JP2004044022A - Polyester conjugate fiber - Google Patents

Polyester conjugate fiber Download PDF

Info

Publication number
JP2004044022A
JP2004044022A JP2002203772A JP2002203772A JP2004044022A JP 2004044022 A JP2004044022 A JP 2004044022A JP 2002203772 A JP2002203772 A JP 2002203772A JP 2002203772 A JP2002203772 A JP 2002203772A JP 2004044022 A JP2004044022 A JP 2004044022A
Authority
JP
Japan
Prior art keywords
polyester
conjugate fiber
fiber
general formula
titanium compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002203772A
Other languages
Japanese (ja)
Other versions
JP3935794B2 (en
Inventor
Tomoo Mizumura
水村 知雄
Ryoji Tsukamoto
塚本 亮二
Keiji Nagamune
長棟 恵示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2002203772A priority Critical patent/JP3935794B2/en
Publication of JP2004044022A publication Critical patent/JP2004044022A/en
Application granted granted Critical
Publication of JP3935794B2 publication Critical patent/JP3935794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a side-by-side type polyester conjugate fiber hardly having unevenness of qualities such as a size unevenness (U%) and fluff even by using polymers having 0.1-0.4 difference in intrinsic viscosities, and having suitable whiteness for the use as clothes. <P>SOLUTION: The polyester conjugate fiber is obtained by carrying out conjugate spinning of two kinds of polyethylene terephthalate-based polymers having intrinsic viscosities having difference within the range of 0.1-0.4, and synthesized by using a titanium compound and a phosphonate compound each soluble in the polyester. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、互いに固有粘度が異なる2種類のポリエステルポリマーがサイドバイサイド型に貼り合わされたポリエステル複合繊維に関する。さらに詳しくは、本発明は、溶融紡糸時のポリマー吐出異常による細化斑を内在せず、繊度斑(U%)、毛羽などの品質斑が少なく、かつ好ましい白度を有する潜在捲縮性ポリエステル複合繊維に関するものである。
【0002】
【従来の技術】
固有粘度の異なるポリエステルをサイドバイサイドに複合したポリエステル複合繊維は潜在捲縮性能を有する繊維素材として衣料用布帛に使用されている。布帛に適度のストレッチ性を付与するポリエステル複合繊維を得るためには、2種のポリエステルの固有粘度差を可能な限り大きくし、繊維にしたときの熱収縮差を大きくして潜在捲縮性を充分に付与しておくことが必要である。しかし、2種類のポリエステルに固有粘度差があると、吐出糸条の屈曲、ピクツキ、旋回等が進行し、ついには吐出糸条が紡糸口金面に付着して断糸するという現象が起こる。このような異常吐出現象が起こると、紡糸運転に支障をきたすのみならず、正常な複合が妨げられ、繊維軸方向に貼り合わせ斑が発生したり、ピクツキ、旋回等異常吐出を経た吐出ポリマー糸条が冷却・固化の過程で繊維構造斑を内在し、得られたポリエステル複合繊維は品質斑(繊度斑(U%)、毛羽、染斑など)が多いものとなる。
【0003】
このような問題を改善するため、特公昭61−60163号公報には、1対をなす吐出孔が紡糸口金面と直交する方向に対してなす各々の傾斜角度および1対の吐出孔間の距離等を適正化した溶融紡糸用口金から、互いに粘度の異なるポリエステルを吐出させて、サイドバイサイド型に接合させる複合繊維の製造方法が提案されている。確かにこのような溶融紡糸口金を用いれば、2種類のポリエステルの固有粘度差があっても、紡糸初期においては、吐出ポリマーの屈曲、ピクツキ、旋回等が少なくなり、品質斑の少ないポリエステル複合繊維を得ることができる。しかしながら、紡糸時間の経過とともに、紡糸吐出孔周辺に異物が発生し始め、時間と共に蓄積量が多くなり、吐出糸条の屈曲、ピクツキ、旋回等が進行し、ポリエステル複合繊維の品質斑(繊度斑(U%)、毛羽など)が発生するようになる。このような特殊な吐出孔形状を有する紡糸口金を使用した場合、吐出孔周辺異物の蓄積がより早く出現し、短時間内に、ポリエステル複合繊維は品質斑(繊度斑(U%)、毛羽など)の多いものとなるという問題があった。
【0004】
【発明が解決しようとする課題】
本発明は、上記従来技術を背景になされたもので、その目的は、溶融紡糸時のポリマー吐出異常による細化斑を内在せず、繊度斑(U%)、毛羽などの品質斑が少なく、かつ好ましい白度を有する潜在捲縮性ポリエステル複合繊維を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記従来技術に鑑み、鋭意検討を重ねた結果、本発明を完成するに至った。
【0006】
すなわち、本発明の目的は、
固有粘度差が0.1〜0.4の範囲にある2種類のポリエステルポリマーがサイドバイサイド型に貼り合わされ、下記(a)〜(c)の要件を同時に満足するポリエステル複合繊維によって達成される。
(a)繊度斑(U%)が0.7%以下
(b)毛羽数が0.1個/10m以下
(c)繊維を筒編地として測定したカラーL値とカラーb値との差(L−b)が80以上
【0007】
【発明の実施の形態】
以下本発明の実施形態について詳細に説明する。
本発明でいうポリエステルとは、主たる繰り返し単位としてエチレンテレフタレート単位が85モル%以上、好ましくは95モル%以上からなるポリエステルである。テレフタル酸成分および/またはエチレングリコール成分以外の成分を少量(通常は、テレフタル酸成分またはエチレングリコール成分に対して20モル%以下)共重合したものであっても良い。
【0008】
本発明のポリエステル複合繊維は、互いに固有粘度が異なる上記のポリエステル2種が溶融紡糸されサイドバイサイド型に貼り合わされた繊維横断面を有する。2種のポリエステルの固有粘度差は、0.1〜0.4、より好ましくは0.15〜0.30、であることが望ましい。固有粘度差が0.1未満の場合は、貼り合わせ成分間の熱収縮差が不充分であり、複合繊維としての潜在捲縮性能が不充分となる。なお、ここで潜在捲縮性能とは、実施例に記載した方法で測定した「全捲縮率TC(%)」が1.5%以上であることをいう。固有粘度差が0.4を越える場合は、2成分の貼り合わせ不良が発生したり、吐出ポリマーの屈曲、ピクツキ、旋回等が激しくなったりして、得られた複合繊維の品質が劣ったものとなることが多い。また、低粘度サイドのポリエステルの固有粘度は0.4〜0.7および低粘度サイドのポリエステルの固有粘度は0.6〜0.9の範囲とするとポリマー吐出状態がより安定するので好ましい。
【0009】
本発明のポリエステル複合繊維は下記(a)〜(c)の要件を同時に満足し、優れた品質を有している。
(a)繊度斑(U%)が0.7%以下
(b)毛羽数が0.1個/10m以下
(c)繊維を筒編地として測定したカラーL値とカラーb値との差(L−b)が80以上
【0010】
すなわち、繊度斑(U%)が0.7%を越えるポリエステル複合繊維は布帛にしたとき染斑などの品質不良が発生する。毛羽数が0.1個/10mを越えるポリエステル複合繊維は織編工程の通過性が悪く、織編工程で使用困難となる。また、L−bが80未満の場合は、布帛にした時黄色味が強く、衣料用として好ましい白度の範囲から外れた色合いとなる。なお、L−bが100を越える場合は、青味が強くなり、染色時の色合わせが難しくなるので好ましくない。
【0011】
本発明においては、このような特性を有するポリエステル複合繊維を構成し、互いに固有粘度が異なる2種類のポリエステルとして、いずれも実質的にアンチモン(Sb)を含まず、ポリエステルに可溶なチタン化合物および下記一般式(I)で表されるホスホネート化合物を使用して合成されたポリエチレンテレフタレート系ポリエステルを使用する。
【0012】
【化4】

