JP2004043430A - Crystalline disodium etidronate hydrate - Google Patents

Crystalline disodium etidronate hydrate Download PDF

Info

Publication number
JP2004043430A
JP2004043430A JP2003075422A JP2003075422A JP2004043430A JP 2004043430 A JP2004043430 A JP 2004043430A JP 2003075422 A JP2003075422 A JP 2003075422A JP 2003075422 A JP2003075422 A JP 2003075422A JP 2004043430 A JP2004043430 A JP 2004043430A
Authority
JP
Japan
Prior art keywords
etidronate
disodium
crystalline
hydrate
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003075422A
Other languages
Japanese (ja)
Other versions
JP3898662B2 (en
Inventor
Koichi Murata
村田 弘一
Michio Yamato
大和 道雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Pharmaceuticals Co Ltd
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Pharmaceuticals Co Ltd
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Pharmaceuticals Co Ltd, Sumitomo Chemical Co Ltd filed Critical Sumitomo Pharmaceuticals Co Ltd
Priority to JP2003075422A priority Critical patent/JP3898662B2/en
Publication of JP2004043430A publication Critical patent/JP2004043430A/en
Application granted granted Critical
Publication of JP3898662B2 publication Critical patent/JP3898662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for readily producing disodium etidronate hydrate in a high yield. <P>SOLUTION: The method for producing the crystalline disodium etidronate hydrate improved in a filtering property comprises adding a hydrophilic organic solvent comprising an alcohol (e.g. methanol or ethanol), a ketone (e.g. acetone or 2-butanone), a nitrile (e.g. acetonitrile), an amide (e.g. N,N-dimethylformamide or N,N-dimethylacetamide), an ether (e.g. tetrahydrofuran or dioxane), dimethyl sulfoxide or N-methylpyrrolidone alone or a mixture thereof to an aqueous solution of disodium etidronate at a rate delaying primary nucleus formation and promoting secondary nucleus formation and an optimal temperature and pH. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、医薬として使用されるエチドロン酸2ナトリウムの製造方法に関する。
