JP2004043950A - White powder and its manufacturing method - Google Patents

White powder and its manufacturing method Download PDF

Info

Publication number
JP2004043950A
JP2004043950A JP2002348344A JP2002348344A JP2004043950A JP 2004043950 A JP2004043950 A JP 2004043950A JP 2002348344 A JP2002348344 A JP 2002348344A JP 2002348344 A JP2002348344 A JP 2002348344A JP 2004043950 A JP2004043950 A JP 2004043950A
Authority
JP
Japan
Prior art keywords
powder
aqueous solution
white powder
acidic inorganic
pretreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002348344A
Other languages
Japanese (ja)
Other versions
JP4049256B2 (en
Inventor
Marenobu Hoshino
星野 希宜
Takashi Shinko
新子 貴史
Akira Kishimoto
岸本 章
Tetsuro Hoshiba
干場 哲朗
Shinichi Ogura
小倉 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP2002348344A priority Critical patent/JP4049256B2/en
Publication of JP2004043950A publication Critical patent/JP2004043950A/en
Application granted granted Critical
Publication of JP4049256B2 publication Critical patent/JP4049256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a white powder having high brightness (whiteness) and capable of directly and smoothly applying a metallic silver film on a substrate powder by a simple and easy pretreatment method in a metallic silver coating by an electroless plating method and to provide its manufacturing method. <P>SOLUTION: In the white powder which forms the metallic silver film on the substrate powder by the electroless plating method, the substrate powder is pretreated with an aqueous solution containing acidic inorganic titanate before the formation of the metallic silver film. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は白色粉体およびその製造方法に関するものであり、さらに詳しくは、明度(白色度)が極めて高く、粒径が極めて細かく、そのためカラーインキ、プラスチック、紙用カラーフィラー、カラートナー、インクジェットプリンター用カラーインク等に、これら本来の色を阻害することなく混合することができ、製造工程も簡易で低コストを実現できる白色粉体およびその製造方法に関するものである。
【0002】
【従来の技術】
本発明者らは、これまでに金属あるいは非金属基体粉体上に無電解メッキ法を利用し金属銀膜を被覆させ、白色粉体あるいはイエロー色系顔料を製造する方法を発明してきた(例えば、特許文献1及び2参照。)。これら方法では、基体粉体が金属である場合はもちろんであるが、非金属である場合にも金属銀膜の下地層として、シリカ膜などの金属酸化物膜を被覆し、それらを被覆後に500〜650℃での焼成を施し、その後に金属銀膜を無電解メッキ法により被覆させてきた。しかし、上記方法では、金属銀膜を被覆させるための下地層であるシリカ膜などの金属酸化物膜の被覆操作が必要であるばかりでなく、それら被覆後の焼成作業が必要であり、かなり手間暇の要する方法であった。
【0003】
一方、これまでに基体粉体あるいは基材上に金属銀膜を被覆させる方法として、基体粉体あるいは基材上に金属銀膜を被覆させるための前処理として、塩化第一錫塩酸酸性溶液の使用(従来例1;例えば、特許文献3及び4参照。)、ニッケルおよび銅の下地層を無電解メッキ法により施す(従来例2;例えば、特許文献5参照。)ことにより、無電解メッキ法により金属銀膜を基体粉体あるいは基材上に直接被覆させることが出来るとしている。
しかしながら、上記従来例1では、前処理液として塩化第一錫を塩酸酸性水溶液に溶解させたものを使用しており、作業性や廃液処理に問題がある。また、上記従来例2の前処理方法では、本発明者らが考案してきたシリカ膜などの金属酸化物膜による下地層を被覆するよりもより複雑な下地層を形成させており、容易な前処理方法というには難がある。
【0004】
更に、前処理としてアルコキシチタニウムエステルを含む前処理液を基材上に塗布乾燥させることにより下地層を形成させ、その上に金属銀膜を無電解メッキ法により被覆させる方法(例えば、特許文献6参照。)が発明されているが、このような方法により下地層を基体粉体上に均一に施すためには、有機溶媒中に基体粉体を懸濁させ、その反応系中でチタニア下地層を形成させなければならないなど、下地層を形成させるための装置を防爆構造としなければならないなど、容易な前処理方法といえない問題がある。
【0005】
【特許文献1】
特開2000−313823号公報
【特許文献2】
特開平11−012488号公報
【特許文献3】
特開2000−8174号公報
【特許文献4】
特開平2−173272号公報
【特許文献5】
特開平11−61424号公報
【特許文献6】
特開2001−40486号公報
【0006】
【発明が解決しようとする課題】
上記のように、本発明者らが発明した金属銀膜被覆法による白色粉体の製造方法や、これまでに公開された金属銀膜被覆の前処理方法は、たとえ金属銀膜を平滑に施すことができ、結果として明度(白色度)の高い白色粉体を得ることができるとしても、一概には容易な前処理方法とは言えないものであった。
従って、本発明の目的は、上記従来技術の欠点を克服し、無電解メッキ法による金属銀膜被覆において、簡単で容易な前処理方法により、基体粒子上に直接に金属銀膜を平滑に被覆することができ、明度(白色度)の高い白色粉体およびその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記問題点を解決するため、鋭意研究を行った結果、酸性無機チタン酸塩含有水溶液中に基体粉体を浸漬させることにより、シリカ膜などの金属酸化物膜などの下地層を必要とせず、基体粉体上に直接無電解メッキ法による金属銀膜被覆ができることを見出し、本発明に到達した。
即ち、本発明の白色粉体およびその製造方法は、以下の通りである。
【0008】
(1) 基体粉体上に無電解メッキ法により金属銀膜を形成する白色粉体の製造方法において、該金属銀膜の形成前に、該基体粉体を酸性無機チタン酸塩含有水溶液で前処理することを特徴とする白色粉体の製造方法。
(2) 前記基体粉体の前処理に用いる酸性無機チタン酸塩含有水溶液中の酸化チタンモル濃度が、基体粉体1gに対して7.70×10−5〜3.50×10−4モル/リットルとすることを特徴とする上記(1)に記載の白色粉体の製造方法。
(3) 前記基体粉体を前処理する前の酸性無機チタン酸塩含有水溶液が、酸性無機チタン酸塩含有溶液の原液を重量比で3〜10倍に希釈されたものであることを特徴とする上記(1)または(2)に記載の白色粉体の製造方法。
(4) 前記基体粉体の酸性無機チタン酸塩含有水溶液による前処理を、該基体粉体を酸性無機チタン酸塩含有水溶液に浸漬することによって行うことを特徴とする上記(1)〜(3)のいずれかに記載の白色粉体の製造方法。