Figure 2004044022
【0013】
アンチモン(Sb)を含まないポリエステルに可溶なチタン化合物を重縮合触媒として、上記ホスホネート化合物とともに使用して合成されたポリエチレンテレフタレート系ポリエステルを複合紡糸することによって、吐出糸条の屈曲、ピクツキ、旋回等を劇的に低減せしめ、冷却・固化の過程で繊維構造斑を内在しない、品質均斉性(繊度斑(U%)、毛羽などの少ない)に優れ、かつ充分な潜在捲縮性能を有するポリエステル複合繊維を得ることができる。
【0014】
このようなアンチモン(Sb)を含まないポリエステルに可溶なチタン化合物としては、下記一般式(II)で表されるチタン化合物を好ましく用いることができる。
【0015】
【化5】
Figure 2004044022
【0016】
一般式(II)で表されるチタン化合物において、R、R’、R’’、R’’’がそれぞれ同一もしくは異なって、アルキル基及び/又はフェニル基であれば特に限定されないが、テトライソプロポキシチタン、テトラプロポキシチタン、テトラ−n−ブトキシチタン、テトラエトキシチタン、テトラフェノキシチタン、オクタアルキルトリチタネート、ヘキサアルキルジチタネートなどが好ましく用いられる。
【0017】
また、上記一般式(II)で表されるチタン化合物と下記一般式(III)で表される化合物との反応生成物も本発明のポリエステルの重縮合触媒として好ましく用いることができる。
【0018】
【化6】
Figure 2004044022
【0019】
一般式(III)で表される化合物は、芳香族多価カルボン酸又はその無水物であり、フタル酸、トリメリット酸、ヘミメリット酸、ピロメリット酸及びこれらの無水物を好ましくあげることができる。上記チタン化合物と芳香族多価カルボン酸又はその無水物とを反応させる場合には、溶媒に芳香族多価カルボン酸又はその無水物の一部を溶解し、これにチタン化合物を滴下して、0〜200℃の温度で少なくとも30分間反応させれば良い。
【0020】
このようなチタン化合物あるいはチタン化合物と芳香族多価カルボン酸又はその無水物との反応生成物は、ポリエステルポリマー中に可溶であり、このような化合物を、ポリエステルを構成する全ジカルボン酸成分を基準として、チタン金属元素として2〜15ミリモル%となるように重縮合工程で添加することが好ましい。尚、ここで言う”ポリマー中に可溶なチタン化合物”とは、二酸化チタン粒子に含まれるチタンは含まないことを示し、”チタン金属元素量”とは、エステル交換反応による第1段階反応を行う場合は、エステル交換反応触媒として使用されたチタン化合物と重縮合反応触媒として使用されたチタン化合物との合計量を示す。
【0021】
該チタン化合物あるいはチタン化合物と芳香族多価カルボン酸又はその無水物との反応生成物は、全添加量の一部及び/又はその全量をエステル交換反応開始前に反応系内に添加され、エステル交換反応と重縮合反応触媒とに兼用する方法が好ましく採用される。
【0022】
前記一般式(I)で表されるホスホネート化合物として、ホスホン酸のジメチルエステル、ジエチルエステル、ジプロピルエステル及びジブチルエステルを挙げることができ、具体的にはカルボメトキシメタンホスホン酸、カルボエトキシメタンホスホン酸、カルボプロポキシメタンホスホン酸、カルボブトキシメタンホスホン酸、カルボメトキシ−ホスホノ−フェニル酢酸、カルボエトキシ−ホスホノ−フェニル酢酸、カルボプロポキシ−ホスホノ−フェニル酢酸、カルボブトキシ−ホスホノ−フェニル酢酸等のジメチルエステル、ジエチルエステル、ジプロピルエステル及びジブチルエステルが挙げられる。
【0023】
上記のホスホネート化合物は、通常安定剤として使用されるリン化合物に比較して、チタン化合物との反応が比較的緩やかに進行するので、反応中における、チタン化合物の触媒活性持続時間が長く、結果として、該チタン化合物のポリエステルへの添加量を少なくすることができ、また、本発明のように触媒に対し多量に安定剤を添加する場合であっても、ポリエステルの熱安定性を損ない難い特性を有している。
【0024】
これら、ホスホネート化合物の添加時期は、ポリエステル製造時における、エステル交換反応が実質的に終了した後であればいつでもよく、例えば、重縮合反応を開始する以前の大気圧下でも、重縮合反応を開始した後の減圧下でも、重縮合反応の末期でもまた、重縮合反応の終了後、すなわちポリマーを得た後に添加してもよい。
【0025】
本発明において、用いられるホスホネート化合物の添加量は、リン化合物のリン元素量として、本発明のチタン化合物のチタン金属元素量に対し、2〜15倍モル当量添加するのが好ましい。リン元素量がチタン金属元素量に対して2倍モル当量未満の場合、ポリエステルの色相が著しく黄味を帯び、白度向上剤としてコバルト(Co)化合物添加の必要性が生ずることがあり好ましくない。また、リン元素量がチタン金属元素量に対して15倍モル当量を越えるとポリエステルの重合反応性が低下するので好ましくない。
【0026】
このようなチタン化合物あるいはチタン化合物と芳香族多価カルボン酸又はその無水物との反応生成物および前記のホスホネート化合物とを用いて合成されたポリエチレンテレフタレート系ポリエステルの溶融紡糸においては、ポリマー吐出孔周辺への異物蓄積が長期間にわたりほとんど発生せず、安定したポリマー吐出状態で複合紡糸が可能となる。すなわち、該ポリエステルの固有粘度差が0.1〜0.4となっていても、複合紡糸時のポリマー吐出が長期間にわたって安定しており、細化斑を内在することなく、品質均斉性(繊度斑(U%)、毛羽などの少ない)に優れ、かつ充分な潜在捲縮性能を有するポリエステル複合繊維を得ることができる。
【0027】
さらに、このようなチタン化合物あるいはチタン化合物と芳香族多価カルボン酸又はその無水物との反応生成物および前記のホスホネート化合物を使用して得られたポリエチレンテレフタレート系ポリエステルからなるポリエステル複合繊維は、白度向上剤としてCo化合物を添加しなくても、衣料用として好ましい白度を有している。このように、Sb、Co等の重金属を含まない本発明のポリエステル複合繊維においては、繊維加工処理排液中の重金属負荷が低減するという、利点も発現する。
【0028】
次に、2種類のポリエステルの貼り合わせ重量比(高粘度サイド/低粘度サイド)は40/60〜60/40、より好ましくは55/45〜45/55、の範囲にするのが適当である。高粘度サイドのポリエステル重量比率が60を越える場合には、得られるポリエステル複合繊維の潜在捲縮性が低下する傾向にあり、一方、低粘度サイドのポリエステル重量比率が60を越える場合は、繊維の強度が低くなったり、毛羽が増える傾向がある。
【0029】
次に、本発明のポリエステル複合繊維の断面には総横断面積に対し0.5〜15%、より好ましくは1〜10%の面積を占める中空部を設けると、ポリマー吐出状態がより安定する。なお、中空率が15%を越える場合は、中空破れなどの貼り合わせ不良が起こることがある。
【0030】
なお、本発明のポリエステル複合繊維の総繊度は30〜200dtex、単糸繊度は2〜15dtexの範囲が好ましい。また、強度は2.0〜5.0cN/dtexの範囲、伸度は30〜50%の範囲が衣料用途での加工性、実用性の面から好ましい。
【0031】
このような特性を有する本発明のポリエステル複合繊維は、前述の方法で得られた固有粘度の異なる2種のポリエチレンテレフタレート系ポリエステルを各々常法で乾燥し、2基の溶融押出機(スクリュウーエクストルーダー)を装備した通常の複合紡糸設備で、溶融し、通常のサイドバイサイド型複合紡糸口金(中空複合繊維の場合は中空形成性吐出孔を穿設した紡糸口金を使用する)を用いて、2種のポリマー流を複合し、冷却、固化後、油剤を付与して紡糸引き取りし、延伸することで製造することができる。このとき紡糸引き取りし、一旦未延伸糸として巻き取った後、延伸を別途行っても良く、紡糸引き取り後、一旦巻取ることなく、連続して延伸を行っても良い。溶融紡糸温度は、275〜300℃の範囲が、紡糸安定性の観点より、好ましい。紡糸引き取り速度および延伸倍率は、ポリエステル複合繊維の強度が2.0〜5.0cN/dtexの範囲、伸度が30〜50%の範囲となるように適宜設定する。延伸予熱温度は、80〜100℃が好ましい。
【0032】
【実施例】
以下、実施例により、本発明を更に具体的に説明する。なお、実施例における各項目は次の方法で測定した。
【0033】
(1)固有粘度
オルソクロロフェノールを溶媒として使用し35℃で測定した。
【0034】
(2)ポリマー吐出状態
複合紡糸中に、紡糸口金より吐出されているポリマーの吐出状態を観察し、次の基準で吐出状態を格付けした。複合紡糸開始1時間後、3日後および、7日後に観察を行った。
レベル1:吐出糸条がほぼ一定の流下線を描いて、安定に走行している
レベル2:吐出糸条に小さな屈曲、ピクツキ、旋回等が見られる。
レベル3:吐出糸条が大きく屈曲、ピクツキあるいは旋回している。一部ポリマーが紡糸口金面に接触し、断糸が頻発している。
【0035】
(3)貼り合わせ重量比
ポリエステル複合繊維を任意の繊維横断面方向に切り取り、市販の顕微鏡にて倍率750倍で繊維横断面を写真撮影し、構成単糸横断面全てについて、2種のポリエステル横断面が各々占める面積を測定し、その比率(高粘度サイド占有面積/低粘度サイド占有面積)を「貼り合わせ重量比」(測定した全単糸横断面についての平均値)とした。
(4)中空率(%)および中空率のばらつき
前項のポリエステル複合繊維断面顕微鏡写真で、各単糸断面の中空部面積(A)および断面を囲む面積(B)を測定し、下記式で計算し、測定した全単糸横断面についての平均値を中空率(%)とした。
中空率(%)=A/B×100
また、測定値の変動率(標準偏差/平均値×100)を中空率のばらつきとした。
【0036】
(5)繊度斑(U%)
ツェルベーガーウースター社製のUSTER TESTER 4型を用い400m/minの走行速度で測定した。
【0037】
(6)毛羽数(個/10m)
パッケージ巻き(あるいはパーン巻き)としたポリエステル複合繊維250個を、毛羽検出装置付きの整経機に掛けて、400m/minの速度で、42時間整経引き取りした。整経機が停止するごとに、目視で毛羽の有無を確認し、確認された毛羽の全個数を繊維糸条長10m当たりに換算し、毛羽数とした。
【0038】
(7)染斑
ポリエステル複合繊維を12ゲージ丸編機で30cm長の筒編みとし、染料(テラシールブルーGFL)を用い、100℃、40min染色し、均染性を検査員が目視にて下記基準で格付けした。
レベル1:均一に染色されており、染斑がほとんど認められない
レベル2:縞状あるいは斑点状の染斑が少し認められる
レベル3:縞状あるいは斑点状の染斑が一面に認められる
【0039】
(8)全捲縮率TC(%)
極細仮撚加工糸に0.044cN/dtex(50mg/デニール)の張力を掛けてカセ枠に巻き取り、約3300dtexのカセを作る。カセ作成後、カセの一端に0.00177cN/dtex+0.177cN/dtex(2mg/デニール+200mg/デニール)の荷重を負荷し、1分間経過後の長さL0(cm)を測定する。次いで、0.177cN/dtex(200mg/デニール)の荷重を除去した状態で、100℃の沸水中にて20分間処理する。沸水処理後0.00177cN/dtex(2mg/デニール)の荷重を除去し、24時間自由な状態で自然乾燥する。自然乾燥した試料に、再び0.00177cN/dtex+0.177cN/dtex(2mg/デニール+200mg/デニール)の荷重を負荷し、1分間経過後の長さL1(cm)を測定する。次いで、0.177cN/dtex(200mg/デニール)の荷重を除去し、1分間経過後の長さL2を測定し、次の算式で捲縮率を算出した。この測定を10回実施し、その平均値で表した。
全捲縮率TC(%)=[(L1−L2)/L0]×100
なお、測定は10回行い、その平均値を求めた。
【0040】
(9)L−b
ポリエステル繊維を12ゲージ丸編機で30cm長の筒編みとし、マクベス社製カラー測定装置(Macbeth COLOR−EYE)を用い、L値、b値を測定し、その差を(L−b)値とした。
【0041】
(10)強度・伸度
JIS−L1013に準拠して測定した。
【0042】
[実施例1]
テレフタル酸ジメチル100部とエチレングリコール70部との混合物に、テトラ−n−ブチルチタネート0.0088部を加圧反応が可能なステンレス製容器に仕込み、0.07MPaの加圧を行い140℃から240℃に昇温しながらエステル交換反応させた後、トリエチルホスホノアセテート0.035部を添加し、エステル交換反応を終了させた。その後、反応生成物を重合容器に移し、285℃まで昇温し、26.67Pa以下の高真空で重縮合反応を行って、固有粘度0.63のポリエステルを得た。また、同様の操作を行い固有粘度0.43のポリエステルを得た。
【0043】
得られた2種のポリエステルをペレット状となし、常法で乾燥した後、2基の溶融押出機(スクリュウーエクストルーダー)を装備した複合紡糸機に導入し、溶融し、280℃に保たれたスピンブロックに装備された複合紡糸パックに導入し、複合紡糸口金にて2つのポリマー流を貼り合わせ重量比が50/50のサイドバイサイド型(中実断面)となるように複合しつつ吐出し、冷却・固化し、油剤を付与して、3000m/minの速度で紡糸引き取りし、176dtex/24filamentsの未延伸糸を得た。該未延伸糸を、予熱温度90℃、延伸倍率1.6で延伸しつつ、非接触型ヒーターにて230℃で熱セットして600m/minで巻取り、110dtex/24filamentsのポリエステル複合繊維を得た。
【0044】
本例においては、表1から明らかなように、紡糸口金吐出孔周辺に異物の蓄積が認められず、ポリマー吐出状態は長期間にわたり安定であり、得られたポリエステル複合繊維は、繊度斑(U%)、毛羽、染斑が少なく、充分な潜在捲縮性能を有し、かつ衣料用として好ましい白度を有していた。
【0045】
【表1】
Figure 2004044022
【0046】
[比較例1]
3酸化アンチモン(Sb)を重合触媒として、テレフタル酸ジメチルとエチレングリコールとを常法にて重縮合し、固有粘度0.63および0.43のポリエステルを得た。2種のポリエステルを実施例1と同じ方法、条件で複合紡糸、延伸を行い、110dtex/24filamentsのポリエステル複合繊維を得た。本例においては、表1から明らかなように、紡糸時間の経過にともなう紡糸口金吐出孔周辺異物の成長により、吐出糸条の屈曲、ピクツキおよび旋回が認められた。得られたポリエステル複合繊維は、繊度斑(U%)、染斑および毛羽が多く、衣料用として使用できる品質を有していなかった。
【0047】
[実施例2〜3、比較例2]
ポリエステルに可溶なチタン化合物として使用するトリメリット酸チタンを下記の方法で合成した:
無水トリメリット酸のエチレングリコール溶液(0.2重量%)にテトラブトキシチタンを無水トリメリット酸に対して1/2モル添加し、空気中常圧下で80℃に保持して60分間反応させて、その後、常温に冷却し、10倍量のアセトンによって生成触媒を再結晶化させ、析出物をろ紙によって濾過し、100℃で2時間乾燥させて、目的とするトリメリット酸チタン(以下TMTと称することがある)を得た。
【0048】
得られたTMT0.016部をチタン化合物として用い、リン化合物を各々、表2に示す化合物(比較例2は無し)および添加量に変更した以外は、実施例1と同じ方法、条件で固有粘度0.63および0.43のポリエステルを得た。2種のポリエステルを実施例1と同じ方法、条件で複合紡糸、延伸を行い、110dtex/24filamentsのポリエステル複合繊維を得た。表2から明らかなように、実施例2〜3においては、紡糸口金吐出孔周辺に異物の蓄積が認められず、ポリマー吐出状態は長期間にわたり安定であり、得られたポリエステル複合繊維は、繊度斑(U%)、毛羽、染斑が少なく、充分な潜在捲縮性能を有し、かつ衣料用として好ましい白度を有していた。本発明の範囲のリン化合物を使用しない比較例2において、得られたポリエステル複合繊維の繊度斑(U%)、毛羽、染斑は少なく、潜在捲縮性能も充分であったが、L−b値が低く、黄色味が強く衣料用として好ましくない色合いとなった。
