JP2004043572A - Platinum nanoparticle-polymethacrylate composite and manufacturing method therefor - Google Patents

Platinum nanoparticle-polymethacrylate composite and manufacturing method therefor Download PDF

Info

Publication number
JP2004043572A
JP2004043572A JP2002201011A JP2002201011A JP2004043572A JP 2004043572 A JP2004043572 A JP 2004043572A JP 2002201011 A JP2002201011 A JP 2002201011A JP 2002201011 A JP2002201011 A JP 2002201011A JP 2004043572 A JP2004043572 A JP 2004043572A
Authority
JP
Japan
Prior art keywords
platinum
composite
polymethacrylate
hydrogen atmosphere
platinum nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002201011A
Other languages
Japanese (ja)
Other versions
JP3735715B2 (en
Inventor
Yukimichi Nakao
中尾 幸道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002201011A priority Critical patent/JP3735715B2/en
Publication of JP2004043572A publication Critical patent/JP2004043572A/en
Application granted granted Critical
Publication of JP3735715B2 publication Critical patent/JP3735715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite in which platinum nanoparticles having a desired shape and particle diameter are stably dispersed in a polymer, and a simple manufacturing method therefor. <P>SOLUTION: The composite is a platinum nanoparticle-polymethacrylate composite in which platinum nanoparticles having various shapes or diameters are dispersed in a solid polymethacrylate. The platinum nanoparticles are preferably deformed ones in the form of a chestnut bur or having irregularities. Further, the composite can be obtained by irradiating a polymethacrylate containing a platinum complex with light in a hydrogen atmosphere, and then heating the irradiated polymethacrylate (ester) at a temperature of ≥120°C in a hydrogen atmosphere to reduce it. By adjusting at least one of the light irradiation time and the heating time for reduction, the shape and particle diameter of the platinum nanoparticles to be obtained can be varied. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固体ポリマー中に所望の形状及び粒径を有する貴金属ナノ粒子を分散させた複合材料及びその製造方法に関するものである。
【0002】
【従来の技術】
一般に、貴金属を超微粒子化させて得られる貴金属ナノ粒子は、バルク状の貴金属粒子にはない新たな光学的作用や触媒活性などを発現すること、さらには、その粒子のサイズや形状によっても全く異なった特性を示すことが知られている。そこで、種々の形状及び粒径の貴金属ナノ粒子をポリマー中に分散させた複合材料は、光学材料、触媒などに応用できる有用な材料である。
【0003】
従来、貴金属ナノ粒子をポリマー中に分散させた複合材料は、ポリマー溶液中に原料の貴金属錯体を導入した後、熱分解することによって得られているが、白金の場合、このような熱分解法では、2〜3nmの球形の白金ナノ粒子のみが生成し、異形粒子を得たりその他の粒径のものを得ることができないという問題があった。
【0004】
【発明が解決しようとする課題】
本発明は、従来の技術における上記した実状に鑑みてなされたものである。すなわち、本発明の目的は、所望の形状や粒径を有する白金ナノ粒子がポリマー中に安定して分散した複合体及びその簡易な製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明の白金ナノ粒子−ポリメタクリル酸エステル複合体は、固体ポリメタクリル酸エステル中に多様な形状または粒径を有する白金ナノ粒子が分散していることを特徴とするものである。その白金ナノ粒子は、栗のイガ状であるかまたは凹凸を有する異形白金ナノ粒子であることが好ましい。
【0006】
また、本発明の白金ナノ粒子−ポリメタクリル酸エステル複合体の製造方法は、白金錯体を含有するポリメタクリル酸エステルに、水素雰囲気中で光を照射した後、水素雰囲気中、120℃以上の温度で加熱還元させることを特徴とするものである。その製造方法は、光の照射時間及び加熱還元時間の少なくとも一方を調節することにより、得られる白金ナノ粒子の形状及び粒径を変換させることが好ましい。
【0007】
【発明の実施の形態】
本発明の複合体では、マトリックスポリマーとして、白金錯体の熱分解が殆ど完全に抑制されるポリメタクリル酸エステル類、特にポリメタクリル酸メチル(PMMA)を用い、異形の白金粒子や比較的大きなサイズなどの白金ナノ粒子を調製するために、水素存在下の光照射と加熱下の水素還元とを併用するものである。
【0008】
本発明の複合体の製法において、出発原料に用いる白金錯体を含有するPMMAとしては、次のような既存の方法で得られるものなどが挙げられる。
(1)有機物質に可溶の白金錯体をメタクリル酸メチルモノマー中に溶解させた後、重合し固化させたもの(特開平1−113464号公報参照)
(2)有機物質に可溶の白金錯体とPMMAを有機溶媒中に溶解した後、溶媒を除去し乾固させたもの(ジャパニーズ ジャーナル オブ アプライド フィジックス,33巻,pp.L331−L333(1994年)参照)
(3)昇華性の白金錯体を用い、高温で発生させた白金錯体の蒸気をPMMAに接触させてPMMA中に溶解させたもの(特許第3062748号参照)
【0009】
本発明における複合体の製法は、上記した方法で調製された白金錯体含有PMMAに、水素雰囲気中で光を照射した後、水素雰囲気中で加熱還元することにより、PMMA中に白金ナノ粒子が生成する。
その際、水素雰囲気中における光照射時間及び加熱還元時間の少なくとも一方、すなわち、光照射を行う時間、加熱して還元させる時間或いはその両方を適宜調節することによって、所望の形状及び粒径を有する白金ナノ粒子に変換させることができる。その粒子の形状としては、粒子の中心部から数多くの先の尖った針状物が突出している形態、つまり栗のイガ状の形態を有するもの、球状体、表面に凹凸を有する球状体などが得られる。また、その粒子の粒径としては、1〜1000nmの範囲、好ましくは3〜200nmのものを得ることができる。
【0010】
光の照射時間が短い場合は、比較的大きな、しかも栗のイガ状の白金粒子が生成し、これを、さらに水素雰囲気中で加熱を続けることにより、球状の比較的大きな白金粒子に変換できる。一方、光の照射時間を長くすると、凹凸のあるより小さな白金粒子となり、これも、さらに水素雰囲気中の加熱を続けることにより、球状の白金粒子に変換できる。また、光照射時間をより長時間にすると、きわめて微細な球形白金ナノ粒子のみが生成する。また、得られる複合体は、形状によって色相が変化する。
【0011】
白金錯体としては、PMMAに可溶なものであれば使用可能であって、Pt(II)またはPt(IV)と有機配位子からなる錯体が用いられるが、なかでもPt(II)のアセチルアセトナート錯体を用いることが好ましい。