(5) 前記基体粉体の酸性無機チタン酸塩含有水溶液による前処理を、攪拌されている基体粉体懸濁液中に酸性無機チタン酸塩含有水溶液を投入し、投入後攪拌を続けることによって行うことを特徴とする上記(4)に記載の白色粉体の製造方法。
(6) 前記酸性無機チタン酸塩含有水溶液投入後の攪拌の継続を20〜60分間行うことを特徴とする上記(5)に記載の白色粉体の製造方法。
(7) 前記酸性無機チタン酸塩含有水溶液による前処理の温度を、20〜30℃とすることを特徴とする上記(1)〜(6)のいずれかに記載の白色粉体の製造方法。
(8) 上記(1)〜(7)のいずれかに記載の製造方法によって製造された白色粉体。
(9) 平均粒径が0.05〜500μmであることを特徴とする上記(8)に記載の白色粉体。
【0009】
本発明の白色粉体およびその製造方法は、基体粉体上の金属銀膜被覆において、簡単で容易な前処理方法により、基体粉体上に直接に金属銀膜を平滑に被覆することができ、明度(白色度)の高い白色粉体およびその製造方法を提供することができるという効果を奏する。
本発明の白色粉体およびその製造方法が上記のような効果を発現する作用機構としては、基体粉体は酸性無機チタン酸塩含有水溶液中に浸漬される前処理により、その表面が活性化されるようである。このように表面が活性化されたことで、還元析出した銀微粒子は、基体粉体表面上に製膜されやすく(付着しやすく)なる。
また、基体粉体表面が活性化されたことにより、製膜された銀粒子が基体粉体表面をより緻密、平滑に被覆するので、結果として銀被覆した粉体の明度Lが前処理を施さなかった場合よりも高くなることが、推測の域を出ないが、考えられる。
上記のようにして得られた本発明の白色粉体は、基体として磁性体を活用すると、基体粒子の特性(例えば、磁気特性)を高レベルに保持した機能性粉体、例えば、1成分系現像方式でも優れた複合した機能を果たし得る磁性トナーや、優れた磁気特性を発揮することができる。
また、明度(白色度)が高く、粒径が極めて細かく、そのためカラーインキ、プラスチック、紙用カラーフィラー、カラートナー、インクジェットプリンター用カラーインク等に、これら本来の色を阻害することなく混合することができる白色粉体を提供できる。
【0010】
【発明の実施の形態】
以下、本発明についてさらに詳細に説明する。
上記のように、本発明の白色粉体およびその製造方法は、酸性無機チタン酸塩含有水溶液中に基体粉体を浸漬させ置換洗浄を行った後、無電解メッキ法により金属銀膜被覆操作を行うことにより、シリカ膜などの金属酸化物膜などの下地層を必要とせず、基体粉体上に直接に金属銀膜被覆した、明度(白色度)の高い白色粉体が得られることが特徴である。
また、本発明の製造方法により得られた白色粉体は、平均粒径が0.05〜500μmであることが好ましく、より好ましくは0.10〜50μmである。
【0011】
以下に、本発明の好ましい態様を説明する。
本発明において用いられる酸性無機チタン酸塩含有水溶液は、硫酸チタン(IV)溶液、塩化チタン(IV)溶液、または塩化チタン(III)溶液等から容易に調整することができる。また、これらの溶液から調整した酸性無機チタン酸塩含有水溶液のpHは、5以下の酸性を示す。
本発明においては、上記の酸性無機チタン酸塩を含有する原液を3〜10倍に希釈して酸性無機チタン酸塩含有水溶液を調整することが好ましい。
【0012】
本発明の白色粉体およびその製造方法における基体粉体の前処理である水溶液処理において、基体粉体の酸性無機チタン酸塩含有水溶液中の浸漬時間は、20〜60分の範囲が好ましく、より好ましくは20〜30分の範囲である。浸漬時間が20分に満たない場合には、酸性無機チタン酸塩含有水溶液による前処理が十分に行われず、以後の金属銀膜被覆操作を行っても目的の明度(白色度)を有する白色系磁性粉体を得ることが出来ない場合がある。また、浸漬時間が60分を超えると、前処理時間が金属銀膜被覆操作よりも著しく長くなり、容易な前処理操作との趣旨から外れてしまう。
【0013】
次に、基体粉体を浸漬させる酸性無機チタン酸塩含有水溶液中の酸化チタンモル濃度は、基体粉体1グラムに対しての酸化チタンモル濃度が7.70×10−5〜3.50×10−4モル/リットルの範囲が好ましい。
酸化チタンモル濃度が7.70×10−5よりも低い場合には、基体粉体に対しての酸性無機チタン酸塩が僅少のために前処理が不十分であり、以後の金属銀膜被覆操作を行っても、目的の明度(白色度)を有する白色粉体を得ることが出来ない場合がある。一方、基体粉体1グラムに対しての酸化チタンモル濃度が3.50×10−4モル/リットルを超える場合には、浸漬液中のチタンと塩を形成する陰イオン(例えば、硫酸イオンや塩素イオン等)の濃度が過剰となり、酸性無機チタン酸塩による反応を阻害してしまい、逆に前処理層が十分に行われず、目的の明度(白色度)を有する白色粉体を得ることが出来ない場合がある。
【0014】
また、酸性無機チタン酸塩含有水溶液による前処理の温度は、20〜30℃の範囲が好ましく、20℃よりも低い場合には、酸性無機チタン酸塩による反応が進まずに前処理の役目を果たさず、逆に前処理の温度が30℃を超える場合には、酸性無機チタン酸塩による反応が非常に早く進行してしまい、遊離の酸化チタン粒子が生成してしまい前処理の役目を果たすことができない場合がある。
【0015】
本発明の白色粉体の製造において、前記酸性無機チタン酸塩含有水溶液による前処理した基体粒子の表面に被覆膜金属銀を製膜するためには、金属銀を析出できる溶液反応であれば特に限定されないが、基体粒子を分散した銀液に還元液を添加することによって行うものが好ましい。この銀液としては特に限定されないが、硝酸銀水溶液中の銀イオンをアンモニアで錯イオン化したものであることが好ましい。また、還元液としては特に限定されないが、水にブドウ糖と酒石酸とアルコールを溶解させたものであることが好ましい。
【0016】
次に本発明の白色粉体の製造方法における前記前処理した基体粒子表面に金属銀被覆膜を製膜する一例を説明する。水1000mlにブドウ糖20〜150gと酒石酸1.5〜14gを80〜100℃のウォーターバス中で湯浴させながら順次溶解し10分以上保持する。これを室温まで冷却したあとアルコール50〜2000mlを添加する。この際のアルコール添加量が50mlより少ないと還元反応が起こらないことがあり、2000mlより多すぎると銀を還元するのに必要なブドウ糖および酒石酸イオンの濃度を低くして反応が起こらないことがある。得られた混合物を還元液とする。アルコールはメタノールでもエタノールでも両者の混合物でも使用可能である。
【0017】
次に、硝酸銀100gにアンモニア水溶液(28%)を硝酸銀が完全に溶解するまで加え、その後水1〜4リットルを添加する。この際加える水の量が少ないとpHが下がって銀が再び錯体として沈殿することがあり、多すぎると銀の濃度が下がるため還元液と混ぜたときに充分な厚さの被膜を得られないことがある。このとき硝酸銀を先に水に溶解し、その後でアンモニア水を添加してもよい。次に0.5〜2規定の水酸化ナトリウム水溶液1〜4リットルを添加すると黒あるいは黒褐色の錯体が沈殿する。この黒色の沈殿が無くなるまで十分に撹拌しながらアンモニア水溶液(28%)を添加して銀液とする。
【0018】
上記により得られた銀液に後述の基体粒子を加える。その添加量は形成する金属銀被覆膜の厚みおよび基体粒子の色や粒径に依存するので、硝酸銀100gに対し5〜500gが適当である。基体粒子の量が少なすぎると金属銀被覆膜が厚くなりすぎて基体粒子の特性を小さくしてしまう。逆に多すぎると金属銀被覆膜が薄くなりすぎて暗灰色の粉体となってしまう。
【0019】
基体粒子を添加後十分に撹拌するが、できだけ高速で行い、あるいは超音波洗浄機などを用いて十分に分散させるほうが望ましい。十分、分散させた後、撹拌および超音波印加を続けながら銀液と同容量の程度の還元液を添加し還元反応が終るまで1〜30分、好ましくは3〜15分撹拌し、基体粒子の表面に金属銀被覆膜を形成させる。この際の反応時間が1分より短いと十分な被覆膜が得られないことがあり、30分ぐらい経過すると金属銀の析出が完了してしまう。固形分を濾過し、洗浄を繰返して十分にアンモニアイオンを除去する。この際十分にアンモニアイオンを取除かなければアンモニアと銀が反応し金属銀被覆膜の色の悪化をまねくことがある。次にこの濾過ケーキを真空乾燥し白色粉体を得る。
【0020】
本発明の白色粉体に用いられる基体粒子は、特に限定されず、金属を含む無機物でも、有機物でもよく磁性体、誘電体、導電体および絶縁体等でもよい。基体が金属の場合、鉄、ニッケル、クロム、チタン、アルミニウム等、どのような金属でもよいが、その磁性を利用するものにおいては、鉄等磁性を帯びるものが好ましい。これらの金属は合金でも良く、前記の磁性を有するものであるときには、強磁性合金を使用することが好ましい。また、その粉体の基体が金属化合物の場合には、その代表的なものとして前記した金属の酸化物が挙げられるが、例えば、鉄、ニッケル、クロム、チタン、アルミニウム、ケイ素等の外、カルシウム、マグネシウム、バリウム等の酸化物、あるいはこれらの複合酸化物でも良い。さらに、金属酸化物以外の金属化合物としては、金属窒化物、金属炭化物、金属硫化物、金属フッ化物、金属炭酸塩、金属燐酸塩などを挙げることができる。