【0049】
【表2】
Figure 2004044022
【0050】
[実施例4〜5]
貼り合わせ重量比を各々表3に示す値とする以外は実施例1と同じ方法、条件でポリエステル複合糸を得た。表3から明らかなように、いずれの例のポリエステル複合繊維とも、繊度斑(U%)、毛羽、染斑が少なく、衣料用として好ましい白度を有していた。
【0051】
【表3】
Figure 2004044022
【0052】
[実施例6〜8]
ポリエステル複合繊維の中空率を各々表4に示す値とする以外は実施例1と同じ方法、条件でポリエステル複合糸を得た。表4から明らかなように、いずれの例のポリエステル複合繊維とも、繊度斑(U%)、毛羽、染斑が少なく、充分な潜在捲縮性能を有し、かつ衣料用として好ましい白度を有していた。
【0053】
【表4】
Figure 2004044022
【0054】
【発明の効果】
本発明によれば、繊度斑(U%)、毛羽などの品質斑の少なく、かつ好ましい白度の潜在捲縮性ポリエステル複合繊維を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polyester composite fiber in which two types of polyester polymers having different intrinsic viscosities are bonded in a side-by-side type. More specifically, the present invention relates to a latently crimpable polyester which has no inherent unevenness due to abnormal polymer ejection during melt spinning, has small unevenness in fineness (U%), fluff and the like, and has favorable whiteness. It relates to a conjugate fiber.
[0002]
[Prior art]
Polyester composite fibers in which polyesters having different intrinsic viscosities are compounded side by side are used in clothing fabrics as a fiber material having latent crimp performance. In order to obtain a polyester conjugate fiber that imparts an appropriate stretch property to the fabric, the difference in intrinsic viscosity between the two polyesters is made as large as possible, and the difference in heat shrinkage when made into a fiber is used to increase the potential crimpability. It is necessary to provide enough. However, if there is a difference in intrinsic viscosity between the two polyesters, the discharge yarn will bend, spike, turn, etc., and eventually, a phenomenon will occur in which the discharge yarn adheres to the spinneret surface and breaks. When such an abnormal discharge phenomenon occurs, not only does the spinning operation be hindered, but also the normal compounding is disturbed, and the discharge polymer yarn that has undergone abnormal discharge such as sticking unevenness in the fiber axis direction, pitting, turning, etc. The fiber has unevenness in fiber structure in the process of cooling and solidifying, and the obtained polyester composite fiber has many unevenness in quality (uniformity of fineness (U%), fluff, stain, etc.).
[0003]
In order to solve such a problem, Japanese Patent Publication No. 61-60163 discloses a method in which a pair of discharge holes is formed at a slant angle with respect to a direction orthogonal to the spinneret surface and a distance between the pair of discharge holes. There has been proposed a method for producing a conjugate fiber in which polyesters having different viscosities are discharged from a melt spinning die having an appropriate size and the like and are joined in a side-by-side type. Certainly, if such a melt spinneret is used, even if there is a difference in intrinsic viscosity between the two types of polyester, in the initial stage of spinning, bending, spikes, swirling, etc. of the discharged polymer will be reduced, and the polyester composite fiber will have less unevenness in quality. Can be obtained. However, as the spinning time elapses, foreign substances begin to be generated around the spinning discharge hole, and the accumulated amount increases with time, and the discharge yarn is bent, spiked, swirled, etc., and the quality unevenness (fineness unevenness) of the polyester composite fiber. (U%), fluff, etc.). When a spinneret having such a special discharge hole shape is used, the accumulation of foreign matter around the discharge hole appears earlier, and within a short time, the polyester composite fiber has uneven quality (fineness unevenness (U%), fluff, etc.). ).
[0004]
[Problems to be solved by the invention]
The present invention has been made on the background of the above-mentioned conventional technology, and has as its object that there are no thinning spots due to abnormal polymer ejection during melt spinning, small fineness spots (U%), and few quality spots such as fluff, Another object of the present invention is to provide a latently crimpable polyester composite fiber having a favorable whiteness.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of the above-described conventional technology, and as a result, completed the present invention.
[0006]
That is, the purpose of the present invention is to
Two kinds of polyester polymers having an intrinsic viscosity difference in the range of 0.1 to 0.4 are bonded in a side-by-side type, and are achieved by a polyester composite fiber which simultaneously satisfies the following requirements (a) to (c).
(A) fineness unevenness (U%) or less 0.7% (b) fluff number 0.1 or / 10 6 m or less (c) Color L * value and color b * value measured fiber as tubular knitted fabric (L * −b * ) is 80 or more.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The polyester in the present invention is a polyester comprising ethylene terephthalate units as a main repeating unit in an amount of 85 mol% or more, preferably 95 mol% or more. A small amount (typically, 20 mol% or less based on the terephthalic acid component or the ethylene glycol component) of a component other than the terephthalic acid component and / or the ethylene glycol component may be used.
[0008]
The polyester composite fiber of the present invention has a fiber cross section in which the above two polyesters having different intrinsic viscosities are melt-spun and bonded in a side-by-side type. The difference in intrinsic viscosity between the two polyesters is preferably 0.1 to 0.4, more preferably 0.15 to 0.30. If the difference in intrinsic viscosity is less than 0.1, the difference in heat shrinkage between the components to be bonded is insufficient, and the latent crimp performance as a conjugate fiber becomes insufficient. Here, the latent crimp performance means that the “total crimp rate TC (%)” measured by the method described in the examples is 1.5% or more. If the intrinsic viscosity difference exceeds 0.4, the resulting composite fiber is inferior in quality due to poor bonding of the two components, or intensified bending, tingling, or turning of the discharged polymer. Often becomes. Further, it is preferable that the intrinsic viscosity of the polyester on the low viscosity side is 0.4 to 0.7 and the intrinsic viscosity of the polyester on the low viscosity side is 0.6 to 0.9, since the polymer discharge state becomes more stable.
[0009]
The polyester composite fiber of the present invention satisfies the following requirements (a) to (c) simultaneously and has excellent quality.
(A) fineness unevenness (U%) or less 0.7% (b) fluff number 0.1 or / 10 6 m or less (c) Color L * value and color b * value measured fiber as tubular knitted fabric (L * -b * ) is 80 or more.
That is, polyester composite fibers having a fineness unevenness (U%) of more than 0.7% cause poor quality such as spots when made into a fabric. A polyester composite fiber having a number of fluffs exceeding 0.1 / 10 6 m has poor permeability in the weaving and knitting step, and is difficult to use in the weaving and knitting step. Further, when L * -b * is less than 80, the fabric has a strong yellowish tinge and has a hue outside the range of whiteness preferable for clothing. When L * -b * exceeds 100, the bluish tint becomes strong and color matching at the time of dyeing becomes difficult, which is not preferable.