光照射の光源としては、水銀ランプ、日光、白熱灯、蛍光灯などが用いられるが、可視光線のみでよいことから、蛍光灯で十分である。
水素中の加熱温度は、使用するポリマーのガラス転移点以上であれば良く、PMMAでは、そのガラス転移温度である105℃以上であり、好ましくは120〜200℃の範囲である。また、水素中の加熱時間は、温度によって異なるが、通常1〜50時間の範囲であって、可視スペクトルにより色の変化を追跡し、一定になった時点まで加熱を続けることが好ましい。
【0012】
【実施例】
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
実施例1
ビス(アセチルアセトナート)白金(II)(Pt−AA)0.2mmolおよび2,2’−アゾビス(イソブチロニトリル)5mgをメタクリル酸メチル10gに溶解させ、これを減圧下で脱気した後、内部を窒素で置換し70℃で約20分間加熱した。
得られた粘稠な溶液を、厚さ0.5mmのテフロン(登録商標)製スペーサーを40mm×60mmのガラス板2枚で挟んだ鋳型中に移し、さらに45℃で20時間保温して重合を完了させた。
得られた厚さ0.5mmのPt−AAを含むポリメタクリル酸メチル(Pt−AA/PMMA)板を10mm×18mmに分割し、それぞれの内部を水素で置換したパイレックス(登録商標)ガラス製の試験管中に保存した。
【0013】
その分割したPt−AA/PMMA板を、水素雰囲気中で、表面から45mmの距離においた2本の10W−蛍光灯により30分間照射した後、水素雰囲気中、150℃で3時間加熱することにより複合体板を得た。この間に、Pt−AA/PMMA板は濃い暗青色に変化していた。
これを電子顕微鏡(TEM)で観察したところ、PMMA中に40〜100nmの栗のイガ状の白金粒子が一様に分散した複合体であった。この複合体のTEM写真を図1に示す。なお、図中に示す黒線の長さは、40nmである。
【0014】
実施例2
実施例1で得られた濃い暗青色のPMMA板を、さらに水素雰囲気中、180℃で32時間加熱したところ、褐色の板が得られた。TEMによると、これはPMMA中に平均粒径が35.4nmのほぼ球状の白金粒子が分散した複合体であった。この複合体のTEM写真を図2に示す。
【0015】
実施例3
実施例1と同一の条件で、Pt−AA/PMMA板に蛍光灯を2時間照射した後、水素雰囲気中、150℃で1.5時間加熱した。この間に、Pt−AA/PMMAは濃い褐色に変化した。TEMによると、これはPMMA中に15〜20nmの凹凸のある白金粒子が一様に分散した複合体であった。この複合体のTEM写真を図3に示す。
【0016】
実施例4
実施例3で得られた濃い褐色のPMMA板を、さらに水素雰囲気中、180℃で2時間加熱して、褐色の板を得た。TEMによると、これはPMMA中に平均粒径が15.2nmのほぼ球状の白金粒子が分散した複合体であった。この複合体のTEM写真を図4に示す。
【0017】
実施例5
実施例1と同一の条件で、Pt−AA/PMMA板に蛍光灯を20時間照射した後、水素雰囲気のまま150℃で1時間加熱した。この間に、Pt−AA/PMMAは褐色に変化した。TEMによると、これはPMMA中に平均粒径が3.3nmの球状の白金粒子が一様に分散した複合体であった。この白金粒子は、水素雰囲気中、180℃で加熱しても変化しなかった。この複合体のTEM写真を図5に示す。
【0018】
【発明の効果】
本発明によれば、透明なポリマー中に所望の形状や粒径を有する白金ナノ粒子が分散した複合体を容易に提供することができるから、得られる複合体は、光学材料や触媒などとして有用である。
【図面の簡単な説明】
【図1】本発明における複合体の構造の一例を示す電子顕微鏡写真である。
【図2】本発明における複合体の構造の他の一例を示す電子顕微鏡写真である。
【図3】本発明における複合体の構造の他の一例を示す電子顕微鏡写真である。
【図4】本発明における複合体の構造の他の一例を示す電子顕微鏡写真である。
【図5】本発明における複合体の構造の他の一例を示す電子顕微鏡写真である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite material in which noble metal nanoparticles having a desired shape and particle size are dispersed in a solid polymer, and a method for producing the same.
[0002]
[Prior art]
In general, noble metal nanoparticles obtained by converting a noble metal into ultrafine particles exhibit new optical effects and catalytic activities that bulk noble metal particles do not have, and furthermore, depending on the size and shape of the particles. It is known to exhibit different properties. Therefore, a composite material in which noble metal nanoparticles having various shapes and particle sizes are dispersed in a polymer is a useful material that can be applied to an optical material, a catalyst, and the like.
[0003]
Conventionally, a composite material in which noble metal nanoparticles are dispersed in a polymer is obtained by introducing a noble metal complex as a raw material into a polymer solution and then thermally decomposing the material. In the case of platinum, such a pyrolysis method is used. However, there is a problem that only spherical platinum nanoparticles having a diameter of 2 to 3 nm are generated, and irregular shaped particles or particles having other particle sizes cannot be obtained.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation in the related art. That is, an object of the present invention is to provide a composite in which platinum nanoparticles having a desired shape and particle size are stably dispersed in a polymer, and a simple production method thereof.
[0005]
[Means for Solving the Problems]
The platinum nanoparticle-polymethacrylate composite of the present invention is characterized in that platinum nanoparticles having various shapes or particle diameters are dispersed in a solid polymethacrylate. The platinum nanoparticles are preferably chestnut burs or irregular platinum nanoparticles having irregularities.
[0006]