【0021】
さらに、基体粒子として、金属以外では、半金属、非金属の化合物、特に酸化物、炭化物、窒化物であり、シリカ、ガラスビーズ等を使用することができる。その他の無機物としてはシラスバルーン(中空ケイ酸粒子)などの無機中空粒子、微小炭素中空球(クレカスフェアー)、電融アルミナバブル、アエロジル、ホワイトカーボン、シリカ微小中空球、炭酸カルシウム微小中空球、炭酸カルシウム、パーライト、タルク、ベントナイト、合成雲母、白雲母、など雲母類、カオリン等を用いることができる。
【0022】
有機物としては、樹脂粒子が好ましい。樹脂粒子の具体例としては、セルロースパウダー、酢酸セルロースパウダー、ポリアミド、エポキシ樹脂、ポリエステル、メラミン樹脂、ポリウレタン、酢酸ビニル樹脂、ケイ素樹脂、アクリル酸エステル、メタアクリル酸エステル、スチレン、エチレン、プロピレン及びこれらの誘導体の重合または共重合により得られる球状または破砕の粒子などが挙げられる。特に好ましい樹脂粒子はアクリル酸またはメタアクリル酸エステルの重合により得られる球状のアクリル樹脂粒子である。但し、樹脂粒子を基体とする場合、乾燥における加熱温度は樹脂の融点以下でなければならない。
【0023】
基体の形状としては、球体、亜球状態、正多面体等の等方体、直方体、回転楕円体、菱面体、板状体、針状体(円柱、角柱)などの多面体、さらに粉砕物のような全く不定形な粉体も使用可能である。これらの基体は、粒径については特に限定するものでないが、0.01μm〜数mmの範囲のものが好ましい。
【0024】
また、基体粒子の比重としては、0.1〜10.5の範囲のものが用いられるが、得られた粉体を液体等に分散させて使用する場合には、流動性、浮遊性の面から0.1〜5.5が好ましく、より好ましくは0.1〜2.8、更に、好ましくは0.5〜1.8の範囲である。得られた粉体を液体等に分散させて使用する場合、基体の比重が0.1未満では液体中の浮力が大きすぎ、膜を多層あるいは非常に厚くする必要があり、不経済である。一方、10.5を超えると、浮遊させるための膜が厚くなり、同様に不経済である。
【0025】
【実施例】
以下、本発明を実施例によりさらに具体的に説明するが、もちろん本発明の範囲はこれらに限定されるものではない。
〔実施例1〕
(原料基体粉体の前処理)
(1)基体粉体の前処理
基体粉体として18gのマグネタイト粉末(平均粒径0.7μm、比表面積2.06m/g)を使用した。この基体粉体を、360グラムのイオン交換水を入れた1000ミリリットルビーカーに投入し、攪拌速度700rpmで攪拌した。
ここに、硫酸チタン(IV)溶液(関東化学社製、Ti(SO 24wt%)0.65グラムをイオン交換水3.78グラムで混合希釈した硫酸チタン(IV)水溶液を瞬時に添加した。この前処理液中の酸化チタンモル濃度は、基体粉体1グラムに対して酸化チタンモル濃度1.00×10−4モル/リットルであった。
添加後、同じ攪拌速度にて30分攪拌を続け、所定時間経過後、イオン交換水溶液500グラムにて置換洗浄を3回行った。このようにして、硫酸チタン(IV)水溶液にて前処理された基体粉体スラリーを得た。
【0026】
(2)銀液の調製
イオン交換水720グラムに硝酸銀30.0グラム(関東化学社製試薬)を溶解させた後、アンモニア水21グラム(関東化学社製試薬一級)、アルカリ水375グラム(水酸化ナトリウム(関東化学社製試薬一級)15.0グラムをイオン交換水360グラムに溶解させたもの)、アンモニア水21グラム(関東化学社製試薬一級)の順に添加し、銀イオンを完全に銀アンモニア錯イオンの形にした。
【0027】
(3)還元液の調製
銀の無電解メッキに用いる還元剤としては、グルコースを使用した。この還元液の調整は以下のようにして行った。
まず、イオン交換水500グラムにグルコース(関東化学社製試薬一級)45.0グラムと酒石酸(関東化学社製試薬一級)5.0グラムを溶解し、加熱し、5分間沸騰させた。5分間の沸騰後、十分に冷却させた後、蒸発減量分のイオン交換水とアルコール(関東化学社製試薬一級)80グラムを添加した。上記薬品を投入後、室温にて一晩熟成した。
【0028】
(4)金属銀膜の被覆
前記(2)で得られた銀液に、前記(1)で前処理を行った基体粉体スラリーを投入し、800rpmにて攪拌を行った。攪拌開始5分経過した後、前記(3)で調製した還元液の360グラムを約20秒で、基体粉体懸濁銀液に投入した。還元液投入後、さらに10〜30分の間攪拌を続け、銀の析出反応を続行させた。
所定時間経過後、反応懸濁液を静置沈降させて粉体と反応液を分離させた後、沈降粉体にイオン交換水800グラムを投入して置換洗浄を5回繰り返し、所定回数の置換洗浄終了後、120℃に加温した恒温乾燥機内にて、金属銀膜被覆粉体スラリーを乾燥させ、平均粒径9.5μmの金属銀膜被覆粉体Aを得た。得られた金属銀膜被覆粉体Aを分光光度計(日本分光社製Ubest550)にて分光特性を測定した後に色彩計算を行い、CIE(1976)L表色系で表示した。得られた金属銀膜被覆粉体AのCIE(1976) L表色系は、L=68.2、a=−0.7、b=4.4と非常に明度(白色度)の高い白色磁性粉であった。テスト結果を表1に示す。
【0029】
〔実施例2〕
実施例1の前処理液中の硫酸チタン(IV)濃度を、硫酸チタン(IV)溶液(関東化学社製、Ti(SO 24wt%)1.30グラムをイオン交換水7.56グラムで混合希釈した硫酸チタン(IV)水溶液に変えた。この前処理液中の硫酸チタン(IV)モル濃度は、基体粉体1グラムに対して酸化チタンモル濃度2.00×10−4モル/リットルであった。
上記前処理液中の硫酸チタン(IV)濃度を変えた以外は、実施例1と同じ操作を行い、平均粒径9.6μmの金属銀膜被覆粉体Bを得た。得られた金属銀膜被覆粉体BのCIE(1976) L表色系は、L=68.1、a=−0.4、b=5.3と非常に明度(白色度)の高い白色磁性粉であった。テスト結果を表1に示す。
【0030】
〔比較例1〕
実施例1の前処理液中に硫酸チタン(IV)溶液を加えなかった以外は、実施例1と同じ操作にて前処理を行った。この前処理液中の酸化チタンモル濃度は、基体粉体1グラムに対して酸化チタンモル濃度0.00モル/リットルであった。以上の前処理液中の硫酸チタン(IV)濃度を変えた以外は、実施例1と同じ操作を行い、平均粒径4.0μmの金属銀膜被覆粉体Cを得た。得られた金属銀膜被覆粉体CのCIE(1976) L表色系は、L=56.2、a=−0.5、b=−1.7と明度が上がらず、白色度も低い、暗灰色の磁性粉であった。テスト結果を表1に示す。
【0031】
〔比較例2〕
(原料基体粉体の前処理)
(1)基体粉体の前処理
基体粉体として18gのマグネタイト粉末(平均粒径0.7μm、比表面積2.06m/g)を使用した。この基体粉体を、塩化第一錫(関東化学社製試薬特級)0.75グラムを、イオン交換水100グラムに濃塩酸(関東化学社製試薬特級)10ミリリットルを加えた塩酸酸性水溶液に懸濁させた。この前処理液中の塩化第一錫濃度は、基体粉体1グラムに対して塩化第一錫モル濃度1.80×10−3モル/リットルであった。この懸濁液を攪拌速度700rpmで30分間攪拌を行い、前処理とした。所定時間経過後、懸濁させた基体粉体をイオン交換水300グラムで5回の置換洗浄を行った。このようにして、塩化第一錫塩酸酸性水溶液にて前処理された基体粉体スラリーを得た。
上記前処理以外は、実施例1と同じ操作を行い、平均粒径4.6μmの金属銀膜被覆粉体Dを得た。
得られた金属銀膜被覆粉体DのCIE(1976) L表色系は、L=55.8、a=−0.5、b=−1.2と明度が上がらず、白色度も低い、暗灰色の磁性粉であった。テスト結果を表1に示す。
【0032】
〔実施例3〕
実施例1の硫酸チタン(IV)水溶液による前処理時間を20分に短くした以外
は、前処理、金属銀膜被覆操作共に実施例1と同じ操作を行い、平均粒径8.8μmの金属銀膜被覆粉体Eを得た。
得られた金属銀膜被覆粉体EのCIE(1976) L表色系は、L=67.3、a=−0.7、b=4.0と非常に明度(白色度)の高い白色磁性粉であった。テスト結果を表1に示す。
【0033】
〔実施例4〕
基体粉体として18gのマグネタイト粉末(平均粒径0.7μm、比表面積2.06m/g)を使用した。この基体粉体を、クエン酸0.034gを溶解させたイオン交換水360gを加えた1000ミリリットルビーカーに投入し、攪拌速度700rpmで攪拌した。
ここに、塩化チタン(IV)溶液(和光純薬社製試薬、Ti:16wt%)0.195gをイオン交換水1.85gで混合希釈した塩化チタン(IV)水溶液を瞬時に添加した。この前処理液中の酸化チタンモル濃度は、基体粉体1gに対して酸化チタンモル濃度1.00×10−4モル/リットルであった。