【0002】
【従来の技術】
エチドロン酸2ナトリウムは、構造式:
【化1】

Figure 2004043430
で示され、骨粗鬆症、脊髄損傷後または股関節形成術後における初期および進行期の異所性骨化の抑制、骨ページェット病等の治療剤として販売されている。
エチドロン酸2ナトリウムは、種々の方法で製造されるエチドロン酸(特許文献1等)を水酸化ナトリウム等で中和することで製造される。しかし、その工業的な製造方法については知られていなかった。
【0003】
他方、結晶性エチドロン酸2ナトリウム水和物は、以下の2つの文献で知られている。
非特許文献1には、エチドロン酸2ナトリウム2水和物が製造されたこと、およびその粉末X線スペクトルデータが記載されている。しかし、本文献にはエチドロン酸カリウムの非常に簡単な製造例が記載されているのみであり、エチドロン酸2ナトリウム2水和物が具体的にいかに製造されたか、またいかなる物性、晶癖、晶相を有する結晶であったかに関しては一切記載されていない。なお、粉末X線回折図によると、本発明の結晶性エチドロン酸2ナトリウム水和物は、この結晶とは異なる結晶である。
非特許文献2には、エチドロン酸2ナトリウム水溶液をメタノールに加えて一旦固化・結晶化させた後、水のみから再結晶することで、エチドロン酸2ナトリウム4水和物を製造したことが記載されている。しかし、この方法は固化・結晶化およびろ過の操作をそれぞれ2度行わなければならず、工業的に実施するには困難であり、また収率も51%と低かった。
【特許文献1】
特公昭50−17456号公報
【非特許文献1】
Monatshefte fur Chemie 99, p.2016−2023 (1968)
【非特許文献2】
Zeitschrift fur Anorganische und Allgemeine Chemie Band 381, p.247−259 (1971)
【0004】
【発明が解決しようとする課題】
まず、エチドロン酸2ナトリウム水溶液をメタノールに添加する前述の公知結晶化方法を検討した。この方法では滴下と同時に結晶が析出するために、結晶の大きさを制御することが困難であり、そのため、ろ過に多大な時間がかかり、反応槽から取り出すことが困難であった。また、不純物の除去が不十分になり、さらに単純な乾燥では水、親水性有機溶媒が残留するという問題もあった。そこで、本発明が解決しようとする課題は、エチドロン酸2ナトリウムを工業的に容易に実施できる製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、エチドロン酸2ナトリウム水和物の製造方法につき鋭意検討の結果、親水性有機溶媒をエチドロン酸2ナトリウム水溶液に制御しながら添加することにより、ろ過性が格段に向上したエチドロン酸2ナトリウム水和物の結晶が得られ、また、エチドロン酸2ナトリウム水和物を高収率で、容易に簡便に工業的に製造できることを見出し、本発明を完成した。
即ち、本発明は、以下の通りである。
[1] エチドロン酸2ナトリウムの水溶液に、結晶性エチドロン酸2ナトリウム水和物の一次核形成を遅らせると共に二次核形成を助長する速度で親水性有機溶媒を添加して結晶化処理することを特徴とする結晶性エチドロン酸2ナトリウム水和物の製造方法。
[2] 一次核形成を遅らせると共に二次核形成を助長する速度が2時間以上で添加する速度である[1]記載の製造方法。
[3] 結晶化中に温度を下げる[1]または[2]記載の製造方法。
[4] 結晶化開始時の温度が約30〜約60℃であり、結晶採取時の温度が約−10〜約20℃である[3]記載の製造方法。
[5] エチドロン酸2ナトリウムの水溶液のpHが4.2〜5.2の範囲にある[1]〜[4]のいずれか記載の製造方法。
[6] 親水性有機溶媒がメタノール、エタノールまたはアセトンである[1]〜[5]のいずれか記載の製造方法。
