的に大きな損失が生じることが予想される。そこで、単に耐用年数の満了を迎えるのを待って架け替え工事を実施するのではなく、橋梁の状態を調査し、その調査結果を基に余寿命を延ばすべく維持補修計画を策定、実行する試みがなされている。
【0003】
橋梁の状態調査としては、まず、対象となる橋梁の主要な構成部材について応力測定を行って現時点での疲労損傷度(測定期間における発生応力と回数より各部に与える疲労損傷度を求める)を測定し、この値を標準的な疲労損傷度として過去から現在まで橋に与えられたと仮定して現時点での疲労損傷度の累積を想定し、当該橋梁が架け替えを必要とする疲労損傷度に達するまであとどれくらいの期間使用できるか、つまり余寿命はどれくらいかを予測する。また、各部の損傷具合からどの部分を補修することで、橋全体としての延命が図れるかを推定し、効果的な維持補修工事を計画・実施している。
【0004】
【発明が解決しようとする課題】
従来のような余寿命予測の手法では、測定時点での疲労損傷度から損傷の進み方を大まかに把握し、建設されてから今後も同様に疲労が進行すると仮定したうえで、あとどれくらいの期間で架け替えを必要とする疲労損傷度に達するかを予測していた。また、複数回測定を行う場合であっても、その間隔は長く数年から十数年の間隔を持って測定されているのが一般的である。
【0005】
しかしながら、都市の形態は日々変化しており、例えば更地であった地区が大規模開発によって多大な集客量を誇る商業施設に生まれ変わることなどは当然起こり得ることである。こういった変化が起こるとすれば、その近辺に在る橋梁の交通量は大幅に増加するから、今後も現在までと同様に疲労が進行すると仮定して予測を行う従来の手法では、今後の変化を予測値に織り込むことができず、橋梁の今後の損傷の進み方に見合った的確な維持補修計画を策定することは難しくなる。また、新たにできる施設の種類により、増える車両の性質も変わってくることが考えられる。具体的には、商業施設であれば乗用車等の比較的軽量の車両が増え、工場や貨物ターミナル等の施設では大型トラック等の重い車両が増える。
疲労損傷度は発生応力値(車重と相関がある)と発生回数(通行台数)によって決まるものであるので、どのような重さの車が何台通ったかを予測することが重要であり、従来の一時的な発生応力の頻度で評価する方法では、過去及び将来の疲労損傷度を予測する上で誤差を多く含んでしまう問題があった。
【0006】
本発明は上記の事情に鑑みてなされたものであり、橋梁の損傷の進み方を踏まえて余寿命を予測し、的確な維持補修計画を策定することにより、架け替えにかかる費用を抑えるとともに架け替え工事によって社会的、経済的な損失を最小限に抑えることを目的としている。
【0007】
【課題を解決するための手段】
上記の課題を解決するための手段として次のような構成の橋梁の余寿命予測方法を採用する。すなわち請求項1記載の本発明は、橋梁が架け替えを必要とする疲労損傷度に達するまであとどれくらいの期間使用できるか、つまり余寿命はどれくらいかを予測する橋梁の余寿命予測方法であって、
前記橋梁について現時点での車両重量別通過台数を測定して疲労損傷度を求め、該現時点での疲労損傷度から前記橋梁についての今後の疲労損傷の進行を推定する一方、
前記橋梁周辺の今後の都市計画に基づいて、前記橋梁に起こる今後の交通量の車両重量別の台数変化を推定し、
該今後の交通量の変化によって起こる疲労損傷度の変化を、先に推定された今後の疲労損傷の進行に反映させることで今後の疲労損傷の進行の予測値を補正し、
該補正された今後の疲労損傷の進行から前記橋梁の余寿命を予測することを特徴とする。
【0008】
請求項2記載の本発明は、請求項1記載の橋梁の余寿命予測方法において、前記都市計画に基づく前記橋梁の今後の交通量の変化を、同様の都市計画が実施された他地域の情報をもとに推定することを特徴とする。
【0009】
【発明の実施の形態】
本発明の実施形態を図1から図5に示して説明する。
本発明の橋梁の余寿命診断方法を図1をもとに概念的に説明する。まず、対象となる橋梁について現時点での疲労損傷度を測定し、該現時点での疲労損傷度からこの橋梁についての今後の疲労損傷の進行を推定する。例えば、この橋梁はその構造等から判断して架け替えを必要とする疲労損傷レベルがXであって、さらに建設からt0年が経過しているとする。この橋梁について現時点での疲労損傷度を測定し、その結果がZ0/年であるとする。過去における損傷度の測定がなされていない場合、Z0/年で損傷を受けてきたと仮定し、建設されてから現時点までの疲労損傷度累積はZ0×t0であり、現状レベルはYと推定される。今後もこのままの状態で疲労損傷度が増加すれば、建設からt1年後には架け替えを必要とする疲労損傷度Xに達することになる。すなわち、この橋梁の余寿命はt1−t0年と暫定的に推定される。
【0010】
次に、今後この橋梁周辺に予定されている都市計画に基づいて橋梁に起こる今後の交通量の変化を、同様の都市計画が既に実施された他の地域の情報をもとに推定する。例えば、現時点からt2年後にある都市計画が実施されるのであれば、同様の都市計画が実施された他の地域における計画実施前後の交通量の変化を調査する。
【0011】