Further, the method for producing a platinum nanoparticle-polymethacrylate composite of the present invention comprises: irradiating a polymethacrylate containing a platinum complex with light in a hydrogen atmosphere; And reducing by heating. In the production method, it is preferable to change the shape and the particle size of the obtained platinum nanoparticles by adjusting at least one of the light irradiation time and the heat reduction time.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the composite of the present invention, as a matrix polymer, polymethacrylates, particularly, polymethyl methacrylate (PMMA), in which the thermal decomposition of the platinum complex is almost completely suppressed, are used. In this method, light irradiation in the presence of hydrogen and hydrogen reduction under heating are used in combination to prepare platinum nanoparticles of
[0008]
In the method for producing a composite of the present invention, examples of PMMA containing a platinum complex used as a starting material include those obtained by the following existing methods.
(1) A platinum complex soluble in an organic substance is dissolved in a methyl methacrylate monomer, and then polymerized and solidified (see JP-A-1-113464).
(2) After dissolving a platinum complex and PMMA soluble in an organic substance in an organic solvent, the solvent is removed and dried (Japanese Journal of Applied Physics, Vol. 33, pp. L331-333 (1994)) reference)
(3) Using a sublimable platinum complex, the vapor of the platinum complex generated at a high temperature is brought into contact with PMMA and dissolved in PMMA (see Japanese Patent No. 3062748).
[0009]
In the method for producing the composite of the present invention, the platinum complex-containing PMMA prepared by the above-described method is irradiated with light in a hydrogen atmosphere, and then heated and reduced in a hydrogen atmosphere to produce platinum nanoparticles in the PMMA. I do.
At that time, at least one of light irradiation time and heat reduction time in a hydrogen atmosphere, that is, by appropriately adjusting the time of light irradiation, the time of heating and reducing, or both, to have a desired shape and particle size It can be converted to platinum nanoparticles. As for the shape of the particles, a form in which many sharp needle-like objects protrude from the center of the particle, that is, a shape having a chestnut burd, a spherical body, a spherical body having irregularities on the surface, etc. can get. Further, the particle size can be in the range of 1 to 1000 nm, preferably 3 to 200 nm.
[0010]
When the light irradiation time is short, relatively large, chestnut bur-shaped platinum particles are generated, and by continuing heating in a hydrogen atmosphere, the platinum particles can be converted into relatively large spherical platinum particles. On the other hand, when the light irradiation time is prolonged, smaller platinum particles having irregularities are obtained, which can be converted into spherical platinum particles by continuing heating in a hydrogen atmosphere. Further, when the light irradiation time is longer, only extremely fine spherical platinum nanoparticles are generated. The hue of the obtained composite changes depending on the shape.
[0011]
The platinum complex can be used as long as it is soluble in PMMA, and a complex composed of Pt (II) or Pt (IV) and an organic ligand is used. Among them, acetyl of Pt (II) is particularly preferred. Preferably, an acetonate complex is used.
As a light source for light irradiation, a mercury lamp, sunlight, incandescent lamp, fluorescent lamp, or the like is used, but a fluorescent lamp is sufficient because only visible light is required.
The heating temperature in hydrogen only needs to be equal to or higher than the glass transition point of the polymer to be used. In the case of PMMA, the glass transition temperature is equal to or higher than 105 ° C., and preferably in the range of 120 to 200 ° C. The heating time in hydrogen varies depending on the temperature, but is usually in the range of 1 to 50 hours. It is preferable that the change in color is tracked by a visible spectrum and heating is continued until the temperature becomes constant.
[0012]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1
