JP2004043454A - Porous structure of metal complex and catalyst - Google Patents

Porous structure of metal complex and catalyst Download PDF

Info

Publication number
JP2004043454A
JP2004043454A JP2003141474A JP2003141474A JP2004043454A JP 2004043454 A JP2004043454 A JP 2004043454A JP 2003141474 A JP2003141474 A JP 2003141474A JP 2003141474 A JP2003141474 A JP 2003141474A JP 2004043454 A JP2004043454 A JP 2004043454A
Authority
JP
Japan
Prior art keywords
metal complex
pore structure
metal
pores
ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003141474A
Other languages
Japanese (ja)
Inventor
Satoshi Takamizawa
高見澤 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama TLO Co Ltd
Original Assignee
Yokohama TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama TLO Co Ltd filed Critical Yokohama TLO Co Ltd
Priority to JP2003141474A priority Critical patent/JP2004043454A/en
Publication of JP2004043454A publication Critical patent/JP2004043454A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous structure of a metal complex enabling easy designing of pores of desired shape and form and a porous structure of a metal complex having catalytically active site in the pores. <P>SOLUTION: The metal complex molecules composed of a metallic ion and an organic ligand are bonded through hydrogen bond between the ligands or a plurality of the metal complex molecules are bonded through a ligand bond between the metallic ion and an organic ligand of different metal complex molecule, and the formed aggregates are bonded with each other through hydrogen bond to form regularly arranged pores each having a prescribed size. Preferably, the ligand has amide bond and the metal complex is bonded through the hydrogen bond between the amide bonds. The porous structure of the metal complex can be used as a catalyst having substrate selectivity and product selectivity by using the metallic ion having a vacant coordination position. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はナノオーダの細孔を有する金属錯体の細孔構造体にかかり、特に、触媒作用を有する金属錯体の細孔構造体に関する。
【0002】
【従来の技術】
細孔を有する構造体は、ゼオライトやシリカ等の無機系多孔体が知られているが、近年、細孔の大きさ等の構造をより自由に設計可能となることから金属錯体の細孔構造体が注目され、メタンガスの貯蔵等の分野での応用研究が行われている。
【0003】
従来の金属錯体の細孔構造体は、例えば、ジカルボン酸銅(II)錯体の細孔構造体のように、Cu−Cuの二核構造を格子点とし、ジカルボン酸で格子点を結んだ構造を有しており(以後、配位高分子錯体という)、例えばフマル酸、テレフタル酸等、カルボン酸の種類により、所望の大きさの細孔を設計することができる(特開2000−86683;特開2000−109485;森和亮ら、触媒,Vol42(1)、p40−45(2000);高見澤、化学と工業、53(2)、p136−139(2000)等)。
【0004】
【発明が解決しようとする課題】
しかしながら、これら配位高分子錯体は加水分解し易く、水に対して不安定であるという欠点があり、また、熱的にも180℃〜250℃程度が限界であるため、応用範囲が限定されるという問題があった。
【0005】
さらに、これら配位高分子錯体は、金属イオンが配位飽和となるため触媒活性が得られず、触媒への応用ができないという問題があった。
【0006】
かかる状況に鑑み、本発明は、所望の形状、形態の細孔をより容易に設計可能な金属錯体の細孔構造体を提供することを目的とし、さらには、細孔内に触媒活性サイトを有する金属錯体の細孔構造体を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の金属錯体の細孔構造体は、金属イオンと有機配位子とからなる金属錯体が前記配位子間の水素結合を介して連結され、所定の大きさの細孔が規則的に形成されていることを特徴とする。
【0008】
配位子間の水素結合を介して金属錯体のネットワークを構築することにより、細孔設計の自由度が増加し、様々な目的、用途に適用可能なナノオーダーの細孔構造体を実現することができる。また、従来の配位高分子錯体と比べて熱的安定性が向上し、空気中、300℃でも安定な細孔構造体を作製することができる。さらに、これらの細孔物質は溶媒に可溶であるため、再結晶によって繰り返し使用することができる。
【0009】
また、水素結合によりネットワークを構築することにより、従来の配位高分子錯体とは異なり、金属イオンが空配位座を有する構成とすることが可能となる。即ち、触媒活性サイトを細孔中に露出させることができ、また、細孔の構造と細孔表面の極性等を調整することで基質(反応物)選択性及び生成物選択性を考慮した種々の反応を効率よく行わせることが可能となる。
