JP2004043987A - Method for producing fiber formed product - Google Patents

Method for producing fiber formed product Download PDF

Info

Publication number
JP2004043987A
JP2004043987A JP2002199582A JP2002199582A JP2004043987A JP 2004043987 A JP2004043987 A JP 2004043987A JP 2002199582 A JP2002199582 A JP 2002199582A JP 2002199582 A JP2002199582 A JP 2002199582A JP 2004043987 A JP2004043987 A JP 2004043987A
Authority
JP
Japan
Prior art keywords
fiber
melting point
base
binder
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002199582A
Other languages
Japanese (ja)
Inventor
Taira Omori
大森 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002199582A priority Critical patent/JP2004043987A/en
Publication of JP2004043987A publication Critical patent/JP2004043987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the uniformity of binding strength of mutual base fibers in the thickness direction, shorten the heating time during forming and improve the production efficiency of the final product by separating a heating step for binding the mutual base fibers from a preheating step for forming and selecting the optimum heating conditions in each step. <P>SOLUTION: There are provided a step of heat-treating a web comprising the base fibers and binder fibers at a temperature lower than the melting point of the base fibers and higher than the melting point of the binder fibers until the binder fibers present in the center of the thickness direction of the web are melted and providing hard loose fibers, a step of preheating the hard loose fibers until the hard loose fibers are softened at a temperature lower than the melting point of the base fibers and higher than the melting point of a melting component of the binder fibers and a step of forming the preheated hard loose fibers. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、車両用内装材として好適に用いることができる繊維成型体を製造する方法に関する。
【0002】
【従来の技術】
車両用内装材、特に比較的面積の大きい天井の内張材は、車両が炎天下に長時間放置され、車内が高温になったような場合でも、変形や重力による垂れ下がりのないことが要求される。
【0003】
そのような比較的大型の車両用内装材は、従来、たとえば、ベース繊維とバインダ繊維とを含むウエブを、ベース繊維の融点よりも低いがバインダ繊維の融点よりも高い温度に加熱してバインダ繊維を溶融させ、ベース繊維同士をバインダ繊維の溶融成分で結着した後、まだ溶融成分が軟化している間に所望の形状に成型することによって製造されている。特許第2803953号公報に記載されているように、成型後にアニーリングを行うこともある。ところが、この従来の方法には、以下において説明するような問題がある。
【0004】
すなわち、上記従来の方法は、ベース繊維とバインダ繊維とを含むウエブの加熱は、バインダ繊維を溶融させてベース繊維同士を結着するための加熱と、後の成型のための予備加熱とを兼ねているが、ベース繊維同士の結着のための最適条件と予備加熱のための最適条件とは必ずしも同一ではないため、加熱条件によってはウエブの表層部と内層部とでバインダ繊維の融け方にばらつきができ、ベース繊維同士の結着強度にばらつきができて、著しい場合には高温の夏期に内装材が変形したり垂れ下がったりする。ベース繊維同士の結着のためには、内層部に存在するバインダ繊維をも十分に溶融させる加熱条件を選定する必要があるが、成型のための予備加熱は、ウエブを単に型に沿わせることができる程度に軟化させればよいからである。
【0005】
【発明が解決しようとする課題】
本発明の目的は、ベース繊維同士の結着のための加熱工程と成型のための予備加熱工程とを分離することでそれぞれの工程で最適な加熱条件を選定することができるようにし、もって厚み方向におけるベース繊維同士の結着強力の均一性を向上させるとともに、成型時の加熱時間を短くできて最終製品の生産効率を向上させることができる繊維成型体の製造方法を提供するにある。
【0006】
【課題を解決するための手段】
上記目的を達成するための本発明は、ベース繊維とバインダ繊維とを含むウエブを、ベース繊維の融点よりも低いがバインダ繊維の融点よりも高い温度下にウエブの厚み方向中心に存在するバインダ繊維が溶融するまで熱処理して硬綿を得る工程と、この硬綿を、ベース繊維の融点よりも低いがバインダ繊維の溶融成分の融点よりも高い温度下に硬綿が軟化するまで予備加熱する工程と、予備加熱した硬綿を成型する工程と、を含む繊維成型体の製造方法を特徴とするものである。