添加後、同じ攪拌速度にて30分攪拌を続け、所定時間経過後、イオン交換水500gにて置換洗浄を3回行った。このようにして、塩化チタン(IV)水溶液にて前処理された基体粉体スラリーを得た。
その後、実施例1の金属銀膜の被覆と同じ操作を行い、平均粒径8.3μmの金属銀膜被覆粉体Fを得た。
得られた金属銀膜被覆粉体FのCIE(1976) L表色系は、L=65.0、a=−0.90、b=3.51と非常に明度(白色度)の高い白色磁性粉であった。テスト結果を表1に示す。
【0034】
【表1】

Figure 2004043950
【0035】
表1から明らかなように、本発明に係わる各実施例の白色粉体は、それぞれ満足すべき結果を得たが、各比較例の白色粉体は、不満足な結果であった。
【0036】
【発明の効果】
本発明の白色粉体およびその製造方法は、基体粉体上の金属銀膜被覆において、基体粉体を簡単な酸性無機チタン酸塩含有水溶液による前処理を行う方法により、基体粉体上に直接に金属銀膜を平滑に被覆することができ、明度(白色度)の高い白色粉体およびその製造方法を提供することができるという効果を奏する。
上記のようにして得られた本発明の白色粉体は、基体として磁性体を使用すると、基体粉体の特性(例えば、磁気特性)を高レベルに保持した機能性粉体、例えば、1成分系現像方式でも優れた複合した機能を果たし得る磁性トナーや、優れた磁気特性を発揮することができる。
また、明度(白色度)が高く、粒径が極めて細かく、そのためカラーインキ、プラスチック、紙用カラーフィラー、カラートナー、インクジェットプリンター用カラーインク等に、これら本来の色を阻害することなく混合することができる白色粉体を提供でき、産業界に寄与するところ大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a white powder and a method for producing the same, and more specifically, the brightness (whiteness) is extremely high and the particle size is extremely fine. Therefore, color ink, plastic, color filler for paper, color toner, and ink jet printer are disclosed. The present invention relates to a white powder that can be mixed in a color ink for use without impairing these original colors, can be manufactured at a low cost, and a manufacturing method thereof.
[0002]
[Prior art]
The present inventors have so far invented a method for producing a white powder or a yellow pigment by coating a metal silver film on a metal or non-metal substrate powder using an electroless plating method (for example, Patent Documents 1 and 2). In these methods, as a matter of course, the base powder is a metal, but even when it is a non-metal, a metal oxide film such as a silica film is coated as an underlayer of the metal silver film, and after these are coated, 500 After baking at ˜650 ° C., a metal silver film has been coated by an electroless plating method. However, the above-described method requires not only a coating operation of a metal oxide film such as a silica film, which is an underlayer for coating a metal silver film, but also requires a baking operation after the coating, which requires considerable labor. It was a time-consuming method.
[0003]
On the other hand, as a method for coating a base silver powder or substrate with a metallic silver film so far, as a pretreatment for coating a base silver powder or substrate with a metallic silver film, Use (conventional example 1; see, for example, Patent Documents 3 and 4), and apply an underlayer of nickel and copper by an electroless plating method (conventional example 2; see, for example, Patent Document 5). It is said that the metallic silver film can be directly coated on the substrate powder or the substrate.
However, in the above-mentioned conventional example 1, a solution obtained by dissolving stannous chloride in an acidic aqueous solution of hydrochloric acid is used as a pretreatment liquid, and there are problems in workability and waste liquid treatment. Further, in the pretreatment method of Conventional Example 2 described above, a more complicated underlayer is formed than the case where the underlayer is covered with a metal oxide film such as a silica film, which has been devised by the present inventors. There is a difficulty in the processing method.
[0004]
Further, as a pretreatment, a pretreatment liquid containing an alkoxytitanium ester is applied on a substrate and dried to form an underlayer, and a metal silver film is coated thereon by an electroless plating method (for example, Patent Document 6). In order to apply the base layer uniformly on the base powder by such a method, the base powder is suspended in an organic solvent, and the titania base layer is suspended in the reaction system. There is a problem that cannot be said to be an easy pretreatment method, for example, an apparatus for forming an underlayer must have an explosion-proof structure.