【0010】
特に、ゼオライトのような担持触媒とは異なり、構造体自体が触媒であるため、より厳密に反応を制御することが可能となる。例えば、モノエンやポリエン等のオレフィンの水素添加反応を穏和な条件下(低圧、低温)でも高い収率で進行させることができる。
【0011】
前記配位子はアミド結合を有し、該アミド結合間の水素結合を介して金属錯体のネットワークを構築させるのが好ましい。アミド結合を含む系を用いることにより、水素雰囲気での安定性がより一層向上し、触媒作用をより安定して維持することが可能となる。例えば、ロジウムの酢酸錯体、安息香酸錯体は、それぞれ100℃、140℃程度で金属ロジウムが析出してしまうが、アミド結合を含む系では180℃であっても金属ロジウムが析出することはなく、安定して触媒作用を維持させることができる。
なお、本発明の細孔構造体は、2種以上の配位子で構成してもよく、ネットワークを構築し細孔を形成する限りにおいて、全ての配位子が水素結合サイトを持つ必要はない。
【0012】
また、本発明の細孔構造体は、金属イオンと有機配位子とからなる金属錯体が、異なる金属錯体間の金属イオンと有機配位子との結合により複数連結されて集合体を形成し、該集合体が水素結合によりさらに連結され、所定の大きさの細孔が規則的に形成されていることを特徴とする。
ここで、前記水素結合は、例えば、上述した前記有機配位子のアミド結合間の水素結合である。
即ち、配位結合と分子間水素結合とを併せ持つ構成とすることにより、細孔構造の制御及び構造の柔軟化等、細孔構造体の設計の自由度がさらに増加し、例えば動的な吸着挙動の制御を可能になることから、混合ガスから所望のガスを吸着分離することができる。
【0013】
なお、本発明において、金属錯体の有機配位子は、カルボキシル基、アミド基、イミド基等、水素結合を形成可能な官能基を有するものであれは、どのような構造のものでも良く、細孔構造体の用途に応じて適宜選択される。また、金属としてはどのような金属でも適用可能であり、用途に応じて適宜選択されるが、Rh,Mo,Cu等遷移金属が好適に用いられる。触媒として用いる場合は、反応の種類、条件に応じて選択すればよい。
【0014】
なお、以上の細孔構造体は、例えば、金属化合物とアミド基等を有する化合物とを混合し所定時間放置した後、析出した結晶を真空中で加熱して作製することができる。
【0015】
【実施例】
以下に実施例を挙げて本発明をより詳細に説明する。
まず、金属イオンと有機配位子とからなる金属錯体が該配位子間の水素結合を介して連結された細孔構造体の具体例を説明する。
(実施例1)
100mgのRh(OCCH)4・2HOと400mgのp−BuCONHCCOOH(Buは3級ブチル)とを10mlのジグリム中で加熱還流下で2時間撹拌した。溶媒を減圧留去し得られる緑色組成生物をTHFに溶かし、室温で再結晶した。得られた緑色結晶を100℃で真空乾燥し、Rh(p− OCCNHCOBu)の緑色粉末結晶168mgを得た(収率68%)。
この粉末結晶について、87.4Kにおけるアルゴンガスの等温吸着線を測定したところ、BET比表面積は108.5m/g、細孔容積は0.0447cc/gであることが分かった。
【0016】
また、この結晶について、X線回折構造解析を行った結果を図1及び2に示す。図1は、配位子のアミド結合間の分子間水素結合を示す模式図であり,図2(A)、(B)は、結晶中の分子配列を示す模式図である。
図2(A)に示すように、配位子のアミド基間の水素結合を介して金属錯体は2次元的なネットワークに連結され、また、図2(B)に示すように、それぞれの2次元ネットワーク層はファンデルワールス力により結合され、安定な細孔構造体が形成されている。本実施例の細孔の大きさは、1nm以下である。
【0017】
また、以上の細孔構造体は、配位高分子錯体に比べて安定であり、熱示差分析及び熱重量分析から、空気中で300℃まで安定であることが分かった。
【0018】
次に、以上の結晶を真空下で加熱乾燥して細孔性触媒を作製し、エチレンの水素化反応(CH=CH+H→CH−CH)における触媒作用を調べた。
Rh(p−OCCNHCOBu)10mgを100℃又は140℃に保ちながら、水素とエチレンの混合ガス(2:1)を90torr、250ccで循環流通させ、反応系内の圧力変化を測定した。
この実験を繰り返し行ったところ、触媒の充填の仕方により若干バラツキはあったものの、いずれの場合も同様の結果となった。その一例を図3(A)に示す。図3(A)から分かるように、反応温度が100℃及び140℃の場合において、それぞれ50分及び25分で反応は完了し、原料ガスのエタンへの転換率はいずれの場合も100%であった。
【0019】
次に、aを水素ガス初濃度、bをエチレン初濃度、xを時間tでのエタン濃度とし、f(x)=(1/(b−a))・ln{(a(b−x)/b(a−x)}を時間tに対しプロットした結果を図3(B)に示す。100℃及び140℃のいずれの場合も直線上にのり、この触媒反応が2次反応で近似できることが分かった。このことは、エチレンの水素化反応において、異性化や重合、逆反応等が生じていないことを示し、理想的な触媒反応が進行していることを示している。図3(A)の傾きから、触媒単位質量あたりの反応速度係数を求めたところ、100℃及び140℃でそれぞれ、
k(100)=1.5x10−3 torr−1・s−1・g−1
k(140)=1.0x10−2 torr−1・s−1・g−1
となることが分かった。
【0020】
同様に、Rh(p−OCCNHCOBu)10mgを100℃に保ち、水素と1,3−ブタジエンの混合ガス(3:1)を90torr、250ccで循環流通させたところ、2時間で100%n−ブタンに転換した。
【0021】
また、さらに、Rh(p−OCCNHCOBu)10mgを140℃に保ち、水素と3,3−ジメチル−1−ブテンの混合ガス(2:1)を90torr、250ccで循環流通させたところ、20時間で100%3,3−ジメチルブタンに転換した。
エチレンとジメチルブテンの140℃における反応時間を比較すると、エチレンは25分であるのに対し、ジメチルブテンは20時間と48倍の時間がかかることが分かった。即ち、本実施例の触媒を用いた場合には、分子サイズの大きなジメチルブテンは細孔中で反応が起こりにくくなることが分かる。逆に言うと、本発明の細孔触媒を選択することにより、混合ガス中の一部のガスのみ反応させることが可能となり、選択的に反応を起こさせることができる。
以上オレフィンの水素化反応における触媒の作用について述べてきたが、本発明の触媒はこれらに限らず、種々の反応に適用できることは言うまでもない。
【0022】
(実施例2)
100mgのRu(OCCHClと250mgのp−BuCONHCCOOHを50%のイソプロパノール・水混合溶媒100mlのに溶かし、室温で静置した。1週間後褐色の結晶が得られた。100℃で真空乾燥し、242mgの褐色の細孔構造体Ru(p−OCCNHCOBu)Clが得られた(収率92%)。
得られた化合物のX線回折構造解析の結果を図4(A)に簡略化して模式的に示す。なお、図4(A)の直方体ブロックは図4(B)の分子構造を示すものであり、この配列は2つの構造をとることができる。本実施例の細孔構造体は、図が示すように、NH・・・O=C水素結合ネットワークだけで、安定な細孔構造が形成されることが分かった。