【0007】
上記において、ベース繊維としては、平均繊維長が10〜150mmの範囲内にあり、太さが0.1〜50dtexの範囲内にある繊維を用いるのが好ましく、バインダ繊維としては、平均繊維長が10〜150mmの範囲内にあり、太さが0.1〜50dtexの範囲内にあり、融点がベース繊維の融点よりも20〜120℃低い成分を含む繊維を用いるのが好ましい。また、ベース繊維およびバインダ繊維は、30〜70重量%の範囲内で用いるのが好ましい。さらに、ベース繊維とバインダ繊維は、同一の成分系に属するポリマーを含むものであるのが好ましい。また、バインダ繊維は、芯鞘硬複合繊維またはサイドバイサイド形複合繊維であるのが好ましい。
【0008】
本発明の方法によって得られる繊維成型体は、ベース繊維同士の結着強力の斑が少なく、面と平行な方向に4等分されるように剥離させたとき、最も低い剥離強力の値が最も高い剥離強力の値の70〜100%の範囲内にある。また、投影面積Sに対する最小厚みtの比S/tが少なくとも1,000cmであるような、たとえば車両の天井の内張材として用いられるような比較的大型の成型体を得るのに好適である。
【0009】
【発明の実施の形態】
本発明の方法は、ベース繊維とバインダ繊維とを含むウエブを、ベース繊維の融点よりも低いがバインダ繊維の融点よりも高い温度下にウエブの厚み方向中心に存在するバインダ繊維が溶融するまで熱処理して硬綿を得る工程と、この硬綿を、ベース繊維の融点よりも低いがバインダ繊維の溶融成分の融点よりも高い温度下に硬綿が軟化するまで予備加熱する工程とを含んでいる。
【0010】
ベース繊維は、繊維成型体の基材となるもので、通常、ポリエステル繊維やナイロン繊維、ポリプロピレン繊維、ポリエチレン繊維等の合成繊維を用いる。なかでも、回収、再利用のシステムが構築されていてリサイクルが容易なポリエステル繊維が好ましい。これらは、ペットボトルからリサイクルされたポリエステル繊維のように、リサイクルされたものであってもよい。そして、さらなるリサイクルを考えると、後述するバインダ繊維と互いに同一の成分系に属するものであるのが好ましい。たとえば、ベース繊維がポリエステル繊維であるとき、バインダ繊維として共重合ポリエステル繊維を用いたり、ベース繊維がナイロン繊維であるとき、バインダ繊維として共重合ナイロン繊維を用いるといったことである。
【0011】
ベース繊維は、得られる繊維成型体の強度やバインダ繊維との混合(混繊)の容易さ等を考慮すると、平均繊維長が10〜150mmの範囲内にあり、太さが0.1〜50dtexの範囲内にあるようなものであるのが好ましい。
【0012】
一方、バインダ繊維は、溶融してベース繊維同士を互いに結着して繊維成型体としての形態保持を可能とするもので、融点がベース繊維のそれよりも20〜120℃低いような成分を含むものであるのが好ましい。20℃を超える差がないようなものを用いると、後の予備加熱工程における条件の選択の幅が狭くなる。また、120℃を超えるほど大きな差をもつものは、熱処理時のエネルギーを増大させる。そのようなバインダ繊維としては、ポリエステル繊維、ナイロン繊維、ポリプロピレン繊維、ポリエチレン繊維等の合成繊維があり、ベース繊維との関係においてこれらの繊維から選択して用いる。バインダ繊維として、鞘成分に芯成分よりも融点の低いポリマーを用いた芯鞘型複合繊維や、融点の異なるポリマーのサイドバイサイド形複合繊維を用いると、溶融しなかった成分が繊維形態を保持しているために、ベース繊維同士の結着をより確実に行うことができるようになる。そのような複合繊維の例としては、芯成分がポリエステルであり、鞘成分が共重合ポリエステルであるような芯鞘硬複合繊維や、ポリエステルと共重合ポリエステルとのサイドバイサイド形複合繊維がある。
【0013】
バインダ繊維は、ベース繊維との混合(混繊)の容易さ等を考慮すると、平均繊維長が10〜150mmの範囲内にあり、太さが0.1〜50dtexの範囲内にあるようなものを用いるのが好ましい。
【0014】
さて、本発明においては、上述したベース繊維とバインダ繊維とを周知のカーディング法、エアレイ法、スパンボンド法、その他の方法を用いてよく混合(混線)し、ウエブを得る。混合割合は、用いるバインダ繊維の種類や形態等にもよるが、ベース繊維およびバインダ繊維が30〜70重量%の範囲内になるようにする。バインダ繊維が多いとベース繊維同士の結着強力は向上するものの、あまり多すぎるとごわごわした硬い硬綿となる。混合の方法としては、ベース繊維とバインダ繊維との混率を容易に変更でき、しかも、簡便であるカーディング法が好ましい。
【0015】
本発明においては、次に、ウエブを熱風処理炉、赤外線処理炉等の熱処理炉に通し、ベース繊維の融点よりも低いがバインダ繊維の融点よりも高い温度下にウエブの厚み方向中心に存在するバインダ繊維が溶融するまで熱処理する。これによりベース繊維同士がバインダ繊維の溶融成分で互いに結着された硬綿が得られるが、厚み方向中心に存在するバインダ繊維が確実に溶融するか否か、予備実験を行い、横断面を電子顕微鏡等で観察して温度、時間の条件を選択するのが好ましい。
【0016】
本発明においては、次に、得られた硬綿を、ベース繊維の融点よりも低いがバインダ繊維の融点よりも高い温度下に型綿が軟化するまで予備加熱した後、型に入れて所望の形状に成型する。この予備加熱は、成型のための予備加熱であり、硬綿をそれを型に十分に沿わせることができる程度に軟化させればよい。なお、成型にあたり、用途等に応じて、たとえば表皮材として、織物、編物、不織布、フイルム等の布帛を重ね合わせて成型することもできる。
【0017】
かくして得られる繊維成型体は、表層部と内層部とでベース繊維同士の結着強力の差が極めて小さく、均一性が高い。そして、この均一性の程度が、成型体を面と平行な方向に4等分されるように剥離させたとき、最も低い剥離強力の値が最も高い剥離強力の値の70〜100%の範囲内にあるのが好ましい。この差が70%未満であるということは、厚み方向においてバインダ繊維が均一に溶融していないということであり、特に薄肉の成型体の場合、高温下での変形や垂れ下がりが起こりやすくなる。
【0018】
また、本発明の方法は、特に比較的大型の繊維成型体を製造する場合に適している。小さな成型体は、変形や垂れ下がりをあまり心配する必要がないからである。特に、投影面積Sに対する最小厚みtの比S/tが少なくとも1,000cmであるような繊維成型体を製造する場合に好適である。上記の比が5,000〜40、000以上であるようなものにはさらに好適である。
【0019】
【実施例および比較例】
以下に示す実施例および比較例における測定法は下記のとおりである。
層間剥離強力:
平板状の繊維成型体から長さ200mm、幅30mm、厚み10mmの試験片を採取し、面と平行な方向に4等分できるように厚み方向にみて1/4、1/2、3/4の部分をあらかじめ50mmほど剥離させておき、引張速度50mmで引っ張り、強力を測定して層間剥離強力とした。
常温垂れ下がり:
平板状の繊維成型体から長さ300mm、幅50mm、厚み10mmの試験片を採取し、これを常温下に梁長さが230mmの片持ち梁になるように台上に固定し、4時間放置したときの自由端の垂れ下がり長さを測定した。
高温垂れ下がり:
平板状の繊維成型体から長さ300mm、幅50mm、厚み10mmの試験片を採取し、これを梁長さが230mmの片持ち梁になるように台上に固定し、90℃の雰囲気下に4時間放置したときの自由端の垂れ下がり長さを測定した。
(実施例1)
ベース繊維として、平均繊維長64mm、太さ14.4dtexのポリエチレンテレフタレート系ポリエステル繊維(融点:270℃)を用意した。
【0020】
また、バインダ繊維として、芯成分が融点255℃のポリエチレンテレフタレート系ポリエステルからなり、鞘成分が融点150℃のイソフタル酸共重合ポリエチレンテレフタレート系ポリエステルからなる芯鞘型複合繊維を用意した。平均繊維長は64mmであり、太さは4.4dtexである。鞘成分のポリマー重量は70重量%である。
【0021】
次に、上記ベース繊維とバインダ繊維とがともに50重量%になるように混合し、開綿機とカード機を用いてウェブを得た。
【0022】
次に、2枚の孔あき鉄板(重量:15kg/m)の間に上記ウエブを厚みが15mmになるような重ね合わせて配置し、ウエブの厚み方向中心における温度が170℃になる温度で10分間熱処理し、硬綿を得た。
【0023】
次に、上記硬綿を240℃に調整した熱風循環炉に入れ、3分間予備加熱した後、100kPaの圧力で加圧成型し、成型体を得た。
【0024】
得られた成型体の層間剥離強力は、3.2N/3cm、3.0N/3cm、2.7N/3cmであり、最も低い剥離強力の値は最も高い剥離強力の値の84%であった。また、常温垂れ下がりは4.0mm、高温垂れ下がりは19.5mmであった。
(実施例2)
バインダ繊維として、実施例1で用いたポリマーのサイドバイサイド形繊維を用いた。平均繊維長は64mmであり、太さは14.4dtexである。イソフタル酸共重合ポリエチレンテレフタレート系ポリエステルの重量は、50重量%である。
【0025】
次に、実施例1で用いたベース繊維と上記バインダ繊維とをベース繊維が65重量%になるように混合し、開綿機とカード機を用いてウェブを得た。
【0026】
次に、2枚の孔あき鉄板(重量:15kg/m)の間に上記ウエブを厚みが15mmになるような重ね合わせて配置し、ウエブの厚み方向中心における温度が170℃になる温度で10分間熱処理し、硬綿を得た。
【0027】
次に、ヒートプレス機を用い、上記硬綿を温度240℃、圧力に100kPaで3分間加熱、加圧成型し、成型体を得た。
【0028】
得られた成型体の層間剥離強力は、2.9N/3cm、2.8N/3cm、2.2N/3cmであり、最も低い剥離強力の値は最も高い剥離強力の値の76%であった。また、常温垂れ下がりは6.5mm、高温垂れ下がりは38.0mmであった。
(比較例)
実施例1と同様にして得たウエブを、2枚の孔あき鉄板(重量:15kg/m)の間に上記ウエブを厚みが15mmになるような重ね合わせて配置し、温度240℃、圧力に100kPaで3分間加熱、加圧成型し、成型体を得た。
【0029】
得られた成型体の層間剥離強力は、2.6N/3cm、2.4N/3cm、1.6N/3cmであり、最も低い剥離強力の値は最も高い剥離強力の値の62%であった。また、常温垂れ下がりは6.8mm、高温垂れ下がりは75.0mmであった。
【0030】
【発明の効果】
本発明の方法は、ベース繊維とバインダ繊維とを含むウエブをウエブの厚み方向中心に存在するバインダ繊維が溶融するまで熱処理して硬綿を得る工程と、この硬綿を、硬綿が軟化するまで予備加熱する工程とを含むものである。すなわち、ベース繊維の結着のための加熱工程と成型のための予備加熱工程とを分離しており、それぞれの工程で最適な加熱条件を選定することができるので、実施例と比較例との対比からも明らかなように、厚み方向におけるベース繊維同士の結着強力の均一性を向上させることができ、また、最終製品を成型するときの加熱時間を短縮できるので最終製品の生産効率を向上させることができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a fiber molded body that can be suitably used as an interior material for a vehicle.
[0002]
[Prior art]
Vehicle interior materials, especially ceiling lining materials with a relatively large area, are required to be free from deformation and sagging due to gravity even when the vehicle is left in the hot weather for a long time and the inside of the vehicle becomes hot. .
[0003]
Conventionally, such a relatively large vehicle interior material has been manufactured by heating a web containing a base fiber and a binder fiber to a temperature lower than the melting point of the base fiber but higher than the melting point of the binder fiber. Is melted, and the base fibers are bonded to each other with the molten component of the binder fiber, and then molded into a desired shape while the molten component is still softened. As described in Japanese Patent No. 2803953, annealing may be performed after molding. However, this conventional method has problems as described below.