After dissolving 0.2 mmol of bis (acetylacetonato) platinum (II) (Pt-AA) and 5 mg of 2,2′-azobis (isobutyronitrile) in 10 g of methyl methacrylate and degassing under reduced pressure, The inside was replaced with nitrogen and heated at 70 ° C. for about 20 minutes.
The resulting viscous solution was transferred into a mold in which a 0.5 mm thick Teflon (registered trademark) spacer was sandwiched between two 40 mm × 60 mm glass plates, and further kept at 45 ° C. for 20 hours to carry out polymerization. Completed.
The resulting polymethyl methacrylate (Pt-AA / PMMA) plate containing Pt-AA having a thickness of 0.5 mm was divided into 10 mm x 18 mm, and each of the plates was made of Pyrex (registered trademark) glass in which the inside was replaced with hydrogen. Stored in test tubes.
[0013]
The divided Pt-AA / PMMA plate was irradiated with two 10W-fluorescent lamps at a distance of 45 mm from the surface for 30 minutes in a hydrogen atmosphere, and then heated at 150 ° C. for 3 hours in a hydrogen atmosphere. A composite plate was obtained. During this time, the Pt-AA / PMMA plate turned dark blue.
When this was observed with an electron microscope (TEM), it was a complex in which 40 to 100 nm chestnut bur-shaped platinum particles were uniformly dispersed in PMMA. FIG. 1 shows a TEM photograph of the composite. The length of the black line shown in the figure is 40 nm.
[0014]
Example 2
When the dark dark blue PMMA plate obtained in Example 1 was further heated at 180 ° C. for 32 hours in a hydrogen atmosphere, a brown plate was obtained. According to TEM, this was a composite in which substantially spherical platinum particles having an average particle diameter of 35.4 nm were dispersed in PMMA. FIG. 2 shows a TEM photograph of this composite.
[0015]
Example 3
After irradiating the Pt-AA / PMMA plate with a fluorescent lamp for 2 hours under the same conditions as in Example 1, the plate was heated at 150 ° C. for 1.5 hours in a hydrogen atmosphere. During this time, Pt-AA / PMMA turned dark brown. According to TEM, this was a composite in which platinum particles having irregularities of 15 to 20 nm were uniformly dispersed in PMMA. FIG. 3 shows a TEM photograph of the composite.
[0016]
Example 4
The dark brown PMMA plate obtained in Example 3 was further heated in a hydrogen atmosphere at 180 ° C. for 2 hours to obtain a brown plate. According to TEM, this was a composite in which substantially spherical platinum particles having an average particle size of 15.2 nm were dispersed in PMMA. FIG. 4 shows a TEM photograph of the composite.
[0017]
Example 5
After irradiating the Pt-AA / PMMA plate with a fluorescent lamp for 20 hours under the same conditions as in Example 1, the plate was heated at 150 ° C. for 1 hour in a hydrogen atmosphere. During this time, Pt-AA / PMMA turned brown. According to TEM, this was a composite in which spherical platinum particles having an average particle diameter of 3.3 nm were uniformly dispersed in PMMA. The platinum particles did not change even when heated at 180 ° C. in a hydrogen atmosphere. FIG. 5 shows a TEM photograph of this composite.
[0018]
【The invention's effect】
According to the present invention, it is possible to easily provide a composite in which platinum nanoparticles having a desired shape and particle size are dispersed in a transparent polymer, and thus the obtained composite is useful as an optical material, a catalyst, and the like. It is.
[Brief description of the drawings]
FIG. 1 is an electron micrograph showing an example of the structure of a composite according to the present invention.
FIG. 2 is an electron micrograph showing another example of the structure of the composite according to the present invention.
FIG. 3 is an electron micrograph showing another example of the structure of the composite according to the present invention.
FIG. 4 is an electron micrograph showing another example of the structure of the composite according to the present invention.
FIG. 5 is an electron micrograph showing another example of the structure of the composite according to the present invention.