なお、熱示差分析および熱重量分析から構造は290℃まで極めて安定であり、また、77.4 Kにおける窒素ガスの等温吸着線測定の結果、BET比表面積は241m/g、細孔容積は0.096cc/gであった。
【0023】
以上の実施例で述べたRh錯体とRu錯体はそれぞれ水素化反応、COを用いた反応に特に好適に用いられるが、これらに限るものではなく、本発明は金属ないし金属クラスタを選択・制御することにより、種々の反応に用いることができる。即ち、Rh錯体では、外部から進入した分子が金属−金属結合軸に対して平行方向からロジウム金属に近づき、接触できる。また、上下のロジウム金属は0.77nmの原子間距離に位置し、空配座2つで基質分子を挟み込む。これは、触媒反応速度の上昇や反応制御に寄与できる構造である。一方、Ru錯体では、外部から進入した分子が金属−金属結合軸に対し垂直方向からルテニウム金属に近づき、空いた配座に接触できる。Ru錯体はRu−Ru−Clの非対称構造を有し大きく分極しているため、極性分子と非極性分子の認識、及び気質分子の分極を誘起した反応制御が可能となる。
【0024】
次に、金属イオンと有機配位子とからなる金属錯体を金属−配位子間の配位子結合により結合させて集合体とし、この集合体を水素結合によりさらに連結させた構造の細孔構造体について説明する。
(実施例3)
酢酸銅一水和物(Cu(CHCOO)・HO)と僅かに過剰なカルボン酸配位子(p−HOCCCONHBu)とをメタノールに溶かし、室温で静置した。6日後に析出した青色板状晶を集め、100℃で1時間真空乾燥して、Cu(p−OCCCONHBu)4 の細孔構造体が収率21.3%で得られた。
得られた結晶の元素分析結果は、計算値 (C4860Cu14)C;57.19%、H;5.60%、N;5.56%に対し、C;53.60%、H;5.72%、N;5.23%であった。
【0025】
X線回折構造解析により得られた分子配列を図5及び6に示す。金属錯体間で、Cu・・・O=C(配位子)の配位結合によって二次元面が形成され、面内の分子配向が水素結合(−NH・・・O=C−NH・・・O=C)nの1次元鎖によって制御され、図5の様な平面構造が安定化されている。この二次元面が積層して、図6に示すような安定かつ柔軟な細孔構造が形成される。
なお、この結晶は、単斜晶系に属し、格子定数はa=1.2052nm、b=1.7329nm、c=1.4825nm、β=112.190°、空間はP21/c であり、また、細孔の大きさは1nm以下であった。
【0026】
この結晶について、窒素ガスおよび炭酸ガスの等圧吸着線の測定を重量法を用いて行った。この結果を図7に示す。図が示すように、窒素ガスの吸着量は冷却してもほとんど変化しないが、炭酸ガスの場合は室温付近で吸着され始め、温度低下とともに吸着量が増大することが分かる。即ち、本実施例の細孔構造体を用いることにより、例えば、炭酸ガスと窒素ガスの混合ガスを分離・精製することができる。なお、グラフは150℃以下で負の吸着量を示しているが、これは測定誤差に帰因するものである。
以上のように、配位結合と分子間水素結合とを併せて用いることにより、細孔構造体の設計の自由度が拡大し、種々の用途に対応して適切な構造体を形成することが可能となる。
【0027】
(実施例4)
酢酸銅一水和物(Cu(CHCOO)・HO)と僅かに過剰なカルボン酸配位子(p−CHCO−Ala−NHCCOOH、Ala;COCHCHNH))とをメタノールに溶かし、室温で静置した。1日後に析出した青色板状晶を集め、100℃で1時間真空乾燥した。このようにして、Cu(CHCOO)(p−CHCO−Ala−NHCCOO)2 の細孔構造体が収率25.0%で得られた。
【0028】
得られた結晶についてX線回折構造解析を行ったところ、配位子末端のアセチル基のカルボニルが隣の銅二核に軸方向から配位して無限一次元鎖を形成し、さらに一次元鎖間でNH・・O=C型水素結合が形成されて、ネットワークが構築されていることが分かった。また、この結晶は、三斜晶系に属し、格子定数はa=0.7889nm、b=1.0340nm、c=1.1670nm、α=96.45°、β=94.58°、γ=102.62°、空間はP−1 であり、また、細孔の大きさは1nm以下であった。
なお、結晶の元素分析結果は、 計算値(C2836Cu14) C;57.00%、H;6.21%、N;8.31%に対し、C;54.96%、H;6.09%、N;7.78%であった。
実施例3と同様に、この結晶を用い、窒素ガスおよび炭酸ガスの等圧吸着線の測定を重量法を用いて行った結果を図8に示す。本実施例の場合も、窒素ガスの吸着量は冷却してもほとんど変化しないが、炭酸ガスは温度低下とともに吸着量が増大することが分かる。
【0029】
以上のように、本発明は、配位子・金属の配置と極性、触媒反応性について、制御することができ、細孔構造・分子認識・反応中間体の構造制御・触媒反応制御などを厳密に行うことができる。
【0030】
【発明の効果】
以上説明したように、本発明によって、たとえば酸化還元触媒等の触媒能をもった構築分子を水素結合により、又は水素結合とファンデルワールス力などの分子間相互作用により構造化させた新しい細孔構造体が実現でき、細孔構造体の構造制御、その修飾について新しい技術の発展を促すことになる。
【0031】
即ち、固体構造構築に弱い分子間相互作用を用いて驚くほど高い安定性をもつ細孔構造体が得られ、これによりペプチド及び核酸塩基など生体物質を用いた新規な多孔体へアプローチも可能となる。
また、構成元素および分子単位(無機から有機、生体物質まで)を自由に選び、様々な目的に合わせた構造・性質を有する細孔構造体を設計、構築することができる。また、これまでにない多元化による多重機能をもつ細孔構造体へと展開が可能になる。
さらに、細孔中で触媒反応が起こるので、基質選択性および生成物選択性が可能となり、さらには細孔によるストレスと活性金属の種類による厳密な反応制御が可能となる。
【図面の簡単な説明】
【図1】Rh(p−OCCNHCOBu)細孔構造体における水素結合網を示す模式図である(実施例1)。
【図2】Rh(p−OCCNHCOBu)細孔構造体中の分子配列を示す模式図である(実施例1)。
【図3】実施例1の触媒を用いたエチレンの水素還元反応についての実験結果を示すグラフである。
【図4】Ru(p−OCCNHCOBu)細孔構造体の構造を示す模式図である(実施例2)。
【図5】Cu(p−OCCCONHBu)4 の細孔構造体の分子配列を示す模式図である(実施例3)。
【図6】Cu(p−OCCCONHBu)4 の細孔構造体の分子配列を示す模式図である(実施例3)。
【図7】窒素ガスおよび炭酸ガスの等圧吸着線を示すグラフである(実施例3)。
【図8】窒素ガスおよび炭酸ガスの等圧吸着線を示すグラフである(実施例4)。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pore structure of a metal complex having nano-order pores, and more particularly to a pore structure of a metal complex having a catalytic action.
[0002]