[0004]
That is, in the above-mentioned conventional method, the heating of the web containing the base fiber and the binder fiber combines the heating for melting the binder fiber and binding the base fibers together with the preliminary heating for the subsequent molding. However, since the optimal conditions for binding the base fibers and the optimal conditions for preheating are not necessarily the same, depending on the heating conditions, the method of melting the binder fibers between the surface layer and the inner layer of the web may vary. Variations occur, and the bonding strength between the base fibers varies, and in extreme cases, the interior material is deformed or sags in the high temperature summer. In order to bind the base fibers together, it is necessary to select heating conditions that sufficiently melt the binder fibers present in the inner layer, but preheating for molding involves simply moving the web along the mold. This is because it is enough to soften to the extent possible.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to separate a heating step for binding base fibers from each other and a preheating step for molding so that optimum heating conditions can be selected in each step, and thus the thickness can be increased. It is an object of the present invention to provide a method for producing a fiber molded body capable of improving the uniformity of the binding strength between base fibers in the direction and shortening the heating time during molding and improving the production efficiency of the final product.
[0006]
[Means for Solving the Problems]
The present invention for achieving the above object provides a web containing a base fiber and a binder fiber, the binder fiber being present at the center in the thickness direction of the web at a temperature lower than the melting point of the base fiber but higher than the melting point of the binder fiber. And a step of preheating the hard cotton at a temperature lower than the melting point of the base fiber but higher than the melting point of the molten component of the binder fiber until the hard cotton is softened. And a step of molding the preheated hard cotton.
[0007]
In the above, as the base fiber, it is preferable to use a fiber having an average fiber length in the range of 10 to 150 mm and a thickness in the range of 0.1 to 50 dtex. As the binder fiber, the average fiber length is preferably It is preferable to use a fiber having a range of 10 to 150 mm, a thickness of 0.1 to 50 dtex, and a component having a melting point 20 to 120 ° C. lower than the melting point of the base fiber. Further, it is preferable to use the base fiber and the binder fiber in a range of 30 to 70% by weight. Further, it is preferable that the base fiber and the binder fiber include a polymer belonging to the same component system. Further, the binder fiber is preferably a core-sheath hard conjugate fiber or a side-by-side conjugate fiber.