そして、計画実施後の交通量が実施前の1.5倍に増加したのであれば、t2年後の都市計画の実施によって橋梁の交通量も従来の1.5倍に増加すると推定し、さらに交通量の増加によって疲労損傷度がどの程度変化するかを橋梁の構造等をもとに推定する。t2年後の都市計画の実施によって疲労損傷度の増加率が、当初推定された増加率の2倍に変化すると推定されれば、疲労損傷度の進行は加速し、建設からt3年後には架け替えを必要とする疲労損傷度Xに達することになる。すなわち、都市計画を織り込んだうえでのこの橋梁の余寿命はt3−t0年と予測される。
また同様に、過去における都市計画の実施記録から過去の疲労損傷の進行推定値を補正することもできる。
【0012】
次に、より具体的に橋梁の余寿命を予測する方法について説明する。
橋梁に疲労損傷を与える大きな要素は、橋梁を通行する車両の荷重によるものであり、通行車両重量と通行量の積の総和(Σ(車重×通行量))と相関関係がある。またその影響度合の予測は、通行車両の車重と通行量の予測にあたる。
まず、橋梁の疲労損傷度の測定方法を図2をもとに説明する。測定に際しては、橋梁1を構成する主要な構成部材(例えば床版や橋脚、橋桁等、本実施形態では橋桁2に設置)に作用する応力を測定する。測定期間は、その橋の交通量の年間の標準値を代表するに足る期間とする。概ね3〜6ヶ月が望ましいが、長期計測が困難な場合は、休日と平日を含む数日〜数週間実施する。また、測定装置を常設することにより実測による真の値が得られれば将来予測の高精度化が図れる。
これらの測定システムは、通信を利用した遠隔監視システムとして構成すると、現地へデータ回収に出掛ける手間が省けるので有効である。
【0013】
応力測定にあたっては、橋桁2に生じる歪みを捕らえる歪みセンサ3と、気温による誤差を補正するための温度センサ4と、歪みセンサ3および温度センサ4の計測結果に基づいて橋桁2に車両の通過により発生した応力を求め通過車両の重量を推定する計測装置5と、計測装置5から出力される通過車両の重量を記録して、ある期間に橋梁1を通過した車両の重量と車重別台数を算出、記録するコンピュータ6とを備える計測システムを使用する。
【0014】
橋梁1を通過する車両を車重別に判別するには、計測装置5に歪みセンサ3より入力された応力変化を参照する。橋梁1を車両が通過すると、計測装置5には図3のような応力変化の波形が記録される。この波形を生み出した車両の重量(車重)は、波形の変化の大きさ、すなわち波形の変化によって切り取られる領域Sの面積と相関がある。車重が重いほど応力波形が大きく変化し、領域Sの面積が大きくなるのである。
【0015】
そこで、計測装置5では、応力変化の波形が入力されるたびに、領域Sの面積を算出し、その大きさに応じて、この波形を生み出した車両の重量が推定され、出力される。なお、温度センサ4は、気温の変化による道路の舗装アスファルトや橋梁を構成する部材について温度特性変化の歪み発生量変化を補正するために使用する。コンピュータ6では、計測装置5より入力された車両重量が、所定の幅をもった車重別に区分され、車重別の通過台数がカウントされる。例えば、橋梁の設計基準重量で区分された、ある期間に橋梁1を通過した車両の車重別の通過台数は、16トン以下の車両がA台、16トン超がB台、20トン超がC台、25トン超がD台、といった具合である(図4参照)。
【0016】
該橋梁の平均的な交通量を測定するに足るある期間について通過車両の車重別台数のカウントを終えたら、まず、この測定期間において橋梁1に作用した疲労損傷度zを次式により推定する。
z=a×A台+b×B台+c×C台+d×D台
(a,b,c,dは各重量区分における車1台通過時の疲労損傷度合)
次に、測定期間を基に、1年間に進行する疲労損傷度(疲労損傷度の増加率)Zを算出する(Z=z/測定期間(年))。過去および将来にわたってこの損傷度Zで進むものとすると、t1=X/Zとなり、橋梁1の暫定的な余寿命を推定することができる(上記のt1−t0に相当)。
【0017】
その一方で、今後(上記のt2年後)橋梁1周辺に予定されている都市計画に基づいて橋梁1に起こる今後の交通量の変化を推定する。推定にあたっては、新たに作られる施設・建物の種類に応じて、通行する車両の種別・概算重量を推定する。例えば、遊園地等の施設ができる場合は、乗用車の通行増加が予測でき、ショッピングセンターができる場合には、乗用車と、商品の配送トラックなどの増加が、工場が閉鎖される場合には資材や製品を搬送していた大型トラックの通行減が予測できる。個々の通行量の増減は施設の規模等によって推測する。また、同様の都市計画が既に実施された他の地域における計画実施前後の交通量の変化を参照することもできる。具体的には、他地域に橋梁1に相当する橋梁が存在する場合はこの橋梁について上記と同様の期間において同様の車重別の通過台数を測定し、存在しない場合には橋梁1の立地環境に近い地点において道路の通過台数を車種別にカウントし、車種によっておおまかな車重を設定し車重別の通過台数を推定する。このようにして得られた計画実施後の車重別の通過台数を、実施前の車重別の通過台数(これが定かでない場合は、橋梁1の現時点での車重別の通過台数を代用してもよい)と比較し、車重別に通過台数の変化を明らかにして、都市計画実施後の橋梁1の交通量を推定する。
【0018】