[0005]
[Patent Document 1]
JP 2000-313823 A [Patent Document 2]
JP-A-11-012488 [Patent Document 3]
JP 2000-8174 A [Patent Document 4]
Japanese Patent Laid-Open No. 2-173272 [Patent Document 5]
Japanese Patent Laid-Open No. 11-61424 [Patent Document 6]
JP-A-2001-40486 gazette
[Problems to be solved by the invention]
As described above, the method for producing white powder by the metal silver film coating method invented by the present inventors and the metal silver film coating pretreatment methods disclosed so far, evenly apply the metal silver film. As a result, even if a white powder having high brightness (whiteness) can be obtained, it is generally not an easy pretreatment method.
Therefore, the object of the present invention is to overcome the above-mentioned drawbacks of the prior art and to coat the metallic silver film smoothly on the substrate particles by a simple and easy pretreatment method in the metallic silver film coating by the electroless plating method. It is possible to provide a white powder having high brightness (whiteness) and a method for producing the same.
[0007]
[Means for Solving the Problems]
As a result of diligent research to solve the above problems, by immersing the base powder in an aqueous solution containing an acidic inorganic titanate, a base layer such as a metal oxide film such as a silica film is not required, The present inventors have found that a metallic silver film can be directly coated on a substrate powder by an electroless plating method, and the present invention has been achieved.
That is, the white powder of the present invention and the production method thereof are as follows.
[0008]
(1) In the method for producing a white powder in which a metallic silver film is formed on a substrate powder by an electroless plating method, the substrate powder is pre-treated with an aqueous solution containing an acidic inorganic titanate before the formation of the metallic silver film. A method for producing a white powder, characterized by comprising:
(2) The molar concentration of titanium oxide in the acidic inorganic titanate-containing aqueous solution used for the pretreatment of the substrate powder is 7.70 × 10 −5 to 3.50 × 10 −4 mol / g with respect to 1 g of the substrate powder. The method for producing a white powder as described in (1) above, wherein the liter is used.
(3) The acidic inorganic titanate-containing aqueous solution before pre-treating the base powder is obtained by diluting the stock solution of the acidic inorganic titanate-containing solution 3 to 10 times by weight. The manufacturing method of the white powder as described in said (1) or (2).
(4) The above-mentioned (1) to (3), wherein the base powder is pretreated with an aqueous solution containing an acidic inorganic titanate by immersing the base powder in an aqueous solution containing an acidic inorganic titanate. ) A method for producing a white powder as described in any of the above.
(5) Pretreatment of the base powder with an acidic inorganic titanate-containing aqueous solution is performed by introducing the acidic inorganic titanate-containing aqueous solution into the stirred base powder suspension and continuing stirring after the addition. The method for producing a white powder as described in (4) above, which is performed.
(6) The method for producing white powder as described in (5) above, wherein the stirring is continued for 20 to 60 minutes after the acidic inorganic titanate-containing aqueous solution is added.
(7) The method for producing a white powder according to any one of (1) to (6) above, wherein the temperature of the pretreatment with the acidic inorganic titanate-containing aqueous solution is 20 to 30 ° C.
(8) White powder manufactured by the manufacturing method in any one of said (1)-(7).
(9) The white powder according to (8) above, wherein the average particle size is 0.05 to 500 μm.
[0009]
The white powder of the present invention and the production method thereof can smoothly coat a metallic silver film directly on the substrate powder by a simple and easy pretreatment method in coating the metallic silver film on the substrate powder. The white powder having high brightness (whiteness) and the production method thereof can be provided.
As the mechanism of action of the white powder of the present invention and the method for producing the same, the surface of the substrate powder is activated by pretreatment of being immersed in an acidic inorganic titanate-containing aqueous solution. It seems. As the surface is activated in this way, the silver fine particles that have been reduced and deposited are easily formed (easily attached) on the surface of the substrate powder.
In addition, since the surface of the base powder is activated, the formed silver particles coat the base powder surface more densely and smoothly. As a result, the brightness L * of the silver-coated powder is pretreated. It is possible that it will be higher than the case where it is not applied, although it does not go out of speculation.
The white powder of the present invention obtained as described above is a functional powder that retains the characteristics (for example, magnetic characteristics) of the substrate particles at a high level when a magnetic material is used as the substrate, for example, a one-component system. Magnetic toner that can perform an excellent combined function even in the developing method, and excellent magnetic properties can be exhibited.
In addition, the brightness (whiteness) is high and the particle size is extremely fine. Therefore, these inks should be mixed with color ink, plastic, color filler for paper, color toner, color ink for ink jet printer, etc. without impairing their original colors. It is possible to provide a white powder that can
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
As described above, in the white powder of the present invention and the method for producing the same, after the base powder is immersed in an aqueous solution containing an acidic inorganic titanate and subjected to substitution cleaning, the metal silver film coating operation is performed by electroless plating. By doing so, it is possible to obtain a white powder with high brightness (whiteness), which does not require an underlayer such as a metal oxide film such as a silica film, and is directly coated with a metal silver film on the base powder. It is.
Moreover, it is preferable that the average particle diameter of the white powder obtained by the manufacturing method of this invention is 0.05-500 micrometers, More preferably, it is 0.10-50 micrometers.
[0011]
Below, the preferable aspect of this invention is demonstrated.
The acidic inorganic titanate-containing aqueous solution used in the present invention can be easily prepared from a titanium (IV) sulfate solution, a titanium (IV) chloride solution, a titanium (III) chloride solution, or the like. Moreover, pH of the acidic inorganic titanate containing aqueous solution prepared from these solutions shows the acidity of 5 or less.
In the present invention, it is preferable to adjust the acidic inorganic titanate-containing aqueous solution by diluting the stock solution containing the acidic inorganic titanate 3 to 10 times.
[0012]
In the aqueous solution treatment that is a pretreatment of the base powder in the white powder of the present invention and the production method thereof, the immersion time of the base powder in the acidic inorganic titanate-containing aqueous solution is preferably in the range of 20 to 60 minutes, more Preferably it is the range for 20 to 30 minutes. If the immersion time is less than 20 minutes, the pretreatment with the acidic inorganic titanate-containing aqueous solution is not sufficiently performed, and a white system having the desired brightness (whiteness) even if the subsequent metal silver film coating operation is performed. In some cases, magnetic powder cannot be obtained. Moreover, when immersion time exceeds 60 minutes, pre-processing time will become remarkably longer than metal silver film coating | cover operation, and will remove | deviate from the meaning with easy pre-processing operation.
[0013]
Next, oxidation in an acidic inorganic titanate-containing aqueous solution of dipping the substrate powder titanium molar concentration, the substrate powder oxidized titanium molar concentration per gram 7.70 × 10 -5 ~3.50 × 10 - A range of 4 mol / liter is preferred.
When the titanium oxide molar concentration is lower than 7.70 × 10 −5 , the pretreatment is insufficient because the acidic inorganic titanate is small relative to the base powder, and the subsequent metal silver film coating operation In some cases, it is not possible to obtain a white powder having the desired brightness (whiteness). On the other hand, when the titanium oxide molar concentration with respect to 1 gram of the base powder exceeds 3.50 × 10 −4 mol / liter, an anion (for example, sulfate ion or chlorine) that forms a salt with titanium in the immersion liquid. The concentration of ions, etc.) becomes excessive, and the reaction by the acidic inorganic titanate is inhibited. On the contrary, the pretreatment layer is not sufficiently performed, and a white powder having the desired brightness (whiteness) can be obtained. There may not be.