[0008]
The fiber molded product obtained by the method of the present invention has less unevenness of binding strength between base fibers, and when peeled so as to be divided into four equal parts in a direction parallel to the surface, the lowest peel strength is the lowest. It is in the range of 70-100% of the high peel strength value. Further, it is suitable for obtaining a relatively large molded body having a ratio S / t of the minimum thickness t to the projection area S of at least 1,000 cm, for example, used as a lining material for a ceiling of a vehicle. .
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The method of the present invention comprises heat treating a web containing a base fiber and a binder fiber at a temperature lower than the melting point of the base fiber but higher than the melting point of the binder fiber until the binder fiber present at the center in the thickness direction of the web is melted. A step of preheating the hard cotton at a temperature lower than the melting point of the base fiber but higher than the melting point of the molten component of the binder fiber until the hard cotton is softened. .
[0010]
The base fiber serves as a base material of a fiber molded body, and usually uses synthetic fibers such as polyester fibers, nylon fibers, polypropylene fibers, and polyethylene fibers. Among them, polyester fibers which have a collection and reuse system and are easy to recycle are preferred. These may be recycled, such as polyester fibers recycled from PET bottles. In consideration of further recycling, it is preferable that the binder fibers belong to the same component system as a binder fiber described later. For example, when the base fiber is a polyester fiber, a copolymerized polyester fiber is used as a binder fiber, and when the base fiber is a nylon fiber, a copolymerized nylon fiber is used as a binder fiber.
[0011]
The base fiber has an average fiber length in the range of 10 to 150 mm and a thickness of 0.1 to 50 dtex in consideration of the strength of the obtained fiber molded product, the ease of mixing (blending) with the binder fiber, and the like. Is preferably within the range.
[0012]
On the other hand, the binder fiber is one that melts and binds the base fibers to each other to maintain the form as a fiber molded body, and contains a component whose melting point is lower by 20 to 120 ° C. than that of the base fiber. It is preferred that When a material having no difference exceeding 20 ° C. is used, the range of selecting conditions in the subsequent preheating step becomes narrow. Those having a larger difference as the temperature exceeds 120 ° C. increase the energy during heat treatment. As such binder fibers, there are synthetic fibers such as polyester fibers, nylon fibers, polypropylene fibers, and polyethylene fibers, and these fibers are selected and used in relation to the base fibers. As the binder fiber, if a sheath-core composite fiber using a polymer having a lower melting point than the core component as a sheath component or a side-by-side composite fiber of a polymer having a different melting point is used, the unmelted component retains the fiber form. Therefore, binding between the base fibers can be performed more reliably. Examples of such conjugate fibers include core-sheath hard conjugate fibers in which the core component is polyester and the sheath component is a copolyester, and side-by-side conjugate fibers of polyester and copolyester.
[0013]
The binder fiber has an average fiber length in the range of 10 to 150 mm and a thickness in the range of 0.1 to 50 dtex in consideration of the ease of mixing (mixing) with the base fiber. It is preferable to use
[0014]
Now, in the present invention, the above-described base fiber and binder fiber are well mixed (mixed wire) by using a well-known carding method, air lay method, spun bond method, or other methods to obtain a web. The mixing ratio depends on the type and form of the binder fiber used, but the base fiber and the binder fiber should be in the range of 30 to 70% by weight. If the amount of the binder fiber is large, the binding strength between the base fibers is improved, but if the amount is too large, the hard fiber becomes stiff and hard. As a mixing method, a carding method that can easily change the mixing ratio of the base fiber and the binder fiber and is simple is preferable.
[0015]
In the present invention, the web is then passed through a heat treatment furnace such as a hot air treatment furnace or an infrared treatment furnace, and is present at the center in the thickness direction of the web at a temperature lower than the melting point of the base fiber but higher than the melting point of the binder fiber. Heat treatment until the binder fiber is melted. As a result, a hard cotton in which the base fibers are bonded to each other with the molten component of the binder fiber is obtained.A preliminary experiment was performed to determine whether or not the binder fiber existing at the center in the thickness direction was reliably melted. It is preferable to select the temperature and time conditions by observing with a microscope or the like.
[0016]
In the present invention, the obtained hard cotton is then pre-heated at a temperature lower than the melting point of the base fiber but higher than the melting point of the binder fiber until the cotton is softened, and then placed in a mold to obtain the desired hard cotton. Mold into shape. This preheating is preheating for molding, and the hard cotton may be softened to the extent that it can be sufficiently conformed to the mold. In the molding, for example, as a skin material, a fabric such as a woven fabric, a knitted fabric, a nonwoven fabric, and a film can be laminated and molded depending on the use or the like.