例えば、他地域において計画実施前と比較して、測定期間(対象とする橋梁1での前述した測定期間)相当において16トン以下の車両がA’台増加し、16トン超がB’台増加し、20トン超がC’台減少し、25トン超がD’台増加したとすると、この結果を橋梁1の現状での車重別の通過台数に反映させ、都市計画実施後の橋梁1の車重別の通過台数と仮定する(図5参照)。そして、この都市計画実施後の橋梁1の車重別の通過台数分布から、ある測定期間における橋梁1の疲労損傷度z’を次式により推定する。
z’=a×(A+A’)台+b×(B+B’)台+c×(C−C’)台+d×(D+D’)台
次に、測定期間を基に、都市計画実施後の1年間に進行する疲労損傷度(疲労損傷度の増加率)Z’を算出する(Z’=z’/測定期間(年))。
【0019】
ここまでの情報で、建設時から現時点まで、さらに現時点からt2年後の都市計画実施前までの橋梁1の疲労損傷度の増加率Z、都市計画実施後の疲労損傷度の増加率Z’が推定される。t2年後の都市計画実施を契機にして疲労損傷度の増加率が変化し、それに従って建設から架け替えを必要とする疲労損傷度(上記のXに相当)に達する期間が短くなったとすると、現時点からその短縮分を勘案した期間が都市計画を織り込んだ橋梁1の余寿命(上記のt3−t0年に相当)ということになる(図1参照)。このようにして、より正確な余寿命の予測を行うことができる。
また、同様にして過去に行われた都市計画による交通量変化が橋梁1の余寿命に与えた影響も推測することができるので、建設時から現時点までの再評価も行うことができる。さらに、将来において特定の車両(特に重量の重い車)を通行規制して橋梁1を通れないようにした場合にどの程度余寿命が延びるかも推定することができる。
【0020】
ところで、本実施形態においては歪みセンサ3を橋梁1の橋桁2に設置して車両通過時の応力変化を単純に捕らえた場合について説明したが、例えばより詳細に、車輪が通過したときの応力変化を捕らえて通過車両の車軸数を検出し、その数から車両のサイズや重量までも推定してより詳細に通過車両の情報を得ることも検討されている。その場合には、歪みセンサ3を橋梁1の長さ方向に離間して複数設置し、より詳細な応力波形を取得する等の試みがなされるべきである。
【0021】
【発明の効果】
以上説明したように、本発明によれば、橋梁周辺の今後の都市計画に基づいて橋梁に起こる今後の交通量の変化を車両重量別台数として推定し、該今後の交通量の変化によって起こる疲労損傷度の変化を先に推定された今後の疲労損傷の進行に反映させることで今後の疲労損傷度の進行を補正し、該補正された今後の疲労損傷の進行から前記橋梁の余寿命を予測することにより、橋梁を取り巻く環境の変化を織り込んでより正確な余寿命の予測が可能になる。そして、より正確な余寿命を把握し的確な維持補修計画を策定することにより、架け替えにかかる費用の浪費を抑えるとともに架け替え工事によって社会的、経済的な損失が生じないようにすることができる。
【図面の簡単な説明】
【図1】本発明を概念的に説明するために用いた、橋梁建設からの経過年数と橋梁の疲労損傷度との関係を示すグラフである。
【図2】応力計測の際に使用する計測システムの構造を示す概略図である。
【図3】車両の通過によって検出される応力変化の波形を示すグラフである。
【図4】都市計画実施前に調査対象の橋梁においてカウントされた車重別の通過台数を示すグラフである。
【図5】都市計画実施後に調査対象の橋梁において予想される車重別の通過台数(推定値)を示すグラフである。
【符号の説明】
1   橋梁
3   歪みセンサ
4   温度センサ
5   計測装置
6   コンピュータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for estimating the remaining life of a bridge.
[0002]
[Prior art]
Many bridges constructed one after another during the high-growth period have reached their mid-life expectancy and have become noticeably obsolete, requiring repair work or replacement in some cases. Sometimes. However, it is not only expensive to replace all of them, but also long-term replacement work is expected to stagnate the surrounding urban functions and cause large social and economic losses. Therefore, instead of simply carrying out rebuilding work after the end of the useful life, an attempt is made to investigate the condition of the bridge and to formulate and execute a maintenance and repair plan to extend the remaining life based on the survey results. Has been made.