Claims (4)

固体ポリメタクリル酸エステル中に多様な形状または粒径を有する白金ナノ粒子が分散していることを特徴とする白金ナノ粒子−ポリメタクリル酸エステル複合体。A platinum nanoparticle-polymethacrylate composite, wherein platinum nanoparticles having various shapes or particle diameters are dispersed in a solid polymethacrylate. 白金ナノ粒子が、栗のイガ状であるかまたは凹凸を有する異形白金ナノ粒子であることを特徴とする請求項1に記載の白金ナノ粒子−ポリメタクリル酸エステル複合体。The platinum nanoparticle-polymethacrylate composite according to claim 1, wherein the platinum nanoparticle is a chestnut bur-shaped or irregular platinum nanoparticle having irregularities. 白金錯体を含有するポリメタクリル酸エステルに、水素雰囲気中で光を照射した後、水素雰囲気中、120℃以上の温度で加熱還元させることを特徴とする白金ナノ粒子−ポリメタクリル酸エステル複合体の製造方法。After irradiating the polymethacrylate containing a platinum complex with light in a hydrogen atmosphere, the platinum nanoparticle-polymethacrylate composite is characterized in that it is heated and reduced at a temperature of 120 ° C. or more in a hydrogen atmosphere. Production method. 光の照射時間及び加熱還元時間の少なくとも一方を調節することにより、得られる白金ナノ粒子の形状及び粒径を変換させることを特徴とする請求項3に記載の白金ナノ粒子−ポリメタクリル酸エステル複合体の製造方法。The platinum nanoparticle-polymethacrylate composite according to claim 3, wherein the shape and the particle size of the obtained platinum nanoparticle are converted by adjusting at least one of a light irradiation time and a heat reduction time. How to make the body.
JP2002201011A 2002-07-10 2002-07-10 Platinum nanoparticle-polymethacrylate complex and method for producing the same Expired - Lifetime JP3735715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201011A JP3735715B2 (en) 2002-07-10 2002-07-10 Platinum nanoparticle-polymethacrylate complex and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201011A JP3735715B2 (en) 2002-07-10 2002-07-10 Platinum nanoparticle-polymethacrylate complex and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004043572A true JP2004043572A (en) 2004-02-12
JP3735715B2 JP3735715B2 (en) 2006-01-18