[0011]
In the present invention, a polyester compound soluble in the polyester, which does not substantially contain antimony (Sb), and which is composed of two types of polyesters having a polyester conjugate fiber having such properties and having different intrinsic viscosities. A polyethylene terephthalate-based polyester synthesized using a phosphonate compound represented by the following general formula (I) is used.
[0012]
Embedded image
Figure 2004044022
[0013]
By bending a polyethylene terephthalate-based polyester synthesized by using a titanium compound soluble in polyester containing no antimony (Sb) as a polycondensation catalyst together with the above phosphonate compound, the discharge yarn is bent, spiked, and swirled. Polyester that has a drastically reduced amount, etc., has no fiber structure unevenness in the process of cooling and solidification, is excellent in uniformity of quality (less fineness unevenness (U%), fuzz, etc.) and has sufficient latent crimping performance A composite fiber can be obtained.
[0014]
As such a titanium compound soluble in a polyester not containing antimony (Sb), a titanium compound represented by the following general formula (II) can be preferably used.
[0015]
Embedded image
Figure 2004044022
[0016]
In the titanium compound represented by the general formula (II), there is no particular limitation as long as R 3 , R 3 ′, R 3 ″, and R 3 ″ are the same or different and are an alkyl group and / or a phenyl group. However, tetraisopropoxytitanium, tetrapropoxytitanium, tetra-n-butoxytitanium, tetraethoxytitanium, tetraphenoxytitanium, octaalkyltrititanate, hexaalkyldititanate and the like are preferably used.
[0017]
Further, a reaction product of a titanium compound represented by the above general formula (II) and a compound represented by the following general formula (III) can also be preferably used as the polyester polycondensation catalyst of the present invention.
[0018]
Embedded image
Figure 2004044022
[0019]
The compound represented by the general formula (III) is an aromatic polycarboxylic acid or an anhydride thereof, and preferably includes phthalic acid, trimellitic acid, hemi-mellitic acid, pyromellitic acid and anhydrides thereof. . When reacting the titanium compound with an aromatic polycarboxylic acid or an anhydride thereof, a part of the aromatic polycarboxylic acid or an anhydride thereof is dissolved in a solvent, and the titanium compound is added dropwise thereto, The reaction may be performed at a temperature of 0 to 200 ° C. for at least 30 minutes.
[0020]
The reaction product of such a titanium compound or a titanium compound and an aromatic polycarboxylic acid or an anhydride thereof is soluble in a polyester polymer, and such a compound is converted into a whole dicarboxylic acid component constituting the polyester. As a standard, it is preferable to add the titanium metal element in the polycondensation step so as to be 2 to 15 mmol%. The term "a titanium compound soluble in a polymer" as used herein means that the titanium contained in the titanium dioxide particles is not contained, and the "amount of titanium metal element" means that the first step reaction by transesterification is performed. When the reaction is performed, the total amount of the titanium compound used as the transesterification catalyst and the titanium compound used as the polycondensation reaction catalyst is shown.
[0021]
The titanium compound or the reaction product of the titanium compound and the aromatic polycarboxylic acid or its anhydride is added to the reaction system before the start of the transesterification reaction, and a part of the total amount and / or the whole amount is added to the reaction system. A method which is used for both the exchange reaction and the polycondensation reaction catalyst is preferably employed.
[0022]
Examples of the phosphonate compound represented by the general formula (I) include dimethyl ester, diethyl ester, dipropyl ester and dibutyl ester of phosphonic acid, and specific examples thereof include carbomethoxymethanephosphonic acid and carboethoxymethanephosphonic acid. Dimethyl esters such as carbopropoxymethanephosphonic acid, carbobutoxymethanephosphonic acid, carbomethoxy-phosphono-phenylacetic acid, carboethoxy-phosphono-phenylacetic acid, carbopropoxy-phosphono-phenylacetic acid, carbbutoxy-phosphono-phenylacetic acid, diethyl Esters, dipropyl esters and dibutyl esters.
[0023]
Since the above-mentioned phosphonate compound proceeds relatively slowly with the titanium compound as compared with the phosphorus compound usually used as a stabilizer, the duration of the catalytic activity of the titanium compound during the reaction is long, and as a result, In addition, the amount of the titanium compound added to the polyester can be reduced, and even when a large amount of a stabilizer is added to the catalyst as in the present invention, the property that the thermal stability of the polyester is not easily impaired is reduced. Have.
[0024]
These phosphonate compounds may be added at any time after the transesterification reaction is substantially completed during the production of the polyester.For example, the polycondensation reaction can be started even at atmospheric pressure before the start of the polycondensation reaction. It may be added under reduced pressure after the reaction, at the end of the polycondensation reaction, or after the completion of the polycondensation reaction, that is, after the polymer is obtained.
[0025]
In the present invention, the amount of the phosphonate compound used is preferably 2 to 15 times the molar equivalent of the titanium metal element of the titanium compound of the present invention as the phosphorus element of the phosphorus compound. If the amount of phosphorus element is less than twice the molar equivalent to the amount of titanium metal element, the hue of the polyester becomes remarkably yellowish, which may require the addition of a cobalt (Co) compound as a whiteness improver, which is not preferable. . On the other hand, if the amount of the phosphorus element exceeds 15 times the molar equivalent of the amount of the titanium metal element, the polymerization reactivity of the polyester decreases, which is not preferable.
[0026]
In the melt spinning of a polyethylene terephthalate-based polyester synthesized using such a titanium compound or a reaction product of the titanium compound and an aromatic polycarboxylic acid or an anhydride thereof and the above-mentioned phosphonate compound, a polymer discharge hole is formed. Foreign matter is hardly accumulated for a long period of time, and composite spinning can be performed in a stable polymer discharge state. That is, even if the intrinsic viscosity difference of the polyester is 0.1 to 0.4, the polymer ejection during the composite spinning is stable for a long period of time, and the uniformity of quality ( It is possible to obtain a polyester composite fiber which is excellent in unevenness of fineness (U%) and fuzz, etc.) and has sufficient latent crimping performance.