[0003]
In order to investigate the condition of the bridge, first measure the stress of the main components of the target bridge, and measure the degree of fatigue damage at the present time (find the degree of fatigue damage given to each part from the stress generated and the number of times during the measurement period) Then, assuming that this value was given to the bridge from the past to the present as the standard fatigue damage degree, assuming the accumulation of the fatigue damage degree at the present time, the bridge reaches the fatigue damage degree that requires replacement Predict how long you can use it until it reaches the end, that is, how long it will last. Also, based on the degree of damage to each part, it is estimated that repairing which part can extend the life of the entire bridge, and effective maintenance and repair work is planned and implemented.
[0004]
[Problems to be solved by the invention]
In conventional methods for predicting remaining life, the degree of damage progress is roughly grasped from the degree of fatigue damage at the time of measurement, and it is assumed that fatigue will continue to progress in the future after construction, and for how long Was predicting whether the fatigue damage level would require replacement. In addition, even when the measurement is performed a plurality of times, the interval is generally long and is measured at intervals of several years to several tens of years.
[0005]
However, the form of the city is changing every day. For example, it is possible that a vacant area will be reborn as a commercial facility that boasts a large amount of customers due to large-scale development. If such a change occurs, the traffic volume of the bridge in the vicinity will increase significantly, and the conventional method of predicting that fatigue will continue to progress as in the past will not be possible in the future. The changes cannot be factored into the forecasts, making it difficult to formulate an appropriate maintenance plan that is appropriate for the future damage of the bridge. In addition, it is conceivable that the nature of the increased vehicle will change depending on the type of new facility. Specifically, relatively light vehicles such as passenger cars increase in commercial facilities, and heavy vehicles such as large trucks increase in facilities such as factories and cargo terminals.
Since the degree of fatigue damage is determined by the generated stress value (which has a correlation with the vehicle weight) and the number of occurrences (number of passing vehicles), it is important to predict how many vehicles and how many vehicles have passed, The conventional method of evaluating with the frequency of temporary generated stress has a problem that many errors are included in predicting the degree of fatigue damage in the past and in the future.
[0006]
The present invention has been made in view of the above circumstances, and by estimating the remaining life based on the progress of damage to the bridge and formulating an appropriate maintenance and repair plan, it is possible to reduce the cost of replacement and reduce the cost of replacement. The aim is to minimize social and economic losses due to the replacement work.
[0007]
[Means for Solving the Problems]
As a means for solving the above problems, a method for estimating the remaining life of a bridge having the following configuration is employed. That is, the present invention according to claim 1 is a method for estimating a remaining life of a bridge for estimating how long the bridge can be used until the degree of fatigue damage requiring replacement is reached, that is, how long the remaining life is. ,
While measuring the number of vehicles passing by the vehicle weight at the current time for the bridge to determine the degree of fatigue damage, while estimating the progress of future fatigue damage for the bridge from the degree of fatigue damage at the current time,
Based on the future city planning around the bridge, estimate the change in the number of future traffic that will occur on the bridge by vehicle weight,
The change in the degree of fatigue damage caused by the change in the traffic volume in the future is corrected to the predicted value of the progress of future fatigue damage by reflecting the progress of the future fatigue damage estimated earlier,
The remaining life of the bridge is predicted from the corrected future progress of fatigue damage.
[0008]
According to a second aspect of the present invention, in the method for predicting a remaining life of a bridge according to the first aspect, a future change in traffic volume of the bridge based on the city plan is determined based on information of another area where the same city plan is performed. It is characterized by estimating based on
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
The method for diagnosing the remaining life of a bridge according to the present invention will be conceptually described with reference to FIG. First, the current degree of fatigue damage of a target bridge is measured, and the future fatigue damage of this bridge is estimated from the current degree of fatigue damage. For example, it is assumed that the fatigue damage level at which the bridge needs to be replaced based on its structure and the like is X, and that t0 years have passed since construction. The fatigue damage degree of this bridge at the present time is measured, and the result is assumed to be Z0 / year. If the damage degree has not been measured in the past, it is assumed that the damage has occurred at Z0 / year, the fatigue damage accumulation from the construction to the present time is Z0 × t0, and the current level is estimated to be Y. . If the degree of fatigue damage continues to increase in this state, it will reach the degree of fatigue damage X requiring replacement in t1 years after construction. That is, the remaining life of this bridge is provisionally estimated to be t1-t0 years.
[0010]
Next, future changes in traffic volume on the bridge are estimated based on information on other areas where similar city planning has already been implemented, based on the city planning planned around this bridge in the future. For example, if a city plan is to be implemented t2 years after the present time, a change in traffic volume before and after the implementation of the plan in another area where the same city plan is implemented is investigated.
[0011]
Then, if the traffic volume after the implementation of the plan has increased 1.5 times that before the implementation, it is estimated that the implementation of the city planning after t2 years will also increase the traffic volume of the bridge to 1.5 times the conventional one. The extent to which the degree of fatigue damage changes due to an increase in traffic volume is estimated based on the bridge structure. If it is estimated that the rate of increase in the degree of fatigue damage will change to twice the initially estimated rate of increase due to the implementation of city planning two years later, the progress of the degree of fatigue damage will be accelerated, and the construction will be completed three years after construction. The fatigue damage degree X requiring replacement is reached. That is, the remaining life of this bridge after incorporating the city planning is predicted to be t3-t0 years.