[Prior art]
As the structure having pores, inorganic porous materials such as zeolite and silica have been known, but in recent years, the pore structure of a metal complex has been increased since the structure such as the size of pores can be more freely designed. Attention has been paid to the body, and applied research in fields such as storage of methane gas is being conducted.
[0003]
The conventional pore structure of a metal complex is, for example, a structure in which a dinuclear structure of Cu—Cu is used as a lattice point and lattice points are connected with a dicarboxylic acid, like a pore structure of a copper (II) dicarboxylate complex. (Hereinafter referred to as a coordination polymer complex), and pores having a desired size can be designed depending on the type of carboxylic acid such as fumaric acid and terephthalic acid (Japanese Patent Laid-Open No. 2000-86683; JP 2000-109485; Kazuaki Mori et al., Catalyst, Vol 42 (1), p40-45 (2000); Takamizawa, Chemical and Industry, 53 (2), p136-139 (2000), etc.).
[0004]
[Problems to be solved by the invention]
However, these coordination polymer complexes have a drawback that they are easily hydrolyzed and are unstable to water, and also have a thermal limit of about 180 ° C. to 250 ° C., which limits their application range. Problem.
[0005]
Furthermore, these coordination polymer complexes have a problem that the catalytic activity cannot be obtained due to the coordination saturation of the metal ion, so that they cannot be applied to a catalyst.
[0006]
In view of such circumstances, an object of the present invention is to provide a pore structure of a metal complex in which pores having a desired shape and form can be more easily designed, and furthermore, a catalyst active site is formed in the pores. It is an object of the present invention to provide a pore structure of a metal complex having the same.
[0007]
[Means for Solving the Problems]
In the pore structure of the metal complex of the present invention, a metal complex composed of a metal ion and an organic ligand is connected via a hydrogen bond between the ligands, and pores of a predetermined size are regularly formed. It is characterized by being formed.
[0008]
By building a network of metal complexes via hydrogen bonds between ligands, the degree of freedom in pore design is increased, and nano-order pore structures applicable to various purposes and applications are realized. Can be. Further, the thermal stability is improved as compared with the conventional coordination polymer complex, and a pore structure stable at 300 ° C. in the air can be produced. Further, since these pore substances are soluble in a solvent, they can be used repeatedly by recrystallization.
[0009]
Further, by constructing a network by hydrogen bonding, it becomes possible to make the metal ion have a vacant coordination site unlike the conventional coordination polymer complex. That is, the catalytically active sites can be exposed in the pores, and the structure of the pores and the polarity of the surface of the pores are adjusted so as to take into account substrate (reactant) selectivity and product selectivity. Can be performed efficiently.