Family

ID=31707666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201011A Expired - Lifetime JP3735715B2 (en) 2002-07-10 2002-07-10 Platinum nanoparticle-polymethacrylate complex and method for producing the same

Country Status (1)

Country Link
JP (1) JP3735715B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008074702A1 (en) * 2006-12-19 2008-06-26 Basf Se Method for cross-coupling using metal nanoparticles as the catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008074702A1 (en) * 2006-12-19 2008-06-26 Basf Se Method for cross-coupling using metal nanoparticles as the catalyst

Also Published As

Publication number Publication date
JP3735715B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
Liu et al. Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process
Hao et al. Synthesis of silver nanodisks using polystyrene mesospheres as templates
Lee et al. Production of aqueous spherical gold nanoparticles using conventional ultrasonic bath
Yao et al. Porous CdTe nanocrystal assemblies: ligation effects on the gelation process and the properties of resultant aerogels
CN111606319B (en) Carbon nano coil, preparation method and application thereof, and carbon nano belt
Wang et al. Soybean-derived blue photoluminescent carbon dots
Gaynor et al. Characterization of nanophase titania particles synthesized using in situ steric stabilization
Raj et al. Nanomolding of gold and gold–silicon heterostructures at room temperature
Brito et al. Blue–green luminescent carbon nanodots produced in a silica matrix
JP3735715B2 (en) Platinum nanoparticle-polymethacrylate complex and method for producing the same
Bardhan et al. Au nanorice assemble electrolytically into mesostars
Zhang et al. Green synthesis of luminescent carbon dots and carbon-coated metal particles: Two birds with one stone
Wang et al. One-step synthesis of hollow carbon nanospheres in non-coordinating solvent
Vasin et al. Evolution from UV emission of phenyl groups to visible emission of pyrolytic nanocarbons dispersed in fumed silica: Alternative insight into photoluminescence of carbon nanodots
Kim et al. Photothermally enhanced catalytic activity of partially aggregated gold nanoparticles
CN114210993B (en) Method for preparing hollow gold nanospheres through rapid sintering
Biswas et al. Tailored polymer–metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates
CN111154195B (en) Composite material and preparation method and application thereof
Popov et al. Synthesis of isolated silver nanoparticles and their aggregates manipulated by light
Velusamy et al. Na-doped carbon nanodots: shed light on the concentration modulated photoluminescence and two-photon absorption performance
Wang et al. Nitrogen-induced shift of photoluminescence from green to blue emission for xylose-derived carbon dots
Wagner et al. Controlled Gold Nanorod Reorientation and Hexagonal Order in Micromolded Gold Nanorod@ pNIPAM Microgel Chain Arrays
WO2019061583A1 (en) Thermally-driven catalyst and use thereof
Shi et al. Multicomponent and hybrid hydrogels comprised of carbon nanotube–nickel/nickel oxide core/shell nanoparticle heterostructures incorporated in polyvinyl alcohol
CN109970897B (en) Inorganic/high-molecular composite material and preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

R150 Certificate of patent or registration of utility model

Ref document number: 3735715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term