Similarly, it is also possible to correct a past estimated value of fatigue damage progression from a past city planning execution record.
[0012]
Next, a method for estimating the remaining life of a bridge will be described more specifically.
The major factor that causes fatigue damage to the bridge is due to the load of the vehicle passing through the bridge, and is correlated with the sum of the product of the vehicle weight and the traffic amount (量 (vehicle weight x traffic volume)). The prediction of the degree of influence corresponds to the prediction of the vehicle weight and the traffic volume of the passing vehicle.
First, a method for measuring the degree of fatigue damage of a bridge will be described with reference to FIG. At the time of the measurement, the stress acting on the main components constituting the bridge 1 (for example, a floor slab, a pier, a bridge girder, etc., which is installed on the bridge girder 2 in this embodiment) is measured. The measurement period is a period sufficient to represent the annual standard value of the traffic volume of the bridge. Generally, 3 to 6 months are preferable, but when long-term measurement is difficult, the measurement is performed for several days to several weeks including holidays and weekdays. In addition, if a true value is obtained by actual measurement by permanently installing a measuring device, the accuracy of future prediction can be improved.
If these measurement systems are configured as a remote monitoring system using communication, it is effective because it is not necessary to go to the site for data collection.
[0013]
In measuring the stress, a strain sensor 3 for capturing the strain generated in the bridge girders, a temperature sensor 4 for correcting an error due to air temperature, and a vehicle passing through the bridge girders 2 based on the measurement results of the strain sensors 3 and the temperature sensors 4 A measuring device 5 for obtaining the generated stress and estimating the weight of the passing vehicle, and recording the weight of the passing vehicle output from the measuring device 5, the weight of the vehicle passing through the bridge 1 during a certain period and the number of vehicles by the vehicle weight are calculated. A measurement system including a computer 6 for calculating and recording is used.
[0014]
In order to determine the vehicles passing through the bridge 1 by vehicle weight, the change in stress input from the strain sensor 3 to the measuring device 5 is referred to. When the vehicle passes through the bridge 1, a waveform of a stress change as shown in FIG. The weight (vehicle weight) of the vehicle that generated this waveform has a correlation with the magnitude of the change in the waveform, that is, the area of the region S cut out by the change in the waveform. The heavier the vehicle weight, the more the stress waveform changes, and the area of the region S increases.
[0015]
Therefore, the measuring device 5 calculates the area of the region S every time the waveform of the stress change is input, and estimates and outputs the weight of the vehicle that generated the waveform according to the size. The temperature sensor 4 is used to correct a change in the amount of distortion caused by a change in temperature characteristics of a member forming a pavement asphalt or a bridge due to a change in air temperature. In the computer 6, the vehicle weight input from the measuring device 5 is classified by vehicle weight having a predetermined width, and the number of vehicles passing by vehicle weight is counted. For example, the number of vehicles passing through the bridge 1 during a certain period, classified by the design reference weight of the bridge, according to the vehicle weight, is A vehicles for vehicles of 16 tons or less, B vehicles for over 16 tons, and B vehicles for over 16 tons. C units and D units are more than 25 tons (see FIG. 4).
[0016]
After counting the number of passing vehicles by vehicle weight for a period sufficient to measure the average traffic volume of the bridge, first, the degree of fatigue damage z acting on the bridge 1 during this measurement period is estimated by the following equation. .
z = a × A units + b × B units + c × C units + d × D units (a, b, c, and d are the degrees of fatigue damage when passing one vehicle in each weight category)
Next, based on the measurement period, the degree of fatigue damage (increase rate of the degree of fatigue damage) Z progressing in one year is calculated (Z = z / measurement period (year)). Assuming that the damage progresses in the past and in the future with the degree of damage Z, t1 = X / Z, and the provisional remaining life of the bridge 1 can be estimated (corresponding to the above-mentioned t1-t0).
[0017]
On the other hand, future changes in traffic volume occurring on the bridge 1 are estimated based on a city plan scheduled around the bridge 1 in the future (after the above t2 years). In the estimation, the type and approximate weight of the passing vehicle are estimated according to the type of the new facility / building. For example, when facilities such as an amusement park are established, the increase in the number of passenger cars can be predicted.When a shopping center is established, the number of cars and delivery trucks will increase. The traffic of large trucks carrying products can be expected to decrease. The increase or decrease in individual traffic is estimated based on the scale of the facility. It is also possible to refer to changes in traffic volume before and after the implementation of the plan in other areas where similar city planning has already been implemented. Specifically, if there is a bridge corresponding to bridge 1 in another area, the number of vehicles passing by the same vehicle weight is measured for this bridge in the same period as above, and if not, the location environment of bridge 1 The number of passing vehicles on the road at a point close to is counted by vehicle type, the approximate vehicle weight is set according to the vehicle type, and the number of passing vehicles by vehicle weight is estimated. The number of passing vehicles by vehicle weight after the implementation of the plan obtained in this way is replaced by the number of passing vehicles by vehicle weight before the implementation (if this is uncertain, the number of passing vehicles of bridge 1 by current vehicle weight is substituted. ), The change in the number of vehicles passing by vehicle weight is clarified, and the traffic volume of the bridge 1 after the implementation of the city planning is estimated.