[0027]
Further, the polyester composite fiber comprising the titanium compound or the reaction product of the titanium compound and the aromatic polycarboxylic acid or its anhydride and the polyethylene terephthalate-based polyester obtained by using the phosphonate compound is white. Even if a Co compound is not added as a degree improver, the whiteness is favorable for clothing. As described above, the polyester composite fiber of the present invention that does not contain heavy metals such as Sb and Co also has the advantage of reducing the heavy metal load in the effluent from the fiber processing.
[0028]
Next, the bonding weight ratio (high-viscosity side / low-viscosity side) of the two polyesters is suitably in the range of 40/60 to 60/40, more preferably 55/45 to 45/55. . When the weight ratio of the polyester on the high viscosity side exceeds 60, the latent crimpability of the obtained polyester composite fiber tends to decrease, while when the weight ratio of the polyester on the low viscosity side exceeds 60, the fiber There is a tendency for strength to decrease and fluff to increase.
[0029]
Next, if the cross section of the polyester composite fiber of the present invention is provided with a hollow portion occupying 0.5 to 15%, more preferably 1 to 10% of the total cross-sectional area, the state of discharging the polymer is more stable. If the hollow ratio exceeds 15%, bonding failure such as tearing of the hollow may occur.
[0030]
The total fineness of the polyester composite fiber of the present invention is preferably in the range of 30 to 200 dtex, and the single yarn fineness is preferably in the range of 2 to 15 dtex. Further, the strength is preferably in the range of 2.0 to 5.0 cN / dtex, and the elongation is preferably in the range of 30 to 50% from the viewpoint of workability and practicality in clothing use.
[0031]
The polyester conjugate fiber of the present invention having such properties can be obtained by drying two kinds of polyethylene terephthalate-based polyesters having different intrinsic viscosities obtained by the above-described method, respectively, and drying the same by two ordinary melt extruders (screw extruder). ), Using a normal side-by-side type composite spinneret (in the case of a hollow composite fiber, use a spinneret having a hollow forming discharge hole), and using two types of spinnerets. It can be produced by combining a polymer stream, cooling and solidifying, applying an oil agent, spinning and drawing, and stretching. At this time, drawing may be performed separately after the spinning take-off and once winding as an undrawn yarn, or continuous drawing may be performed without once winding after the spinning take-up. The melt spinning temperature is preferably in the range of 275 to 300 ° C from the viewpoint of spinning stability. The spinning take-off speed and the draw ratio are appropriately set so that the strength of the polyester composite fiber is in the range of 2.0 to 5.0 cN / dtex and the elongation is in the range of 30 to 50%. The stretching preheating temperature is preferably from 80 to 100C.
[0032]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. Each item in the examples was measured by the following method.
[0033]
(1) Intrinsic viscosity Orthochlorophenol was used as a solvent and measured at 35 ° C.
[0034]
(2) Polymer discharge state During composite spinning, the discharge state of the polymer discharged from the spinneret was observed, and the discharge state was rated based on the following criteria. Observations were made 1 hour, 3 days, and 7 days after the start of composite spinning.
Level 1: The discharge yarn draws a substantially constant downward line and runs stably. Level 2: Small bending, tingling, turning, etc. are observed in the discharge yarn.
Level 3: The discharged yarn is largely bent, jerked or turned. A part of the polymer comes into contact with the spinneret surface, and the yarn breaks frequently.
[0035]
(3) Laminated weight ratio Polyester conjugate fiber is cut in any fiber cross-section direction, a cross-section of the fiber is photographed at a magnification of 750 times with a commercially available microscope, and two types of polyester cross-sections are obtained for all the constituent single-thread cross-sections. The area occupied by each surface was measured, and the ratio (area occupied by high-viscosity side / area occupied by low-viscosity side) was defined as "lamination weight ratio" (average value for all measured single-cross-sections).
(4) Hollow Ratio (%) and Variation of Hollow Ratio The hollow area (A) and the area (B) surrounding the cross section of each single yarn cross section were measured with the micrograph of the cross section of the polyester composite fiber in the preceding paragraph, and calculated by the following equation. The average value of the measured cross sections of all single yarns was defined as the hollow ratio (%).
Hollow ratio (%) = A / B × 100
The variation rate of the measured value (standard deviation / average value × 100) was defined as the variation of the hollow rate.
[0036]
(5) Spot size (U%)
The measurement was performed at a running speed of 400 m / min using a USTER TESTER 4 manufactured by Zellberger Worcester.
[0037]
(6) Number of fluff (pieces / 10 6 m)
250 pieces of the polyester composite fiber wound in a package (or wrapped in a pan) were set on a warping machine equipped with a fluff detecting device and warped at a speed of 400 m / min for 42 hours. Each time the warper was stopped, the presence or absence of fluff was visually checked, and the total number of the confirmed fluff was converted to a fiber yarn length of 10 6 m, which was defined as the number of fluff.
[0038]
(7) Using a 12 gauge circular knitting machine, the spotted polyester composite fiber is knitted into a tube having a length of 30 cm, and dyed with a dye (Teraseal Blue GFL) at 100 ° C. for 40 minutes. The rating was based on the standard.
Level 1: Uniformly stained and almost no spots are observed Level 2: Striped or spot-shaped spots are slightly observed Level 3: Striped or spot-shaped spots are observed all over ]
(8) Total crimp rate TC (%)
A tension of 0.044 cN / dtex (50 mg / denier) is applied to the ultra-fine false twisted yarn and wound around a skewer frame to make a skein of about 3300 dtex. After the cassette is made, a load of 0.00177 cN / dtex + 0.177 cN / dtex (2 mg / denier + 200 mg / denier) is applied to one end of the cassette, and the length L0 (cm) after 1 minute is measured. Next, in a state where the load of 0.177 cN / dtex (200 mg / denier) is removed, treatment is performed in boiling water at 100 ° C. for 20 minutes. After the boiling water treatment, the load of 0.00177 cN / dtex (2 mg / denier) is removed, and the mixture is naturally dried in a free state for 24 hours. A load of 0.00177 cN / dtex + 0.177 cN / dtex (2 mg / denier + 200 mg / denier) is again applied to the naturally dried sample, and the length L1 (cm) after one minute has elapsed is measured. Next, the load of 0.177 cN / dtex (200 mg / denier) was removed, the length L2 after 1 minute was measured, and the crimping ratio was calculated by the following formula. This measurement was performed 10 times, and the result was represented by the average value.