[0014]
In addition, the temperature of the pretreatment with the acidic inorganic titanate-containing aqueous solution is preferably in the range of 20 to 30 ° C, and when it is lower than 20 ° C, the reaction with the acidic inorganic titanate does not proceed and the role of the pretreatment is achieved. On the contrary, when the temperature of the pretreatment exceeds 30 ° C., the reaction with the acidic inorganic titanate proceeds very quickly, and free titanium oxide particles are generated, which serves as a pretreatment. It may not be possible.
[0015]
In the production of the white powder of the present invention, in order to form the coating film metallic silver on the surface of the base particles pretreated with the acidic inorganic titanate-containing aqueous solution, any solution reaction can be used to deposit metallic silver. Although it does not specifically limit, What is performed by adding a reducing liquid to the silver liquid which disperse | distributed base particle is preferable. Although it does not specifically limit as this silver liquid, It is preferable that the silver ion in silver nitrate aqueous solution is complex-ionized with ammonia. The reducing solution is not particularly limited, but is preferably a solution obtained by dissolving glucose, tartaric acid and alcohol in water.
[0016]
Next, an example in which a metallic silver coating film is formed on the surface of the pretreated substrate particles in the white powder production method of the present invention will be described. In 1000 ml of water, 20 to 150 g of glucose and 1.5 to 14 g of tartaric acid are sequentially dissolved in a water bath at 80 to 100 ° C. and kept for 10 minutes or more. After cooling to room temperature, 50-2000 ml of alcohol is added. In this case, if the amount of alcohol added is less than 50 ml, the reduction reaction may not occur, and if it is more than 2000 ml, the concentration of glucose and tartrate ions required to reduce silver may be lowered and the reaction may not occur. . Let the obtained mixture be a reducing liquid. The alcohol can be methanol, ethanol or a mixture of both.
[0017]
Next, an aqueous ammonia solution (28%) is added to 100 g of silver nitrate until the silver nitrate is completely dissolved, and then 1 to 4 liters of water is added. If the amount of water added is low, the pH may drop and silver may precipitate as a complex again. If it is too high, the concentration of silver will decrease, so a coating with sufficient thickness cannot be obtained when mixed with the reducing solution. Sometimes. At this time, silver nitrate may be first dissolved in water, and then ammonia water may be added. Next, when 1 to 4 liters of a 0.5 to 2N aqueous sodium hydroxide solution is added, a black or black-brown complex precipitates. An aqueous ammonia solution (28%) is added with sufficient stirring until the black precipitate disappears to form a silver solution.
[0018]
Substrate particles described later are added to the silver solution obtained as described above. The amount of addition depends on the thickness of the metallic silver coating film to be formed and the color and particle size of the base particles, so 5 to 500 g is appropriate for 100 g of silver nitrate. If the amount of the base particles is too small, the metal silver coating film becomes too thick and the characteristics of the base particles are reduced. On the other hand, if the amount is too large, the metallic silver coating film becomes too thin, resulting in a dark gray powder.
[0019]
The substrate particles are sufficiently agitated after the addition, but it is preferable to perform the dispersion as fast as possible or to sufficiently disperse using an ultrasonic cleaner or the like. After sufficiently dispersing, while adding stirring and applying ultrasonic waves, a reducing solution having the same volume as the silver solution is added and stirred for 1 to 30 minutes, preferably 3 to 15 minutes until the reduction reaction is completed. A metallic silver coating film is formed on the surface. If the reaction time at this time is shorter than 1 minute, a sufficient coating film may not be obtained, and the deposition of metallic silver is completed after about 30 minutes. The solid content is filtered, and washing is repeated to sufficiently remove ammonia ions. At this time, if ammonia ions are not sufficiently removed, ammonia and silver may react to cause deterioration of the color of the metallic silver coating film. Next, this filter cake is vacuum-dried to obtain a white powder.
[0020]
The base particles used in the white powder of the present invention are not particularly limited, and may be an inorganic substance including a metal or an organic substance, and may be a magnetic substance, a dielectric substance, a conductor, an insulator, or the like. When the substrate is a metal, any metal such as iron, nickel, chromium, titanium, and aluminum may be used. However, in the case of utilizing the magnetism, a material having magnetism such as iron is preferable. These metals may be alloys, and when they have the above magnetism, it is preferable to use a ferromagnetic alloy. In addition, when the powder substrate is a metal compound, typical examples thereof include the above-mentioned metal oxides, such as iron, nickel, chromium, titanium, aluminum, silicon, etc., calcium Further, oxides such as magnesium and barium, or composite oxides thereof may be used. Furthermore, examples of metal compounds other than metal oxides include metal nitrides, metal carbides, metal sulfides, metal fluorides, metal carbonates, and metal phosphates.
[0021]
Further, as the base particles, other than metals, they are semi-metallic and non-metallic compounds, particularly oxides, carbides and nitrides, and silica, glass beads and the like can be used. Other inorganic substances include inorganic hollow particles such as shirasu balloon (hollow silicic acid particles), fine carbon hollow spheres (clecas spheres), fused alumina bubbles, aerosil, white carbon, silica fine hollow spheres, calcium carbonate fine hollow spheres, Mica such as calcium carbonate, pearlite, talc, bentonite, synthetic mica and muscovite, kaolin and the like can be used.
[0022]
As the organic substance, resin particles are preferable. Specific examples of the resin particles include cellulose powder, cellulose acetate powder, polyamide, epoxy resin, polyester, melamine resin, polyurethane, vinyl acetate resin, silicon resin, acrylic ester, methacrylic ester, styrene, ethylene, propylene, and these. And spherical or crushed particles obtained by polymerization or copolymerization. Particularly preferred resin particles are spherical acrylic resin particles obtained by polymerization of acrylic acid or methacrylic acid ester. However, when the resin particles are used as a substrate, the heating temperature in drying must be equal to or lower than the melting point of the resin.
[0023]
As the shape of the substrate, isotropic bodies such as spheres, subspheres, regular polyhedrons, rectangular parallelepipeds, spheroids, rhombohedrons, plate-like bodies, needle-like bodies (columns, prisms), and pulverized materials A completely amorphous powder can also be used. These substrates are not particularly limited in terms of particle size, but those in the range of 0.01 μm to several mm are preferable.
[0024]
In addition, the specific gravity of the base particles is in the range of 0.1 to 10.5, but when the obtained powder is used dispersed in a liquid or the like, the surface of fluidity and floatability is used. To 0.1 to 5.5, more preferably 0.1 to 2.8, and still more preferably 0.5 to 1.8. When the obtained powder is used dispersed in a liquid or the like, if the specific gravity of the substrate is less than 0.1, the buoyancy in the liquid is too large, and the film needs to be multilayered or very thick, which is uneconomical. On the other hand, if it exceeds 10.5, the film for floating becomes thick, which is similarly uneconomical.
[0025]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the scope of the present invention is not limited to these examples.
[Example 1]
(Pretreatment of raw material base powder)
(1) Pretreatment of substrate powder 18 g of magnetite powder (average particle size 0.7 μm, specific surface area 2.06 m 2 / g) was used as the substrate powder. This substrate powder was put into a 1000 ml beaker containing 360 g of ion-exchanged water and stirred at a stirring speed of 700 rpm.
Added here, titanium (IV) sulfate solution (manufactured by Kanto Chemical Co., Inc., Ti (SO 4) 2 24wt %) 0.65 grams of titanium sulfate (IV) solution were mixed and diluted with deionized water 3.78 g instantly did. The titanium oxide molar concentration in this pretreatment liquid was 1.00 × 10 −4 mol / liter of titanium oxide molar concentration with respect to 1 gram of the base powder.