[0018]
For example, in other areas, the number of vehicles weighing 16 tons or less increased by A 'and the number of vehicles exceeding 16 tons increased by B' in the measurement period (the above-mentioned measurement period for the target bridge 1) compared to before the plan was implemented. If it is assumed that C 'units have decreased by more than 20 tons and D' units have increased by more than 25 tons, this result is reflected in the number of bridges 1 that have passed by vehicle weight according to the current vehicle weight. (See FIG. 5). Then, the fatigue damage degree z ′ of the bridge 1 during a certain measurement period is estimated from the following equation from the distribution of the number of passing bridges by vehicle weight after the implementation of the city planning.
z ′ = a × (A + A ′) units + b × (B + B ′) units + c × (CC ′) units + d × (D + D ′) units Next, based on the measurement period, one year after the implementation of city planning The degree of progressive fatigue damage (increase rate of the degree of fatigue damage) Z ′ is calculated (Z ′ = z ′ / measurement period (year)).
[0019]
With the information so far, the increase rate Z of the fatigue damage degree of the bridge 1 from the time of construction to the present time, and from the present time t2 years before the implementation of the urban planning, and the increase rate Z ′ of the fatigue damage degree after the implementation of the urban planning are as follows. Presumed. Assuming that the rate of increase in the degree of fatigue damage changes with the implementation of city planning after t2 years, the period of time required to reach the degree of fatigue damage (corresponding to X above) requiring replacement from construction to construction is shortened accordingly. From the present time, the period in which the shortened amount is taken into account is the remaining life of the bridge 1 incorporating the city planning (corresponding to the above t3-t0 years) (see FIG. 1). In this way, more accurate estimation of the remaining life can be performed.
Similarly, it is possible to estimate the influence of the change in the traffic volume due to the city planning performed in the past on the remaining life of the bridge 1, so that the re-evaluation from the time of construction to the present time can be performed. Further, it is possible to estimate how much the remaining life will be prolonged when the passage of a specific vehicle (particularly a heavy vehicle) is restricted in the future so as not to pass through the bridge 1.
[0020]
By the way, in the present embodiment, the case where the strain sensor 3 is installed on the bridge girder 2 of the bridge 1 and the change in stress when the vehicle passes is simply described. The number of axles of a passing vehicle is detected by detecting the number of vehicles, and the size and weight of the vehicle are estimated from the number to obtain more detailed information on the passing vehicle. In this case, a plurality of strain sensors 3 should be installed apart from each other in the longitudinal direction of the bridge 1 to obtain a more detailed stress waveform.
[0021]
【The invention's effect】
As described above, according to the present invention, a future change in traffic volume occurring on a bridge is estimated as the number of vehicles by vehicle weight based on a future city plan around the bridge, and fatigue caused by the future traffic volume change is estimated. The progress of the future fatigue damage is corrected by reflecting the change in the damage degree to the progress of the future fatigue damage estimated earlier, and the remaining life of the bridge is predicted from the corrected progress of the future fatigue damage. By doing so, it becomes possible to more accurately predict the remaining life by incorporating changes in the environment surrounding the bridge. In addition, by grasping the more accurate remaining life and formulating an accurate maintenance and repair plan, it is possible to reduce the waste of replacement costs and to prevent social and economic losses due to replacement work. it can.
[Brief description of the drawings]
FIG. 1 is a graph used to conceptually explain the present invention and showing the relationship between the number of years elapsed since bridge construction and the degree of fatigue damage of the bridge.
FIG. 2 is a schematic diagram showing the structure of a measurement system used for stress measurement.
FIG. 3 is a graph showing a waveform of a stress change detected by passage of a vehicle.
FIG. 4 is a graph showing the number of vehicles passing by bridge weight counted on a bridge to be surveyed before implementation of city planning.
FIG. 5 is a graph showing the estimated number of passing vehicles (estimated values) by vehicle weight at a bridge to be surveyed after implementation of city planning.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bridge 3 Strain sensor 4 Temperature sensor 5 Measuring device 6 Computer

Claims (2)

橋梁が架け替えを必要とする疲労損傷度に達するまであとどれくらいの期間使用できるか、つまり余寿命はどれくらいかを予測する橋梁の余寿命予測方法であって、
前記橋梁について現時点での車両重量別通過台数を測定して疲労損傷度を求め、該現時点での疲労損傷度から前記橋梁についての今後の疲労損傷の進行を推定する一方、
前記橋梁周辺の今後の都市計画に基づいて、前記橋梁に起こる今後の交通量の車両重量別の台数変化を推定し、
該今後の交通量の変化によって起こる疲労損傷度の変化を、先に推定された今後の疲労損傷の進行に反映させることで今後の疲労損傷の進行の予測値を補正し、
該補正された今後の疲労損傷の進行から前記橋梁の余寿命を予測することを特徴とする橋梁の余寿命予測方法。
A method for estimating the remaining life of a bridge that predicts how long it can be used until the bridge reaches the degree of fatigue damage that requires replacement, that is, how long the remaining life is,
While measuring the number of vehicles passing by the current vehicle weight for the bridge to determine the degree of fatigue damage, while estimating the progress of future fatigue damage for the bridge from the degree of fatigue damage at the current time,
Based on future city planning around the bridge, estimate the change in the number of vehicles by weight of future traffic that will occur on the bridge,
The change in the degree of fatigue damage caused by the change in the future traffic volume is corrected to the predicted value of the progress of future fatigue damage by reflecting the change in the degree of fatigue damage estimated earlier,
A method for predicting the remaining life of a bridge, comprising predicting the remaining life of the bridge from the corrected future progress of fatigue damage.