[0017]
The fiber molded body thus obtained has a very small difference in binding strength between base fibers between the surface layer portion and the inner layer portion, and has high uniformity. When the molded article is peeled so as to be divided into four equal parts in a direction parallel to the surface, the lowest peel strength is in the range of 70 to 100% of the highest peel strength. It is preferably within. The fact that the difference is less than 70% means that the binder fibers are not uniformly melted in the thickness direction. In particular, in the case of a thin molded body, deformation and sagging at high temperatures are likely to occur.
[0018]
Further, the method of the present invention is particularly suitable for producing a relatively large fiber molded product. This is because a small molded body does not need to worry too much about deformation and sagging. In particular, it is suitable for producing a fiber molded product in which the ratio S / t of the minimum thickness t to the projection area S is at least 1,000 cm. It is more preferable that the above ratio is 5,000 to 40,000 or more.
[0019]
[Examples and Comparative Examples]
The measuring methods in the following examples and comparative examples are as follows.
Delamination strength:
A test piece having a length of 200 mm, a width of 30 mm, and a thickness of 10 mm is sampled from a flat fiber molded body, and viewed in the thickness direction so that it can be divided into four equal parts in a direction parallel to the surface. Was previously peeled off by about 50 mm, pulled at a pulling speed of 50 mm, and the strength was measured to determine the delamination strength.
Room temperature droop:
A test piece having a length of 300 mm, a width of 50 mm, and a thickness of 10 mm is sampled from a flat fiber molded body, fixed at a room temperature to a cantilever having a beam length of 230 mm at room temperature, and left for 4 hours. The sagging length of the free end was measured.
Hot sag:
A test piece having a length of 300 mm, a width of 50 mm, and a thickness of 10 mm was sampled from a flat fiber molded body, and fixed on a table so that the beam length became a cantilever having a beam length of 230 mm. The sagging length of the free end when left for 4 hours was measured.
(Example 1)
As base fibers, polyethylene terephthalate-based polyester fibers (melting point: 270 ° C.) having an average fiber length of 64 mm and a thickness of 14.4 dtex were prepared.
[0020]
Further, as the binder fiber, a core-sheath type composite fiber having a core component composed of polyethylene terephthalate polyester having a melting point of 255 ° C. and a sheath component composed of isophthalic acid copolymerized polyethylene terephthalate polyester having a melting point of 150 ° C. was prepared. The average fiber length is 64 mm and the thickness is 4.4 dtex. The polymer weight of the sheath component is 70% by weight.
[0021]
Next, the base fiber and the binder fiber were mixed so as to be 50% by weight, and a web was obtained using a cotton opener and a card machine.
[0022]
Next, the web is placed so as to be 15 mm in thickness between two perforated iron plates (weight: 15 kg / m 2 ), and the temperature at the center in the thickness direction of the web is 170 ° C. Heat treatment was performed for 10 minutes to obtain hard cotton.
[0023]
Next, the above-mentioned hard cotton was put into a hot-air circulation furnace adjusted to 240 ° C., preliminarily heated for 3 minutes, and then press-molded at a pressure of 100 kPa to obtain a molded body.
[0024]
The delamination strength of the obtained molded product was 3.2 N / 3 cm, 3.0 N / 3 cm, 2.7 N / 3 cm, and the value of the lowest peel strength was 84% of the value of the highest peel strength. . The normal temperature sag was 4.0 mm, and the high temperature sag was 19.5 mm.
(Example 2)
As the binder fiber, the side-by-side fiber of the polymer used in Example 1 was used. The average fiber length is 64 mm and the thickness is 14.4 dtex. The weight of the isophthalic acid copolymerized polyethylene terephthalate-based polyester is 50% by weight.
[0025]
Next, the base fiber used in Example 1 and the binder fiber were mixed so that the base fiber was 65% by weight, and a web was obtained using a cotton opener and a card machine.
[0026]
Next, the web is placed so as to be 15 mm in thickness between two perforated iron plates (weight: 15 kg / m 2 ), and the temperature at the center in the thickness direction of the web is 170 ° C. Heat treatment was performed for 10 minutes to obtain hard cotton.
[0027]
Next, using a heat press machine, the above-mentioned hard cotton was heated at a temperature of 240 ° C. and a pressure of 100 kPa for 3 minutes and molded under pressure to obtain a molded body.
[0028]
The delamination strength of the obtained molded product was 2.9 N / 3 cm, 2.8 N / 3 cm, 2.2 N / 3 cm, and the value of the lowest peel strength was 76% of the value of the highest peel strength. . The normal temperature sag was 6.5 mm, and the high temperature sag was 38.0 mm.