Total crimp rate TC (%) = [(L1−L2) / L0] × 100
The measurement was performed 10 times, and the average value was obtained.
[0040]
(9) L * -b * value The polyester fiber was formed into a 30-cm long tubular knit with a 12 gauge circular knitting machine, and the L * value and b * value were measured using a color measuring device (Macbeth COLOR-EYE) manufactured by Macbeth. , And the difference was defined as (L * −b * ) value.
[0041]
(10) Strength / elongation Measured according to JIS-L1013.
[0042]
[Example 1]
To a mixture of 100 parts of dimethyl terephthalate and 70 parts of ethylene glycol, 0.0088 part of tetra-n-butyl titanate is charged into a stainless steel container capable of performing a pressure reaction, and pressurized at 0.07 MPa to 140 ° C. to 240 ° C. After transesterification while raising the temperature to ° C, 0.035 parts of triethylphosphonoacetate was added to terminate the transesterification reaction. Thereafter, the reaction product was transferred to a polymerization vessel, heated to 285 ° C., and subjected to a polycondensation reaction under a high vacuum of 26.67 Pa or less to obtain a polyester having an intrinsic viscosity of 0.63. The same operation was performed to obtain a polyester having an intrinsic viscosity of 0.43.
[0043]
The resulting two types of polyester were formed into pellets, dried in a conventional manner, introduced into a composite spinning machine equipped with two melt extruders (screw extruders), melted, and kept at 280 ° C. It is introduced into a composite spin pack equipped on a spin block, and two polymer streams are stuck together by a composite spinneret and discharged while being combined into a side-by-side type (solid section) with a weight ratio of 50/50, followed by cooling. -It was solidified, an oil agent was applied, and the yarn was drawn off at a speed of 3000 m / min to obtain an undrawn yarn of 176 dtex / 24 filaments. The undrawn yarn is stretched at a preheating temperature of 90 ° C. and a draw ratio of 1.6 while being heat-set at 230 ° C. with a non-contact type heater and wound up at 600 m / min to obtain a polyester composite fiber of 110 dtex / 24 filaments. Was.
[0044]
In this example, as is clear from Table 1, no accumulation of foreign matter was observed around the spinneret ejection hole, the polymer ejection state was stable for a long period of time, and the obtained polyester composite fiber had a fineness unevenness (U %), Less fluff and spots, had sufficient latent crimping performance, and had whiteness favorable for clothing.
[0045]
[Table 1]
Figure 2004044022
[0046]
[Comparative Example 1]
Using antimony trioxide (Sb 2 O 3 ) as a polymerization catalyst, dimethyl terephthalate and ethylene glycol were polycondensed by a conventional method to obtain polyesters having intrinsic viscosities of 0.63 and 0.43. The two kinds of polyesters were subjected to composite spinning and stretching under the same method and conditions as in Example 1 to obtain a polyester composite fiber of 110 dtex / 24 filaments. In this example, as is apparent from Table 1, bending, spikes and swirling of the discharged yarn were recognized due to the growth of foreign matter around the spinneret discharge hole with the lapse of spinning time. The obtained polyester composite fiber had many fineness spots (U%), spots, and fluff, and did not have a quality that could be used for clothing.
[0047]
[Examples 2 and 3, Comparative Example 2]
Titanium trimellitate used as a titanium compound soluble in polyester was synthesized by the following method:
To a solution of trimellitic anhydride in ethylene glycol (0.2% by weight) was added 1/2 mole of tetrabutoxytitanium to trimellitic anhydride, and the mixture was allowed to react at 80 ° C. under normal pressure in air for 60 minutes. Thereafter, the mixture is cooled to room temperature, the produced catalyst is recrystallized with 10 times the amount of acetone, and the precipitate is filtered through filter paper and dried at 100 ° C. for 2 hours to obtain a target titanium trimellitate (hereinafter referred to as TMT). Sometimes).
[0048]
Intrinsic viscosity was obtained in the same manner and under the same conditions as in Example 1 except that 0.016 parts of the obtained TMT was used as a titanium compound, and the phosphorus compounds were changed to the compounds shown in Table 2 (no comparison example 2) and the amount added. Polyesters of 0.63 and 0.43 were obtained. The two kinds of polyesters were subjected to composite spinning and stretching under the same method and conditions as in Example 1 to obtain a polyester composite fiber of 110 dtex / 24 filaments. As is clear from Table 2, in Examples 2 and 3, no accumulation of foreign matters was observed around the spinneret discharge hole, the polymer discharge state was stable for a long period of time, and the obtained polyester composite fiber had a fineness There were few spots (U%), fluff, and spots, and it had sufficient latent crimping performance and had whiteness preferable for clothing. In Comparative Example 2 not using a phosphorus compound of the scope of the present invention, fineness of the resulting polyester conjugate fiber plaques (U%), fluff, dyeing unevenness is small, latent crimp but performance was sufficient, L * - b * Value was low, yellowish color was strong, and the color was unfavorable for clothing.
[0049]
[Table 2]
Figure 2004044022
[0050]
[Examples 4 and 5]
A polyester composite yarn was obtained in the same manner and under the same conditions as in Example 1 except that the bonding weight ratios were set to the values shown in Table 3. As is evident from Table 3, all of the polyester composite fibers of each of the examples had little fineness (U%), fluff, and spots, and had whiteness preferable for clothing.
[0051]
[Table 3]
Figure 2004044022
[0052]
[Examples 6 to 8]
A polyester composite yarn was obtained in the same manner and under the same conditions as in Example 1 except that the hollow ratio of the polyester composite fiber was set to the values shown in Table 4. As is clear from Table 4, each of the polyester composite fibers of any of the examples has little fineness unevenness (U%), fluff, and spots, has sufficient latent crimping performance, and has whiteness that is preferable for clothing. Was.
[0053]
[Table 4]
Figure 2004044022
[0054]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the latent crimpable polyester composite fiber with few unevenness of quality, such as fineness unevenness (U%) and fluff, and favorable whiteness can be provided.