[7] エチドロン酸2ナトリウムの水溶液に親水性有機溶媒を加え、結晶性エチドロン酸2ナトリウム水和物が飽和した状態で、エチドロン酸2ナトリウム水和物の種晶を添加する[1]〜[6]のいずれか記載の製造方法。
【0006】
[8] 粉末X線回折図において回折角(2θ):8.3、12.9および16.7度に主ピークを示す結晶性エチドロン酸2ナトリウム水和物。
[9] 粉末X線回折図において下記の回折角(2θ)および相対強度を示す結晶性エチドロン酸2ナトリウム水和物。
【表2】
Figure 2004043430
[10] 2水和物である[8]または[9]記載のエチドロン酸2ナトリウム水和物。
[11] 粒子長の平均が約100μmより大きく、長さ対幅のアスペクト比の平均が約4:1以上である[1]〜[7]のいずれか記載の製造方法で製造される結晶性エチドロン酸2ナトリウム水和物。
[12] 粒子長の平均が約100μmより大きく、長さ対幅のアスペクト比の平均が約5:1〜約15:1の範囲である[1]〜[7]のいずれか記載の製造方法で製造される結晶性エチドロン酸2ナトリウム水和物。
[13] [1]〜[7]のいずれか記載の製造方法で製造された結晶性エチドロン酸2ナトリウム水和物、または[8]〜[12]のいずれか記載の結晶性エチドロン酸2ナトリウム水和物を乾燥することによる無水エチドロン酸2ナトリウムの製造方法。
[14] [1]〜[7]のいずれか記載の製造方法で製造された結晶性エチドロン酸2ナトリウム水和物、[8]〜[12]のいずれか記載の結晶性エチドロン酸2ナトリウム水和物、または[13]記載の製造方法で製造された無水エチドロン酸2ナトリウムを、必要に応じて粉砕し、薬学上許容される賦形剤および必要に応じて崩壊剤、結合剤、滑沢剤と混合することによる医薬製剤の製造方法。
【0007】
【発明の実施の形態】
本発明に供されるエチドロン酸2ナトリウムの水溶液は、例えば市販されているエチドロン酸の水溶液に水酸化ナトリウム等のナトリウム塩基を反応させて調整することができる。その際、pHが4.2〜5.2の範囲になるようにナトリウム塩基を加えるのが好ましい。それにより、高純度の結晶性エチドロン酸2ナトリウム水和物を収率よく製造することができる。
エチドロン酸2ナトリウムの水溶液における水の量は、エチドロン酸2ナトリウムが溶解する量であれば特に制限されないが、例えばエチドロン酸2ナトリウムに対して約1重量倍以上が挙げられる。ただし、多量の水を使用すれば結晶化溶媒量の総量が大きくなり、意味もなく大きな製造装置が必要となるため、水の量は、通常エチドロン酸2ナトリウムに対して約1〜約10重量倍、さらに好ましくは約1.3〜約5重量倍が挙げられる。
【0008】
親水性有機溶媒としては、例えば、アルコール(メタノール、エタノール、イソプロピルアルコール、エチレングリコール等)、ケトン(アセトン、2−ブタノン等)、ニトリル(アセトニトリル等)、アミド(N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ホルムアミド等)、エーテル(テトラヒドロフラン、ジオキサン等)、ジメチルスルホキシド、N−メチル−2−ピロリドン、およびこれらの混合溶媒等が挙げられる。工業的に安価であり、結晶取り出し後の乾燥の容易性から、メタノール、エタノール、アセトン等が好ましく、メタノールが特に好ましい。なお、結晶化中に、水と有機溶媒の二相に分離しない程度の量の疎水性有機溶媒をさらに添加してもよい。その場合、疎水性有機溶媒は親水性有機溶媒に予め混合しておいてもよいし、親水性有機溶媒とは別に加えてもよい。疎水性有機溶媒としては、芳香族炭化水素(ベンゼン、トルエン、クロルベンゼン等)、炭化水素(ヘキサン、ヘプタン等)、ハロゲン系溶媒(クロロホルム、塩化メチレン等)、およびこれらの混合溶媒等が挙げられる。
親水性有機溶媒の量としては、その溶媒の種類により異なるが、例えば、結晶化終了後の水を含む全溶媒量に対する比率として約10〜約90%(w/w)の範囲になる量、好ましくは約40〜約80%(w/w)の範囲になる量が挙げられる。結晶化終了後の水を含む全溶媒量は、その取扱いの点から、通常、エチドロン酸2ナトリウムに対して約3〜約20重量倍、好ましくは約5〜約12重量倍の範囲が挙げられる。