(Comparative example)
The web obtained in the same manner as in Example 1 was placed between two perforated iron plates (weight: 15 kg / m 2 ) so that the web became 15 mm in thickness and placed at a temperature of 240 ° C. and a pressure of 240 ° C. Was heated and pressed at 100 kPa for 3 minutes to obtain a molded body.
[0029]
The delamination strength of the obtained molded product was 2.6 N / 3 cm, 2.4 N / 3 cm, 1.6 N / 3 cm, and the value of the lowest peel strength was 62% of the value of the highest peel strength. . The normal temperature sag was 6.8 mm, and the high temperature sag was 75.0 mm.
[0030]
【The invention's effect】
The method of the present invention comprises a step of heat-treating a web containing a base fiber and a binder fiber until a binder fiber present at the center in the thickness direction of the web is melted to obtain a hard cotton, and the hard cotton is softened. And a step of pre-heating until the preheating. That is, the heating step for binding the base fiber and the pre-heating step for molding are separated, and the optimal heating conditions can be selected in each step. As is clear from the comparison, the uniformity of the binding strength between base fibers in the thickness direction can be improved, and the heating time when molding the final product can be shortened, improving the production efficiency of the final product Can be done.

Claims (12)

ベース繊維とバインダ繊維とを含むウエブを、ベース繊維の融点よりも低いがバインダ繊維の融点よりも高い温度下にウエブの厚み方向中心に存在するバインダ繊維が溶融するまで熱処理して硬綿を得る工程と、この硬綿を、ベース繊維の融点よりも低いがバインダ繊維の溶融成分の融点よりも高い温度下に硬綿が軟化するまで予備加熱する工程と、予備加熱した硬綿を成型する工程と、を含む繊維成型体の製造方法。A web containing a base fiber and a binder fiber is heat-treated until the binder fiber present at the center in the thickness direction of the web at a temperature lower than the melting point of the base fiber but higher than the melting point of the binder fiber is melted to obtain a hard cotton. A step of preheating the hard cotton at a temperature lower than the melting point of the base fiber but higher than the melting point of the molten component of the binder fiber until the hard cotton is softened; and a step of molding the preheated hard cotton. And a method for producing a fibrous molded article comprising: ベース繊維とバインダ繊維とを含むウエブを、ベース繊維の融点よりも低いがバインダ繊維の融点よりも高い温度下にウエブの厚み方向中心に存在するバインダ繊維が溶融するまで熱処理して得た硬綿を中間基材として用いる、繊維成型体の製造方法。Hard cotton obtained by heat-treating a web containing a base fiber and a binder fiber at a temperature lower than the melting point of the base fiber but higher than the melting point of the binder fiber until the binder fiber present at the center in the thickness direction of the web is melted. A method for producing a fibrous molded article, comprising using as an intermediate substrate. 請求項2で得られる中間基材を、ベース繊維の融点よりも低いがバインダ繊維の溶融成分の融点よりも高い温度下に硬綿が軟化するまで予備加熱し、次いで予備加熱した硬綿を成型する、繊維成型体の製造方法。Preheating the intermediate substrate obtained in claim 2 at a temperature lower than the melting point of the base fiber but higher than the melting point of the molten component of the binder fiber until the hard cotton is softened, and then molding the preheated hard cotton. A method for producing a fiber molded body. ベース繊維として、平均繊維長が10〜150mmの範囲内にあり、太さが0.1〜50dtexの範囲内にある繊維を用いる、請求項1〜3のいずれかに記載の繊維成型体の製造方法。The production of a fiber molded product according to any one of claims 1 to 3, wherein a fiber having an average fiber length in a range of 10 to 150 mm and a thickness in a range of 0.1 to 50 dtex is used as the base fiber. Method. バインダ繊維として、平均繊維長が10〜150mmの範囲内にあり、太さが0.1〜50dtexの範囲内にあり、融点がベース繊維の融点よりも20〜120℃低い成分を含む繊維を用いる、請求項1〜3のいずれかに記載の繊維成型体の製造方法。As the binder fiber, a fiber having an average fiber length in the range of 10 to 150 mm, a thickness in the range of 0.1 to 50 dtex, and a component having a melting point of 20 to 120 ° C. lower than the melting point of the base fiber is used. A method for producing a fiber molded product according to any one of claims 1 to 3. ベース繊維およびバインダ繊維を30〜70重量%の範囲内で用いる、請求項1〜3のいずれかに記載の繊維成型体の製造方法。The method for producing a fiber molded product according to any one of claims 1 to 3, wherein the base fiber and the binder fiber are used in a range of 30 to 70% by weight. 同一の成分系に属するポリマーを含むベース繊維およびバインダ繊維を用いる、請求項1〜3のいずれかに記載の繊維成型体の製造方法。