After the addition, stirring was continued for 30 minutes at the same stirring speed, and after a predetermined time, replacement washing was performed three times with 500 g of an ion exchange aqueous solution. In this way, a base powder slurry pretreated with an aqueous titanium (IV) sulfate solution was obtained.
[0026]
(2) Preparation of silver solution After dissolving 30.0 g of silver nitrate (reagent manufactured by Kanto Chemical Co., Ltd.) in 720 g of ion-exchanged water, 21 g of ammonia water (reagent grade manufactured by Kanto Chemical Co., Ltd.), 375 g of alkaline water (water Sodium oxide (Kanto Chemical Co., Ltd., reagent grade 15.0 g) dissolved in ion-exchanged water 360 g) and ammonia water 21 g (Kanto Chemical Co., Ltd. reagent grade 1) were added in this order, and the silver ions were completely silver. It was in the form of ammonia complex ions.
[0027]
(3) Preparation of reducing solution Glucose was used as a reducing agent used for electroless plating of silver. The reducing solution was adjusted as follows.
First, 45.0 grams of glucose (first grade reagent manufactured by Kanto Chemical Co., Ltd.) and 5.0 grams of tartaric acid (first grade reagent manufactured by Kanto Chemical Co., Ltd.) were dissolved in 500 grams of ion exchange water, heated and boiled for 5 minutes. After boiling for 5 minutes, the mixture was sufficiently cooled, and then 80 g of ion-exchanged water and alcohol (reagent grade 1 manufactured by Kanto Chemical Co., Inc.) corresponding to the evaporation loss were added. After adding the above chemicals, the mixture was aged at room temperature overnight.
[0028]
(4) Coating of metallic silver film The base powder slurry pretreated in (1) above was charged into the silver solution obtained in (2) above and stirred at 800 rpm. After 5 minutes from the start of stirring, 360 grams of the reducing solution prepared in (3) above was charged into the base powder suspension silver solution in about 20 seconds. After adding the reducing solution, stirring was continued for another 10 to 30 minutes to continue the silver precipitation reaction.
After a predetermined time has elapsed, the reaction suspension is allowed to stand and settle to separate the powder and the reaction solution, and then 800 g of ion-exchanged water is added to the precipitated powder, and the substitution washing is repeated five times, and the substitution is repeated a predetermined number of times. After completion of the washing, the metal silver film-coated powder slurry was dried in a constant temperature dryer heated to 120 ° C. to obtain a metal silver film-coated powder A having an average particle size of 9.5 μm. The obtained metal silver film-coated powder A was measured for spectral characteristics with a spectrophotometer (Ubest 550 manufactured by JASCO Corporation), color calculation was performed, and it was displayed in CIE (1976) L * a * b * color system. . The CIE (1976) L * a * b * color system of the obtained metal silver film-coated powder A is as follows: L * = 68.2, a * = − 0.7, b * = 4.4. It was a white magnetic powder with high brightness (whiteness). The test results are shown in Table 1.
[0029]
[Example 2]
The titanium sulfate (IV) concentration in the pretreatment liquid of Example 1 was changed from 1.30 g of titanium sulfate (IV) solution (Kanto Chemical Co., Ltd., Ti (SO 4 ) 2 24 wt%) to 7.56 g of ion-exchanged water. The solution was changed to a titanium (IV) sulfate aqueous solution mixed and diluted with 1. The titanium sulfate (IV) molar concentration in this pretreatment liquid was 2.00 × 10 −4 mol / liter of titanium oxide molar concentration per gram of the base powder.
Except for changing the titanium (IV) sulfate concentration in the pretreatment liquid, the same operation as in Example 1 was performed to obtain a metal silver film-coated powder B having an average particle size of 9.6 μm. The CIE (1976) L * a * b * color system of the obtained metal silver film-coated powder B is as follows: L * = 68.1, a * = − 0.4, b * = 5.3. It was a white magnetic powder with high brightness (whiteness). The test results are shown in Table 1.
[0030]
[Comparative Example 1]
Pretreatment was performed by the same operation as in Example 1 except that the titanium (IV) sulfate solution was not added to the pretreatment liquid of Example 1. The titanium oxide molar concentration in the pretreatment liquid was 0.00 mol / liter of titanium oxide molar concentration with respect to 1 gram of the base powder. Except that the concentration of titanium (IV) sulfate in the pretreatment liquid was changed, the same operation as in Example 1 was performed to obtain a metal silver film-coated powder C having an average particle size of 4.0 μm. CIE (1976) L * a * b * color system of the obtained metal silver film-coated powder C was L * = 56.2, a * = − 0.5, b * = − 1.7. It was a dark gray magnetic powder with a low whiteness. The test results are shown in Table 1.
[0031]
[Comparative Example 2]
(Pretreatment of raw material base powder)
(1) Pretreatment of substrate powder 18 g of magnetite powder (average particle size 0.7 μm, specific surface area 2.06 m 2 / g) was used as the substrate powder. This substrate powder was suspended in an aqueous hydrochloric acid solution in which 0.75 grams of stannous chloride (special grade reagent manufactured by Kanto Chemical Co., Ltd.) and 10 ml of concentrated hydrochloric acid (special grade chemical reagent manufactured by Kanto Chemical Co., Ltd.) were added to 100 grams of ion-exchanged water. Made cloudy. The stannous chloride concentration in this pretreatment liquid was a stannous chloride molar concentration of 1.80 × 10 −3 mol / liter with respect to 1 gram of the base powder. This suspension was stirred for 30 minutes at a stirring speed of 700 rpm for pretreatment. After a lapse of a predetermined time, the suspended substrate powder was subjected to five substitution washings with 300 g of ion exchange water. In this way, a base powder slurry pretreated with a stannous chloride acidic aqueous solution was obtained.
Except for the pretreatment, the same operation as in Example 1 was performed to obtain a metal silver film-coated powder D having an average particle size of 4.6 μm.
CIE (1976) L * a * b * color system of the obtained metal silver film-coated powder D was L * = 55.8, a * = − 0.5, and b * = − 1.2. It was a dark gray magnetic powder with a low whiteness. The test results are shown in Table 1.
[0032]
Example 3
Except that the pretreatment time with the titanium (IV) sulfate aqueous solution of Example 1 was shortened to 20 minutes, both the pretreatment and the metal silver film coating operation were carried out in the same manner as in Example 1, and metal silver having an average particle size of 8.8 μm Film-coated powder E was obtained.
The CIE (1976) L * a * b * color system of the obtained metal silver film-coated powder E is as follows: L * = 67.3, a * = − 0.7, b * = 4.0. It was a white magnetic powder with high brightness (whiteness). The test results are shown in Table 1.
[0033]
Example 4
As the base powder, 18 g of magnetite powder (average particle size 0.7 μm, specific surface area 2.06 m 2 / g) was used. This substrate powder was put into a 1000 ml beaker to which 360 g of ion-exchanged water having 0.034 g of citric acid dissolved was added, and stirred at a stirring speed of 700 rpm.
A titanium (IV) chloride aqueous solution obtained by mixing and diluting 0.195 g of a titanium (IV) chloride solution (a reagent manufactured by Wako Pure Chemical Industries, Ti: 16 wt%) with 1.85 g of ion-exchanged water was instantaneously added thereto. The titanium oxide molar concentration in this pretreatment liquid was 1.00 × 10 −4 mol / liter of titanium oxide molar concentration with respect to 1 g of the base powder.
After the addition, stirring was continued for 30 minutes at the same stirring speed, and after a predetermined time, replacement washing was performed 3 times with 500 g of ion-exchanged water. In this way, a substrate powder slurry pretreated with an aqueous solution of titanium (IV) chloride was obtained.