また、エチドロン酸2ナトリウムの水溶液に、予め親水性有機溶媒を結晶が析出しない程度、混和させることもできる。ここで用いる親水性有機溶媒としては、通常、結晶化に用いる親水性有機溶媒と同じものを用いることが好ましい。
【0009】
一次核形成を遅らせると共に二次核形成を助長する速度で親水性有機溶媒を添加することで、本発明の結晶性エチドロン酸2ナトリウム水和物を製造することができる。その一次核形成を遅らせると共に二次核形成を助長する速度としては、例えば2時間以上で親水性有機溶媒を添加する速度を挙げることができる。時間の上限については特に制限はないが、通常は24時間以内で十分である。親水性有機溶媒の添加時間が2時間より短い場合は、析出する結晶がシャーベット状となったり、大きな塊となったりして、攪拌できない、反応容器からの抜き出しができない、不純物をかみこむ等の問題が生じ、工業的に製造するのが困難となり、さらには精製効果も不十分となる。
親水性有機溶媒添加時の温度はその有機溶媒の種類によって変わるが、通常は約−10〜約100℃であり、好ましくは約0〜約60℃が挙げられる。結晶化中に、すなわち親水性有機溶媒添加中に、または添加後に、段階的あるいは継続的に温度を下げることも好ましい。具体的には、例えば結晶化開始時の温度を約30〜約60℃とし、段階的あるいは継続的に温度を下げて、結晶採取時の温度を約−10〜約20℃まで下げることができる。また、親水性有機溶媒添加終了後、さらに熟成をかねて保温することもできる。
なお、飽和溶液になった段階で、結晶性エチドロン酸2ナトリウム水和物または無水エチドロン酸2ナトリウムの種晶を添加することもできる。
【0010】
本発明の結晶性エチドロン酸2ナトリウム水和物の晶相は、通常、粒子長の平均が約100μmより大きく、長さ対幅のアスペクト比の平均が約4:1以上である。さらに好適には、粒子長の平均が約100μmより大きく、長さ対幅のアスペクト比の平均が約5:1〜約15:1の範囲である結晶性エチドロン酸2ナトリウム水和物が挙げられる。この晶相により、本発明の結晶性エチドロン酸2ナトリウム水和物は、ろ過性が格段に向上しており、工業的に容易にろ過することができる。また、さらに再結晶等の煩雑な操作を行わなくても、純度の良好な結晶性エチドロン酸2ナトリウム水和物を得ることができる。
結晶化終了後、ろ過等の操作により、本発明の結晶性エチドロン酸2ナトリウム水和物を取り出すことができる。
【0011】
取り出した結晶性エチドロン酸2ナトリウム水和物を、水和水を放出させずに乾燥するには、例えば減圧下約30〜約40℃で乾燥することで実施できる。その際、重量の減少を観測しながら乾燥するのが好ましい。
本発明の結晶性エチドロン酸2ナトリウム水和物は、必要に応じて加熱乾燥して無水エチドロン酸2ナトリウムとすることができる。乾燥方法としては、通風乾燥、減圧乾燥等の通常の乾燥方法を挙げることができ、乾燥時間は特に制限されない。乾燥温度としては、通常約90〜約150℃の範囲が挙げられる。好ましくは、減圧下、約100〜約140℃で乾燥するのがよい。
好ましい減圧度としては、例えば約1〜約5kPa程度の減圧度(圧力)が挙げられる。
【0012】
本発明の結晶性エチドロン酸2ナトリウム水和物または無水エチドロン酸2ナトリウムは、必要に応じて粉砕し、常法に従って、薬学上許容される賦形剤等と混合することによって医薬製剤を製造することができる。なお、造粒は乾式造粒することが好ましい。混合される薬学上許容される賦形剤等としては、例えば、乳糖、トウモロコシデンプン、結晶セルロース、D−マンニトール、リン酸水素カルシウム、部分アルファー化デンプン、加工デンプン、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、クロスポビドン等の賦形剤または崩壊剤、ヒドロキシプロピルセルロース(低置換度ヒドロキシプロピルセルロース等)、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、コポリピドン等の結合剤、ステアリン酸マグネシウム、ステアリン酸カルシウム、タルク等の滑沢剤等が挙げられる。
【0013】
【実施例】
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
参考例
エチドロン酸2ナトリウム水溶液の調製