[0010]
In particular, unlike a supported catalyst such as zeolite, the structure itself is a catalyst, so that the reaction can be more strictly controlled. For example, a hydrogenation reaction of an olefin such as a monoene or a polyene can be caused to proceed with a high yield even under mild conditions (low pressure and low temperature).
[0011]
The ligand preferably has an amide bond, and preferably forms a network of a metal complex via a hydrogen bond between the amide bonds. By using a system containing an amide bond, the stability in a hydrogen atmosphere is further improved, and the catalytic action can be maintained more stably. For example, rhodium acetate complex and benzoic acid complex precipitate metal rhodium at about 100 ° C. and 140 ° C., respectively, but in a system containing an amide bond, even at 180 ° C., metal rhodium does not precipitate, It is possible to stably maintain the catalytic action.
The pore structure of the present invention may be composed of two or more kinds of ligands, and as long as a network is formed and pores are formed, it is not necessary that all ligands have a hydrogen bonding site. Absent.
[0012]
Further, in the pore structure of the present invention, a plurality of metal complexes each composed of a metal ion and an organic ligand are connected by bonding of a metal ion and an organic ligand between different metal complexes to form an aggregate. The aggregate is further connected by hydrogen bonding, and pores of a predetermined size are regularly formed.
Here, the hydrogen bond is, for example, a hydrogen bond between the amide bonds of the organic ligand described above.
In other words, by adopting a configuration having both coordination bonds and intermolecular hydrogen bonds, the degree of freedom in designing the pore structure, such as control of the pore structure and softening of the structure, is further increased. Since the behavior can be controlled, a desired gas can be adsorbed and separated from the mixed gas.
[0013]
In the present invention, the organic ligand of the metal complex may have any structure as long as it has a functional group capable of forming a hydrogen bond, such as a carboxyl group, an amide group, or an imide group. It is appropriately selected according to the use of the pore structure. In addition, any metal can be used as the metal, and is appropriately selected according to the application, but transition metals such as Rh, Mo, and Cu are preferably used. When used as a catalyst, it may be selected according to the type of reaction and conditions.
[0014]
The above-mentioned pore structure can be produced by, for example, mixing a metal compound and a compound having an amide group or the like, leaving the mixture to stand for a predetermined time, and then heating the precipitated crystal in a vacuum.
[0015]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
First, a specific example of a pore structure in which a metal complex including a metal ion and an organic ligand is connected via a hydrogen bond between the ligands will be described.
(Example 1)
100mg of Rh (O 2 CCH 3) 4 · 2H 2 O and 400mg of p- t BuCONHC 6 H 4 COOH ( t Bu is tertiary butyl) was stirred for 2 hours under reflux and in diglyme 10 ml. The solvent was distilled off under reduced pressure, and the resulting green composition was dissolved in THF and recrystallized at room temperature. The obtained green crystal was vacuum-dried at 100 ° C. to obtain 168 mg of a green powder crystal of Rh 2 (p—O 2 CC 6 H 4 NHCO t Bu) 4 (68% yield).
When an isothermal adsorption line of argon gas at 87.4 K was measured for this powder crystal, it was found that the BET specific surface area was 108.5 m 2 / g and the pore volume was 0.0447 cc / g.
[0016]
1 and 2 show the results of X-ray diffraction structure analysis of this crystal. FIG. 1 is a schematic diagram showing an intermolecular hydrogen bond between amide bonds of a ligand, and FIGS. 2A and 2B are schematic diagrams showing a molecular arrangement in a crystal.
As shown in FIG. 2 (A), the metal complex is connected to a two-dimensional network via a hydrogen bond between the amide groups of the ligand, and as shown in FIG. The two-dimensional network layers are joined by Van der Waals forces, and a stable pore structure is formed. The size of the pores in this embodiment is 1 nm or less.
[0017]
Further, the above-mentioned pore structure was more stable than the coordination polymer complex, and it was found from thermal differential analysis and thermogravimetric analysis that it was stable in air up to 300 ° C.
[0018]
Next, the above crystals were heated and dried under vacuum to produce a porous catalyst, and the catalytic action in the hydrogenation reaction of ethylene (CH 2 = CH 2 + H 2 → CH 3 -CH 3 ) was examined.
While keeping 10 mg of Rh 2 (p-O 2 CC 6 H 4 NHCO t Bu) 4 at 100 ° C. or 140 ° C., a mixed gas of hydrogen and ethylene (2: 1) was circulated at 90 torr and 250 cc to circulate in the reaction system. Was measured for pressure change.
When this experiment was repeated, there were some variations depending on the way of charging the catalyst, but the same result was obtained in each case. One example is shown in FIG. As can be seen from FIG. 3A, when the reaction temperature is 100 ° C. and 140 ° C., the reaction is completed in 50 minutes and 25 minutes, respectively, and the conversion rate of the raw material gas to ethane is 100% in each case. there were.