The method for producing a fiber molded product according to any one of claims 1 to 3, wherein a base fiber and a binder fiber containing a polymer belonging to the same component system are used. バインダ繊維が、芯鞘硬複合繊維またはサイドバイサイド形複合繊維である、請求項1〜3のいずれかに記載の繊維成型体の製造方法。The method for producing a fiber molded product according to any one of claims 1 to 3, wherein the binder fiber is a core-sheath hard composite fiber or a side-by-side composite fiber. 請求項1〜8のいずれかの方法によって製造された繊維成型体。A fiber molded product produced by the method according to claim 1. 面と平行な方向に4等分されるように剥離させたとき、最も低い剥離強力の値が最も高い剥離強力の値の70〜100%の範囲内にある、請求項9に記載の繊維成型体。The fiber molding according to claim 9, wherein the lowest peel strength value is in the range of 70 to 100% of the highest peel strength value when peeled so as to be divided into four equal parts in a direction parallel to the plane. body. 投影面積Sに対する最小厚みtの比S/tが少なくとも1,000cmである、請求項9に記載の繊維成型体。The fiber molded product according to claim 9, wherein a ratio S / t of the minimum thickness t to the projection area S is at least 1,000 cm. 車両用内装材として用いられる、請求項9に記載の繊維成型体。The fiber molded article according to claim 9, which is used as an interior material for a vehicle.
JP2002199582A 2002-07-09 2002-07-09 Method for producing fiber formed product Pending JP2004043987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199582A JP2004043987A (en) 2002-07-09 2002-07-09 Method for producing fiber formed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199582A JP2004043987A (en) 2002-07-09 2002-07-09 Method for producing fiber formed product

Publications (1)

Publication Number Publication Date
JP2004043987A true JP2004043987A (en) 2004-02-12

Family

ID=31706678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199582A Pending JP2004043987A (en) 2002-07-09 2002-07-09 Method for producing fiber formed product

Country Status (1)

Country Link
JP (1) JP2004043987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018928A (en) * 2008-07-14 2010-01-28 Unitika Ltd Nonwoven fabric for heat molding and heat molding method using the same
KR101631887B1 (en) * 2014-12-30 2016-06-20 도레이케미칼 주식회사 Polyester synthetic paper and method for manufacturing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018928A (en) * 2008-07-14 2010-01-28 Unitika Ltd Nonwoven fabric for heat molding and heat molding method using the same
KR101631887B1 (en) * 2014-12-30 2016-06-20 도레이케미칼 주식회사 Polyester synthetic paper and method for manufacturing thereof

Similar Documents

Publication Publication Date Title
US5318650A (en) Bonded fibrous articles
US20100221514A9 (en) Automotive inner ceiling material and molding method thereof
JP2013519000A (en) Carbon fiber yarn and manufacturing method thereof
CA1235293A (en) Moldable fibrous sheet and a method for manufacturing same
CN106521701A (en) Skin-core structure poly(3-hydroxybutyrate-co-3-hydroxyvalerate)fiber, nonwoven material and preparation methods of skin-core structure poly(3-hydroxybutyrate-co-3-hydroxyvalerate)fibers and nonwoven material
KR101894773B1 (en) Polyester Nonwoven Fabric, Method for Manufacturing The Same, and Primary Backing Substrae for Carpet Comprising The Same
US5154969A (en) Bonded fibrous articles
KR20190135491A (en) Method of manufacturing fiber board
CN108411460B (en) Preparation method of woven carpet without back glue process
JP2004043987A (en) Method for producing fiber formed product
JP2849752B2 (en) Surface treatment method for non-woven fabric for filter cloth
JP2001003256A (en) Filament non-woven fabric and its production
JP2009013522A (en) Polyester filament nonwoven fabric
JP2008069466A (en) Adhesive sheet
US6133171A (en) Mechanically compacted non-woven material for use in the production of dimensionally stable mouldings
CA2433500A1 (en) Fabric softener dryer sheet substrate
EP0532624A1 (en) Bonded fibrous articles.
CN108396437B (en) Method for preparing woven carpet without gum process
JPH0569772A (en) Manufacture for molded carpet
JP2534256B2 (en) Method for producing heat-fusible composite fiber
JP6537431B2 (en) Core-sheath composite binder fiber
CN218985995U (en) Regenerated PET foam core material non-woven fabric for automotive interior
EP0408898A2 (en) Method of manufacturing fibrereinforced laminates of thermoplastic synthetic resin, as well as products obtained by using the method
CN107866755A (en) Abrasive material holder
KR100623837B1 (en) Method and apparatus for producing thermal-bonded fiber board with high density