Claims (5)

固有粘度差が0.1〜0.4の範囲にある2種類のポリエステルポリマーがサイドバイサイド型に貼り合わされ、下記(a)〜(c)の要件を同時に満足するポリエステル複合繊維。
(a)繊度斑(U%)が0.7%以下
(b)毛羽数が0.1個/10m以下
(c)繊維を筒編地として測定したカラーL値とカラーb値との差(L−b)が80以上
A polyester conjugate fiber in which two kinds of polyester polymers having an intrinsic viscosity difference in the range of 0.1 to 0.4 are bonded in a side-by-side type and simultaneously satisfy the following requirements (a) to (c).
(A) fineness unevenness (U%) or less 0.7% (b) fluff number 0.1 or / 10 6 m or less (c) Color L * value and color b * value measured fiber as tubular knitted fabric (L * -b * ) is 80 or more
2種類のポリエステルがいずれもポリエステルに可溶なチタン化合物および下記一般式(I)で表されるホスホネート化合物を使用して合成されたポリエチレンテレフタレート系ポリエステルである請求項1記載のポリエステル複合繊維。
Figure 2004044022
The polyester composite fiber according to claim 1, wherein the two polyesters are each a polyethylene terephthalate-based polyester synthesized using a titanium compound soluble in the polyester and a phosphonate compound represented by the following general formula (I).
Figure 2004044022
ポリエステルに可溶なチタン化合物が、下記一般式(II)で表される化合物、若しくは下記一般式(II)で表される化合物と下記一般式(III)で表される芳香族多価カルボン酸又はその無水物とを反応させた生成物である、請求項2記載のポリエステル複合繊維。
Figure 2004044022
Figure 2004044022
A titanium compound soluble in polyester is a compound represented by the following general formula (II) or a compound represented by the following general formula (II) and an aromatic polycarboxylic acid represented by the following general formula (III) The polyester composite fiber according to claim 2, which is a product obtained by reacting the anhydride with an anhydride thereof.
Figure 2004044022
Figure 2004044022
2種類のポリエステルの貼り合わせ重量比が40/60〜60/40である、請求項1記載のポリエステル複合繊維。The polyester conjugate fiber according to claim 1, wherein the bonding weight ratio of the two polyesters is 40/60 to 60/40. 複合繊維の任意の横断面において、全横断面面積に対し0.5〜15%の面積を占める中空部が存在する、請求項1記載のポリエステル複合繊維。The polyester conjugate fiber according to claim 1, wherein a hollow portion occupying 0.5 to 15% of the total cross-sectional area is present in an arbitrary cross section of the conjugate fiber.
JP2002203772A 2002-07-12 2002-07-12 Polyester composite fiber Expired - Lifetime JP3935794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203772A JP3935794B2 (en) 2002-07-12 2002-07-12 Polyester composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203772A JP3935794B2 (en) 2002-07-12 2002-07-12 Polyester composite fiber