[0019]
Next, a is the initial concentration of hydrogen gas, b is the initial concentration of ethylene, x is the ethane concentration at time t, and f (x) = (1 / (ba)) · ln {(a (b−x) 3 (B) shows the results of plotting / b (ax)} against time t. Both of 100 ° C. and 140 ° C. are on a straight line, and this catalytic reaction can be approximated by a secondary reaction. This indicates that no isomerization, polymerization, reverse reaction, etc., have occurred in the hydrogenation reaction of ethylene, indicating that an ideal catalytic reaction is in progress. When the reaction rate coefficient per unit mass of the catalyst was determined from the slope of A), at 100 ° C. and 140 ° C., respectively,
k (100) = 1.5 × 10 −3 torr −1 · s −1 · g −1
k (140) = 1.0 × 10 −2 torr −1 · s −1 · g −1
It turned out to be.
[0020]
Similarly, 10 mg of Rh 2 (p-O 2 CC 6 H 4 NHCO t Bu) 4 was kept at 100 ° C., and a mixed gas of hydrogen and 1,3-butadiene (3: 1) was circulated at 90 torr and 250 cc. However, it was converted to 100% n-butane in 2 hours.
[0021]
Further, 10 mg of Rh 2 (p-O 2 CC 6 H 4 NHCO t Bu) 4 was kept at 140 ° C., and a mixed gas (2: 1) of hydrogen and 3,3-dimethyl-1-butene was added at 90 torr and 250 cc. And converted to 100% 3,3-dimethylbutane in 20 hours.
Comparing the reaction times of ethylene and dimethylbutene at 140 ° C., it was found that ethylene took 25 minutes, while dimethylbutene took 20 hours and 48 times as long. That is, when the catalyst of this example is used, it is found that dimethylbutene having a large molecular size hardly reacts in the pores. Conversely, by selecting the pore catalyst of the present invention, only a part of the gas in the mixed gas can be reacted, and the reaction can be selectively caused.
Although the function of the catalyst in the olefin hydrogenation reaction has been described above, it goes without saying that the catalyst of the present invention is not limited to these and can be applied to various reactions.
[0022]
(Example 2)
100mg of Ru 2 (O 2 CCH 3) was dissolved 4 Cl and 250mg of p- and t BuCONHC 6 H 4 COOH to 50% isopropanol-water mixed solvent 100 ml, and allowed to stand at room temperature. After one week, brown crystals were obtained. After vacuum drying at 100 ° C., 242 mg of brown pore structure Ru 2 (p-O 2 CC 6 H 4 NHCO t Bu) 4 Cl was obtained (yield 92%).
The result of X-ray diffraction structure analysis of the obtained compound is schematically shown in FIG. 4 (A). Note that the rectangular parallelepiped block in FIG. 4A shows the molecular structure in FIG. 4B, and this arrangement can take two structures. As shown in the figure, the pore structure of this example was found to form a stable pore structure only with the NH... O = C hydrogen bond network.
The structure was extremely stable up to 290 ° C. from thermal differential analysis and thermogravimetric analysis, and the BET specific surface area was 241 m 2 / g and the pore volume was determined as a result of the isotherm measurement of nitrogen gas at 77.4 K. 0.096 cc / g.
[0023]
The Rh complex and the Ru complex described in the above examples are particularly preferably used for a hydrogenation reaction and a reaction using CO, respectively, but are not limited thereto, and the present invention selects and controls a metal or a metal cluster. Thereby, it can be used for various reactions. That is, in the Rh complex, molecules that have entered from the outside approach the rhodium metal in a direction parallel to the metal-metal bond axis and can make contact therewith. The upper and lower rhodium metals are located at an interatomic distance of 0.77 nm, and sandwich the substrate molecule between two vacant conformations. This is a structure that can contribute to an increase in the catalytic reaction rate and control of the reaction. On the other hand, in the Ru complex, a molecule entering from the outside approaches the ruthenium metal from a direction perpendicular to the metal-metal bond axis, and can contact the vacant conformation. Since the Ru complex has a Ru-Ru-Cl asymmetric structure and is largely polarized, it is possible to recognize polar molecules and non-polar molecules, and to control the reaction induced by polarization of gaseous molecules.
[0024]
Next, a metal complex consisting of a metal ion and an organic ligand is bonded to each other by a ligand bond between the metal and the ligand to form an aggregate, and the aggregate is further connected by a hydrogen bond. The structure will be described.
(Example 3)
Copper acetate monohydrate (Cu (CH 3 COO) 2 .H 2 O) and a slight excess of carboxylic acid ligand (p-HO 2 CC 6 H 4 CONH t Bu) are dissolved in methanol, and the mixture is dissolved at room temperature. It was left still. The blue plate crystals precipitated after 6 days were collected and vacuum dried at 100 ° C. for 1 hour to obtain a Cu 2 (p—O 2 CC 6 H 4 CONH t Bu) 4 pore structure with a yield of 21.3%. Was obtained.
The result of elemental analysis of the obtained crystal was calculated as (C 48 H 60 Cu 2 N 4 O 14 ) C: 57.19%, H: 5.60%, N: 5.56%, whereas C: 53 0.60%, H: 5.72%, N: 5.23%.
[0025]
The molecular sequences obtained by X-ray diffraction structure analysis are shown in FIGS. A two-dimensional plane is formed between the metal complexes by the coordination bond of Cu... O = C (ligand), and the molecular orientation in the plane is changed by hydrogen bond (-NH... O = C-NH. O = C) is controlled by the one-dimensional chain of n, and the planar structure as shown in FIG. 5 is stabilized. The two-dimensional planes are stacked to form a stable and flexible pore structure as shown in FIG.
This crystal belongs to the monoclinic system, and the lattice constants are a = 1.252 nm, b = 1.329 nm, c = 1.42525 nm, β = 112.190 °, the space is P21 / c, and The pore size was 1 nm or less.