Then, the same operation as the coating of the metal silver film of Example 1 was performed to obtain a metal silver film-coated powder F having an average particle size of 8.3 μm.
CIE (1976) L * a * b * color system of the obtained metal silver film-coated powder F is L * = 65.0, a * = − 0.90, and b * = 3.51. It was a white magnetic powder with high brightness (whiteness). The test results are shown in Table 1.
[0034]
[Table 1]
Figure 2004043950
[0035]
As is apparent from Table 1, the white powders of the respective examples according to the present invention obtained satisfactory results, but the white powders of the respective comparative examples were unsatisfactory results.
[0036]
【The invention's effect】
The white powder of the present invention and the method for producing the same are directly coated on the base powder by a method of pretreating the base powder with a simple acidic inorganic titanate-containing aqueous solution in coating the metallic silver film on the base powder. The metal silver film can be smoothly coated on the surface, and a white powder having high brightness (whiteness) and a method for producing the same can be provided.
The white powder of the present invention obtained as described above is a functional powder, for example, one component, which retains the characteristics (for example, magnetic characteristics) of the base powder at a high level when a magnetic material is used as the base. Even in the system development system, it is possible to exhibit a magnetic toner capable of performing an excellent combined function and excellent magnetic properties.
In addition, the brightness (whiteness) is high and the particle size is extremely fine. Therefore, it should be mixed with color inks, plastics, color fillers for paper, color toners, color inks for inkjet printers, etc. without impairing these original colors. It can provide a white powder that can be used, and contributes to the industry.

Claims (9)

基体粉体上に無電解メッキ法により金属銀膜を形成する白色粉体の製造方法において、該金属銀膜の形成前に、該基体粉体を酸性無機チタン酸塩含有水溶液で前処理することを特徴とする白色粉体の製造方法。In a method for producing a white powder in which a metallic silver film is formed on a substrate powder by electroless plating, the substrate powder is pretreated with an aqueous solution containing an acidic inorganic titanate before the formation of the metallic silver film. A method for producing a white powder characterized by the above. 前記基体粉体の前処理に用いる酸性無機チタン酸塩含有水溶液中の酸化チタンモル濃度が、基体粉体1gに対して7.70×10−5〜3.50×10−4モル/リットルとすることを特徴とする請求項1に記載の白色粉体の製造方法。The titanium oxide molar concentration in the acidic inorganic titanate-containing aqueous solution used for the pretreatment of the substrate powder is 7.70 × 10 −5 to 3.50 × 10 −4 mol / liter with respect to 1 g of the substrate powder. The method for producing a white powder according to claim 1. 前記基体粉体を前処理する前の酸性無機チタン酸塩含有水溶液が、酸性無機チタン酸塩含有溶液の原液を重量比で3〜10倍に希釈されたものであることを特徴とする請求項1または2に記載の白色粉体の製造方法。The acidic inorganic titanate-containing aqueous solution before pretreatment of the substrate powder is obtained by diluting the stock solution of the acidic inorganic titanate-containing solution 3 to 10 times by weight. 3. A method for producing a white powder according to 1 or 2. 前記基体粉体の酸性無機チタン酸塩含有水溶液による前処理を、該基体粉体を酸性無機チタン酸塩含有水溶液に浸漬することによって行うことを特徴とする請求項1〜3のいずれかに記載の白色粉体の製造方法。The pretreatment of the base powder with an acidic inorganic titanate-containing aqueous solution is performed by immersing the base powder in an acidic inorganic titanate-containing aqueous solution. Method for producing white powder. 前記基体粉体の酸性無機チタン酸塩含有水溶液による前処理を、攪拌されている基体粉体懸濁液中に酸性無機チタン酸塩含有水溶液を投入し、投入後攪拌を続けることによって行うことを特徴とする請求項4に記載の白色粉体の製造方法。The pretreatment of the base powder with the acidic inorganic titanate-containing aqueous solution is performed by adding the acidic inorganic titanate-containing aqueous solution into the stirred base powder suspension and continuing stirring after the charging. The method for producing a white powder according to claim 4, wherein 前記酸性無機チタン酸塩含有水溶液投入後の攪拌の継続を20〜60分間行うことを特徴とする請求項5記載の白色粉体の製造方法。6. The method for producing white powder according to claim 5, wherein the stirring is continued for 20 to 60 minutes after the acidic inorganic titanate-containing aqueous solution is added. 前記酸性無機チタン酸塩含有水溶液による前処理の温度を、20〜30℃とすることを特徴とする請求項1〜6のいずれかに記載の白色粉体の製造方法。The method for producing a white powder according to any one of claims 1 to 6, wherein a temperature of the pretreatment with the acidic inorganic titanate-containing aqueous solution is set to 20 to 30 ° C. 請求項1〜7のいずれかに記載の製造方法によって製造された白色粉体。The white powder manufactured by the manufacturing method in any one of Claims 1-7. 平均粒径が0.05〜500μmであることを特徴とする請求項8に記載の白色粉体。The white powder according to claim 8, wherein the average particle size is 0.05 to 500 µm.
JP2002348344A 2002-05-24 2002-11-29 White powder and method for producing the same Expired - Lifetime JP4049256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348344A JP4049256B2 (en) 2002-05-24 2002-11-29 White powder and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002150668 2002-05-24
JP2002348344A JP4049256B2 (en) 2002-05-24 2002-11-29 White powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004043950A true JP2004043950A (en) 2004-02-12
JP4049256B2 JP4049256B2 (en) 2008-02-20

Family

ID=31719726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348344A Expired - Lifetime JP4049256B2 (en) 2002-05-24 2002-11-29 White powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4049256B2 (en)

Also Published As

Publication number Publication date
JP4049256B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
Thiemig et al. Characterization of electrodeposited Ni–TiO2 nanocomposite coatings
CN1153638C (en) Powder coated with multilayer film and process for preparing the same
JP3565421B2 (en) White powder and method for producing the same
JP2022116130A (en) Method for manufacturing silver-coated copper nanowire having core-shell structure by using chemical reduction method
JP4113045B2 (en) White powder and method for producing the same
JP3737617B2 (en) Method for producing film-coated powder
EP2246395A1 (en) Powder coated with copper (i) oxide, and process for production thereof
JP4049256B2 (en) White powder and method for producing the same
JP4052509B2 (en) White powder manufacturing method and white powder
JP3782256B2 (en) White powder and method for producing the same
TW201816182A (en) Metal nanoparticle aqueous dispersion
JP2009255042A (en) Method for preparing particle having covering layer
JP4004975B2 (en) Method for producing copper-coated powder
JP5092637B2 (en) Method for producing core-shell type silver-tin composite particles, core-shell type silver-tin composite particles, black material, black light shielding film, and black particle dispersion
JP3725712B2 (en) Method for producing film-coated powder
JP3782284B2 (en) Film coating device for film coating powder
WO2019135306A1 (en) Copper nano ink production method and copper nano ink
JP3627908B2 (en) Blue powder and method for producing the same
JP3650289B2 (en) Magenta color powder and method for producing the same
JP3670546B2 (en) Blue color material composition and method for producing the same
CN112191360B (en) Diamond powder particle size grading method
JP2019142726A (en) Method of producing copper fine particle, method of producing cuprous oxide fine particle, and method of producing copper oxide fine particle
JP3650290B2 (en) Cyan color powder and method for producing the same
JPH1112488A (en) Yellow pigment and production thereof
WO2020217982A1 (en) Method for producing cobalt ferrite particles and cobalt ferrite particles produced by same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

R150 Certificate of patent or registration of utility model

Ref document number: 4049256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term