Publications (2)

Publication Number Publication Date
JP2004044022A true JP2004044022A (en) 2004-02-12
JP3935794B2 JP3935794B2 (en) 2007-06-27

Family

ID=31709551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203772A Expired - Lifetime JP3935794B2 (en) 2002-07-12 2002-07-12 Polyester composite fiber

Country Status (1)

Country Link
JP (1) JP3935794B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012068264A2 (en) * 2010-11-17 2012-05-24 Frx Polymers, Inc. Phosphonate polymers, copolymers, and their respective oligomers as flame retardants for polyester fibers
US10167377B2 (en) 2013-01-22 2019-01-01 Frx Polymers, Inc. Phosphorus containing epoxy compounds and compositions therefrom

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012068264A2 (en) * 2010-11-17 2012-05-24 Frx Polymers, Inc. Phosphonate polymers, copolymers, and their respective oligomers as flame retardants for polyester fibers
WO2012068264A3 (en) * 2010-11-17 2012-08-16 Frx Polymers, Inc. Phosphonate polymers, copolymers, and their respective oligomers as flame retardants for polyester fibers
CN103328702A (en) * 2010-11-17 2013-09-25 Frx聚合物股份有限公司 Phosphonate polymers, copolymers, and their respective oligomers as flame retardants for polyester fibers
US9290653B2 (en) 2010-11-17 2016-03-22 Frx Polymers, Inc. Phosphonate polymers, copolymers, and their respective oligomers as flame retardants for polyester fibers
US10724154B2 (en) 2010-11-17 2020-07-28 Frx Polymers, Inc. Phosphonate polymers, copolymers, and their respective oligomers as flame retardants for polyester fibers
US10167377B2 (en) 2013-01-22 2019-01-01 Frx Polymers, Inc. Phosphorus containing epoxy compounds and compositions therefrom

Also Published As

Publication number Publication date
JP3935794B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
TW571008B (en) Composite fiber with excellent post-treatment processibility and its production method
US20060210797A1 (en) Modified cross-section polyester fibers
WO2000078839A1 (en) Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
KR100660500B1 (en) PolyTrimethylene Terephthalate Yarn
JP5813747B2 (en) Cationic dyeable polyester fiber and composite fiber
JP3630662B2 (en) Copolymer polytrimethylene terephthalate
TW567257B (en) Polytrimethyleneterephthalate modified cross section yarn
JP2004183143A (en) Polyester fiber and method for producing the same
WO2004063437A1 (en) Polyester fiber and false twist yarn comprising the same
JP2004044022A (en) Polyester conjugate fiber
JP2019049088A (en) Potential trachychromatic polyester fiber, trachychromatic polyester fiber, method for producing trachychromatic polyester fiber, and woven knitted fabric
JPH0466928B2 (en)
JP2004218156A (en) Latently crimpable polyester conjugate fiber
JP2004131860A (en) Polyester conjugated fiber
EP1584710A1 (en) Polyester fibers having deformed section
JP2861335B2 (en) Method for producing naphthalate polyester fiber
JP2004218139A (en) Method for producing conjugated false twist textured yarn
JP6709639B2 (en) Latent dyeing polyester fiber, dark dyeing polyester fiber, and method for producing dark dyeing polyester fiber
JP4027825B2 (en) Polyester blended yarn
JP3973575B2 (en) Easy fibrillar polyester fiber
JP2004256965A (en) Method for producing composite false-twist yarn
JP2004052131A (en) Method for producing polyester undrawn fiber
JP3998672B2 (en) Copolymer polytrimethylene terephthalate fiber
JP2002161436A (en) Polytrimethylene terephthalate fiber dyeable with cationic dye
JP4950935B2 (en) Screen filament monofilament

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent or registration of utility model

Ref document number: 3935794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term