前記都市計画に基づく前記橋梁の今後の交通量の変化を、同様の都市計画が実施された他地域の情報をもとに推定することを特徴とする請求項1記載の橋梁の余寿命予測方法。2. The remaining life prediction method for a bridge according to claim 1, wherein a future change in the traffic volume of the bridge based on the city planning is estimated based on information on other areas where the same city planning is performed. .
JP2002199885A 2002-07-09 2002-07-09 Remaining life estimating method for bridge Withdrawn JP2004044116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199885A JP2004044116A (en) 2002-07-09 2002-07-09 Remaining life estimating method for bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199885A JP2004044116A (en) 2002-07-09 2002-07-09 Remaining life estimating method for bridge

Publications (1)

Publication Number Publication Date
JP2004044116A true JP2004044116A (en) 2004-02-12

Family

ID=31706903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199885A Withdrawn JP2004044116A (en) 2002-07-09 2002-07-09 Remaining life estimating method for bridge

Country Status (1)

Country Link
JP (1) JP2004044116A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284271A (en) * 2005-03-31 2006-10-19 Oriental Construction Co Ltd Damage determination method of concrete floor board
JP2006292514A (en) * 2005-04-08 2006-10-26 Kobe Steel Ltd Residual life prediction device and residual life prediction method for blasting treatment container, and blasting treatment facility
JP2007078376A (en) * 2005-09-12 2007-03-29 Universal Shipbuilding Corp Maintenance management system and maintenance management program of hull structure
JP2007135349A (en) * 2005-11-11 2007-05-31 Kansai Electric Power Co Inc:The Deterioration diagnosing method for power transmission facility
WO2013038995A1 (en) * 2011-09-13 2013-03-21 三菱重工業株式会社 Damage evaluation method and maintenance evaluation index policy
JP2016075090A (en) * 2014-10-07 2016-05-12 株式会社横河住金ブリッジ Expansion joint system for bridge
CN108360399A (en) * 2018-02-07 2018-08-03 广州大学 A kind of method that overweight vehicle crosses simply supported girder bridge
CN108457206A (en) * 2018-03-13 2018-08-28 苏州诚满信息技术有限公司 A kind of smart bridge fixed system based on vehicle Flow Detection
CN109917117A (en) * 2019-04-01 2019-06-21 同济大学 A kind of active service Remaining Service Life for Asphalt Pavement predictor method
CN111220246A (en) * 2018-11-26 2020-06-02 柯尼卡美能达株式会社 Road damage calculation system, road damage calculation method, and recording medium
JP2020084419A (en) * 2018-11-15 2020-06-04 富士通株式会社 Deterioration evaluation program, deterioration evaluation device, and deterioration evaluation method
JP2020086965A (en) * 2018-11-26 2020-06-04 コニカミノルタ株式会社 Road damage control system, road damage control method, and road damage control program
KR102254767B1 (en) * 2020-11-19 2021-05-24 한국건설기술연구원 Traffic volume survey apparatus and method based on vehicle image recognition
US11199469B2 (en) 2017-02-28 2021-12-14 Panasonic Intellectual Property Management Co., Ltd. Monitoring system
CN113868749A (en) * 2021-10-19 2021-12-31 大连理工大学 Vehicle-induced bridge fatigue damage analysis method based on vehicle dynamic weighing data
WO2022056677A1 (en) * 2020-09-15 2022-03-24 西门子股份公司 Monitoring, collection and analysis systems and methods thereof, and device, storage medium, program and program product
KR20220088590A (en) * 2020-12-18 2022-06-28 한국건설기술연구원 System and method for traffic analysis and monitoring based on vehicle classification

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284271A (en) * 2005-03-31 2006-10-19 Oriental Construction Co Ltd Damage determination method of concrete floor board
JP4545032B2 (en) * 2005-03-31 2010-09-15 オリエンタル白石株式会社 Damage judgment method for concrete slabs
JP2006292514A (en) * 2005-04-08 2006-10-26 Kobe Steel Ltd Residual life prediction device and residual life prediction method for blasting treatment container, and blasting treatment facility
JP2007078376A (en) * 2005-09-12 2007-03-29 Universal Shipbuilding Corp Maintenance management system and maintenance management program of hull structure
JP4711786B2 (en) * 2005-09-12 2011-06-29 ユニバーサル造船株式会社 Hull structure maintenance management system and maintenance management program
JP2007135349A (en) * 2005-11-11 2007-05-31 Kansai Electric Power Co Inc:The Deterioration diagnosing method for power transmission facility
WO2013038995A1 (en) * 2011-09-13 2013-03-21 三菱重工業株式会社 Damage evaluation method and maintenance evaluation index policy
CN103765192A (en) * 2011-09-13 2014-04-30 三菱重工业株式会社 Damage evaluation method and maintenance evaluation index policy
US9689789B2 (en) 2011-09-13 2017-06-27 Mitsubishi Hitachi Power Systems, Ltd. Damage evaluation method and maintenance evaluation index decision method