[0026]
For these crystals, the isobaric adsorption lines of nitrogen gas and carbon dioxide gas were measured by a gravimetric method. The result is shown in FIG. As shown in the figure, it can be seen that the adsorption amount of nitrogen gas hardly changes even when it is cooled, but in the case of carbon dioxide gas, adsorption starts at around room temperature, and the adsorption amount increases as the temperature decreases. That is, by using the pore structure of the present embodiment, for example, a mixed gas of carbon dioxide gas and nitrogen gas can be separated and purified. The graph shows a negative adsorption amount at 150 ° C. or lower, which is attributed to a measurement error.
As described above, by using coordination bonds and intermolecular hydrogen bonds in combination, the degree of freedom in designing a pore structure is expanded, and it is possible to form an appropriate structure corresponding to various uses. It becomes possible.
[0027]
(Example 4)
Copper acetate monohydrate (Cu (CH 3 COO) 2 · H 2 O) and a slight excess of carboxylic acid ligands (p-CH 3 CO-Ala -NHC 6 H 4 COOH, Ala; COCH 3 CHNH) ) Was dissolved in methanol and allowed to stand at room temperature. One day later, the precipitated blue plate-like crystals were collected and vacuum dried at 100 ° C. for 1 hour. Thus, a pore structure of Cu 2 (CH 3 COO) 2 (p-CH 3 CO-Ala-NHC 6 H 4 COO) 2 was obtained with a yield of 25.0%.
[0028]
An X-ray diffraction structure analysis of the obtained crystals revealed that the carbonyl of the acetyl group at the ligand terminal coordinated to the adjacent copper binuclear from the axial direction to form an infinite one-dimensional chain, It was found that a NH..O = C type hydrogen bond was formed between the two to form a network. This crystal belongs to a triclinic system, and the lattice constants are a = 0.7889 nm, b = 1.0340 nm, c = 1.1670 nm, α = 96.45 °, β = 94.58 °, γ = 102.62 °, the space was P- 1 , and the size of the pores was 1 nm or less.
The result of elemental analysis of the crystal was calculated as follows: calculated value (C 28 H 36 Cu 2 N 4 O 14 ) C: 57.00%, H: 6.21%, N: 8.31%; 96%, H: 6.09%, N: 7.78%.
As in Example 3, the results of using this crystal and measuring the isobaric adsorption lines of nitrogen gas and carbon dioxide using the gravimetric method are shown in FIG. Also in the case of the present embodiment, it can be seen that the adsorption amount of nitrogen gas hardly changes even when cooled, but the adsorption amount of carbon dioxide increases as the temperature decreases.
[0029]
As described above, according to the present invention, it is possible to control the arrangement and polarity of ligands and metals, and the catalytic reactivity, and strictly control the pore structure, molecular recognition, structure control of reaction intermediates, catalytic reaction control, and the like. Can be done.
[0030]
【The invention's effect】
As described above, according to the present invention, a new pore in which a building molecule having catalytic ability such as a redox catalyst is structured by hydrogen bonding or by intermolecular interaction such as hydrogen bonding and van der Waals force. The structure can be realized, and the development of a new technology for controlling the structure of the pore structure and modifying it can be promoted.
[0031]
In other words, a pore structure with surprisingly high stability is obtained by using weak intermolecular interactions in solid structure construction, which makes it possible to approach new porous materials using biological substances such as peptides and nucleobases. Become.
Further, it is possible to freely select constituent elements and molecular units (from inorganic to organic and biological substances), and to design and construct a pore structure having a structure and properties suitable for various purposes. In addition, it becomes possible to develop a pore structure having multiple functions by unprecedented diversification.
Furthermore, since a catalytic reaction occurs in the pores, substrate selectivity and product selectivity are possible, and furthermore, strict control of the reaction by the stress caused by the pores and the type of active metal becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a hydrogen bonding network in a Rh 2 (p—O 2 CC 6 H 4 NHCO t Bu) 4 pore structure (Example 1).
FIG. 2 is a schematic diagram showing a molecular arrangement in a Rh 2 (p—O 2 CC 6 H 4 NHCO t Bu) 4 pore structure (Example 1).
FIG. 3 is a graph showing experimental results on a hydrogen reduction reaction of ethylene using the catalyst of Example 1.
FIG. 4 is a schematic diagram showing the structure of Ru 2 (pO 2 CC 6 H 4 NHCO t Bu) 4 pore structure (Example 2).
FIG. 5 is a schematic view showing a molecular arrangement of a pore structure of Cu 2 (p—O 2 CC 6 H 4 CONH t Bu) 4 (Example 3).
FIG. 6 is a schematic diagram showing a molecular arrangement of a pore structure of Cu 2 (p—O 2 CC 6 H 4 CONH t Bu) 4 (Example 3).
FIG. 7 is a graph showing isobaric adsorption lines of nitrogen gas and carbon dioxide gas (Example 3).
FIG. 8 is a graph showing isobaric adsorption lines of nitrogen gas and carbon dioxide gas (Example 4).

Claims (4)

金属イオンと有機配位子とからなる金属錯体が該配位子間の水素結合を介して連結され、所定の大きさの細孔が規則的に形成されていることを特徴とする金属錯体の細孔構造体。A metal complex comprising a metal ion and an organic ligand is connected via hydrogen bonds between the ligands, and pores of a predetermined size are regularly formed. Pore structure. 金属イオンと有機配位子とからなる金属錯体が、異なる金属錯体間の金属イオンと有機配位子との配位子結合により複数連結されて集合体を形成し、該集合体が水素結合によりさらに連結され、所定の大きさの細孔が規則的に形成されていることを特徴とする金属錯体の細孔構造体。A plurality of metal complexes consisting of a metal ion and an organic ligand are connected by a ligand bond between a metal ion and an organic ligand between different metal complexes to form an aggregate, and the aggregate is formed by hydrogen bonding. A pore structure of a metal complex, wherein the pore structure is further connected and pores of a predetermined size are regularly formed. 前記配位子はアミド結合を有し、該アミド結合間の水素結合を介して連結されていることを特徴と請求項1又は2に記載の金属錯体構造物。The metal complex structure according to claim 1, wherein the ligand has an amide bond and is connected via a hydrogen bond between the amide bonds. 請求項1〜3のいずれか1項に記載の金属錯体の細孔構造体において、前記金属イオンが空配位座を有する構成としたことを特徴とする触媒。4. The catalyst according to claim 1, wherein the metal ion has a vacant coordination site in the pore structure of the metal complex according to claim 1. 5.
JP2003141474A 2002-05-21 2003-05-20 Porous structure of metal complex and catalyst Pending JP2004043454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003141474A JP2004043454A (en) 2002-05-21 2003-05-20 Porous structure of metal complex and catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002145545 2002-05-21
JP2003141474A JP2004043454A (en) 2002-05-21 2003-05-20 Porous structure of metal complex and catalyst

Publications (1)

Publication Number Publication Date
JP2004043454A true JP2004043454A (en) 2004-02-12

Family

ID=31719572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141474A Pending JP2004043454A (en) 2002-05-21 2003-05-20 Porous structure of metal complex and catalyst

Country Status (1)

Country Link
JP (1) JP2004043454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155123A (en) * 2005-11-10 2007-06-21 Matsushita Electric Ind Co Ltd Heat insulator
JP2010005529A (en) * 2008-06-26 2010-01-14 Toyota Central R&D Labs Inc Catalyst for cleaning automobile exhaust gas and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155123A (en) * 2005-11-10 2007-06-21 Matsushita Electric Ind Co Ltd Heat insulator
JP2010005529A (en) * 2008-06-26 2010-01-14 Toyota Central R&D Labs Inc Catalyst for cleaning automobile exhaust gas and method for manufacturing the same

Similar Documents

Publication Publication Date Title
Stolar et al. Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal–organic frameworks
Lu et al. Surfactant media to grow new crystalline cobalt 1, 3, 5-benzenetricarboxylate metal–organic frameworks
Wu et al. Core–shell MOFs@ MOFs: diverse designability and enhanced selectivity
Zhang et al. Computational characterization of defects in metal–organic frameworks: Spontaneous and water-induced point defects in ZIF-8
Schröder et al. Ruthenium nanoparticles inside porous [Zn4O (bdc) 3] by hydrogenolysis of adsorbed [Ru (cod)(cot)]: A solid-state reference system for surfactant-stabilized ruthenium colloids
JP6143761B2 (en) Hydrogen production catalyst and method for producing hydrogen
Cravillon et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework
Hausdorf et al. Proton and water activity-controlled structure formation in zinc carboxylate-based metal organic frameworks
Sapianik et al. Metal–Organic Frameworks for Highly Selective Separation of Xylene Isomers and Single-Crystal X-ray Study of Aromatic Guest–Host Inclusion Compounds
JP5737699B2 (en) Catalyst using PdRu solid solution type alloy fine particles
Chen et al. Alkali-metal-templated assemblies of new 3D lead (II) tetrachloroterephthalate coordination frameworks
JP2006503946A (en) Process for producing polyalkylene carbonate
Ahmadi et al. Microporous metal–organic frameworks: Synthesis and applications
KR20110019804A (en) Method for preparing organic-inorganic hybrid nanoporous material, organic-inorganic hybrid nanoporous materials obtained by said method and use thereof
Jin et al. New 4, 5-dichlorophthalhydrazidate-bridged chained coordination polymers
Krüger et al. Polymorphous Al-MOFs based on V-shaped linker molecules: synthesis, properties, and in situ investigation of their crystallization
Xiong et al. Constructing strategies for hierarchically porous MOFs with different pore sizes and applications in adsorption and catalysis
Jin et al. New types of di-, tetra-, hexa-and octanuclear Ag (I) complexes containing 1, 3-adamantanedicarboxylic acid
JP2000210559A (en) Gas storable organic metal complex, manufacture thereof and gas storage device
Kravchenko et al. Templated solvent-free powder synthesis and MOF-CVD films of the ultramicroporous metal–organic framework α-magnesium formate
Holmes et al. Honeycombs, herringbones and brick-walls; three-fold guest-dependent variation in copper trimesate complexes bearing sulfimide ligands
JP2004043454A (en) Porous structure of metal complex and catalyst
KR101091875B1 (en) A purification method of porous metal-organic framework materials
Thammakan et al. Gas adsorption, proton conductivity, and sensing potential of a nanoporous gadolinium coordination framework
JP5213242B2 (en) Porous metal complex, method for producing porous metal complex, adsorbent, separation material, and hydrogen adsorbent