JP2016075090A (en) * 2014-10-07 2016-05-12 株式会社横河住金ブリッジ Expansion joint system for bridge
US11199469B2 (en) 2017-02-28 2021-12-14 Panasonic Intellectual Property Management Co., Ltd. Monitoring system
CN108360399A (en) * 2018-02-07 2018-08-03 广州大学 A kind of method that overweight vehicle crosses simply supported girder bridge
CN108360399B (en) * 2018-02-07 2019-06-28 广州大学 A kind of method that overweight vehicle crosses simply supported girder bridge
CN108457206A (en) * 2018-03-13 2018-08-28 苏州诚满信息技术有限公司 A kind of smart bridge fixed system based on vehicle Flow Detection
JP2020084419A (en) * 2018-11-15 2020-06-04 富士通株式会社 Deterioration evaluation program, deterioration evaluation device, and deterioration evaluation method
CN111220246A (en) * 2018-11-26 2020-06-02 柯尼卡美能达株式会社 Road damage calculation system, road damage calculation method, and recording medium
JP2020086965A (en) * 2018-11-26 2020-06-04 コニカミノルタ株式会社 Road damage control system, road damage control method, and road damage control program
CN109917117A (en) * 2019-04-01 2019-06-21 同济大学 A kind of active service Remaining Service Life for Asphalt Pavement predictor method
WO2022056677A1 (en) * 2020-09-15 2022-03-24 西门子股份公司 Monitoring, collection and analysis systems and methods thereof, and device, storage medium, program and program product
KR102254767B1 (en) * 2020-11-19 2021-05-24 한국건설기술연구원 Traffic volume survey apparatus and method based on vehicle image recognition
KR20220088590A (en) * 2020-12-18 2022-06-28 한국건설기술연구원 System and method for traffic analysis and monitoring based on vehicle classification
KR102457898B1 (en) * 2020-12-18 2022-10-25 한국건설기술연구원 System and method for traffic analysis and monitoring based on vehicle classification
CN113868749A (en) * 2021-10-19 2021-12-31 大连理工大学 Vehicle-induced bridge fatigue damage analysis method based on vehicle dynamic weighing data
CN113868749B (en) * 2021-10-19 2024-03-26 大连理工大学 Vehicle-induced bridge fatigue damage analysis method based on vehicle dynamic weighing data

Similar Documents

Publication Publication Date Title
Gangone et al. Wireless monitoring of a multispan bridge superstructure for diagnostic load testing and system identification
JP2004044116A (en) Remaining life estimating method for bridge
Laman et al. Fatigue-load models for girder bridges
Cantero et al. Bridge damage detection using weigh-in-motion technology
Yan et al. Probabilistic machine learning approach to bridge fatigue failure analysis due to vehicular overloading
Dowling et al. Guidelines for calibration of microsimulation models: framework and applications
KR101693759B1 (en) Safety inspection apparatus for bridge using expansion joint with load cell, and method for the same
Hu et al. A reliability-based optimization scheme for maintenance management in large-scale bridge networks
Žnidarič et al. Using bridge weigh-in-motion systems to monitor single-span bridge influence lines
EP3705627A1 (en) Pothole monitoring
Shon et al. Autonomous condition monitoring-based pavement management system
Habtemichael et al. Incident-induced delays on freeways: quantification method by grouping similar traffic patterns
Xia et al. Estimation of extreme structural response distributions for mean recurrence intervals based on short-term monitoring
JP2006317413A (en) Preservation system of vehicle traffic structure, and preservation method of vehicle traffic structure
Bertola et al. Assessment of the information gain of several monitoring techniques for bridge structural examination
KR101734201B1 (en) Method and apparatus for automatically calibrating high speed weight-in-motion using weigh information measured in low speed weight-in-motion or track scale
Rakha et al. Field evaluation of weigh-in-motion screening on truck weigh station operations
Cartiaux et al. Real condition experiment on a new bridge weigh-in-motion solution for the traffic assessment on road bridges
Kolev Bridge Weigh-in-Motion Long-Term Traffic Monitoring in the State of Connecticut
Gangone et al. Development of performance assessment tools for a highway bridge resulting from controlled progressive monitoring
Wang et al. Risk-based decision-making for system-level fatigue assessment of bridges
Treacy et al. Extreme action effects in reinforced concrete bridges from monitoring
Bertola et al. Framework to evaluate the value of monitoring-technique information for structural performance monitoring
Gangone et al. Field deployment of a dense wireless sensor network for condition assessment of a bridge superstructure
Karurukan et al. The Estimation Model of Travel Time Between Point of Interest for Tourist Travel Recommendations with Regression Analysis

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004