市販されている60%エチドロン酸水溶液1000gに27%水酸化ナトリウム水溶液863gを加えて、pH4.7となるまで中和した。これにより、39%エチドロン酸2ナトリウム水溶液1863gを調製した。
【0014】
実施例1
結晶性エチドロン酸2ナトリウム水和物の製造、およびその乾燥による無水物の製造
コンデンサーと攪拌機付きの反応容器に、参考例の39%エチドロン酸2ナトリウム水溶液418gおよび水146gを加え、40℃で攪拌した。溶解を確認後、42℃でメタノール34gを加え、さらにメタノール694gを40℃で5時間かけて滴下した。析出した結晶をろ取することで、結晶性エチドロン酸2ナトリウム水和物を針状結晶として得た。
減圧下乾燥することで、無水エチドロン酸2ナトリウム(純度99.9%、収率95.6%)を得た。
【0015】
実施例2
結晶性エチドロン酸2ナトリウム水和物の製造、およびその乾燥による無水物の製造
コンデンサーと攪拌機付きの反応容器に、参考例の39%エチドロン酸2ナトリウム水溶液418gおよび水308gを加え、50℃で攪拌した。溶解を確認後、50℃でメタノール146gを加え、メタノール224gを3時間かけて滴下し、さらに368gのメタノールを4時間かけて滴下した。このとき滴下しながら内温を20℃まで冷却した。析出した結晶をろ取することで、結晶性エチドロン酸2ナトリウム水和物を針状結晶として得た。
減圧下乾燥することで、無水エチドロン酸2ナトリウム(純度99.9%、収率97.1%)を得た。
【0016】
実施例3
結晶性エチドロン酸2ナトリウム水和物の製造、およびその乾燥による無水物の製造
滴下するメタノールの量を232gとし、メタノール滴下終了後さらに2時間かけて20℃まで冷却する以外は実施例1と同様の実験を行い、無水エチドロン酸2ナトリウム(純度100%、収率97.1%)を得た。
【0017】
実施例4
結晶性エチドロン酸2ナトリウム水和物の製造、およびその乾燥による無水物の製造
コンデンサーと攪拌機付きの反応容器に、参考例の39%エチドロン酸2ナトリウム水溶液418gおよび水308gを加え、50℃で攪拌した。溶解を確認後、50℃でメタノール146gを加え、メタノール224gを3時間かけて滴下し、さらにメタノール368gを4時間かけて滴下した。このとき滴下しながら内温を20℃まで冷却した。析出した結晶をろ取することで、結晶性エチドロン酸2ナトリウム水和物を針状結晶として得た。
減圧下乾燥して、無水エチドロン酸2ナトリウム(純度99.9%、収率97.1%)を得た。
【0018】
実施例5
結晶性エチドロン酸2ナトリウム水和物の製造、およびその乾燥による無水物の製造
メタノールに代えてアセトンを用い、アセトン滴下後の冷却を10℃まで行なう以外は実施例3と同様の実験を行い、無水エチドロン酸2ナトリウム(純度99.9%、牧率97.4%)を得た。不純物であるリン酸の含量は0.01%未満、亜リン酸の含量は0.03%であった。
【0019】
実施例6
結晶性エチドロン酸2ナトリウム水和物の製造、およびその乾燥による無水物の製造
コンデンサーと攪拌機付きの反応容器に、25%エチドロン酸2ナトリウム水溶液(pH 4.7) 189gを加え、50℃で保温した。同温度でメタノール44gをゆっくりと滴下し、エチドロン酸2ナトリウム無水物の種晶を加え、さらにメタノール68gを2時間かけて滴下した。その後、10℃まで4時間かけて徐冷しながら、メタノールを111gを3時間で滴下した。同温度で30分間攪拌し、析出した結晶をろ取することで、結晶性エチドロン酸2ナトリウム水和物の未乾燥品85gを針状結晶として得た。
得られた結晶性水和物の未乾燥品のうち83g分を取り、減圧(約1kPaの圧力)下、110℃で約20時間乾燥することで、無水エチドロン酸2ナトリウム44.9g(収率97.5%)を得た。
【0020】
実施例7
粉末X線回折
実施例6で製造した結晶性エチドロン酸2ナトリウム水和物の粉末X線回折パターンを、理学電機(株)のX線回折装置RINT2500Vにより、Cu・Kαの1.541Åを用いて測定した。その粉末X線回折図における回折角(2θ)および相対強度は前記表2に示すとおりであり、またその回折図は図1に示すとおりである。
なお、回折角(2θ)の値は、標準的な精度を有しており、例えば±0.1度程度の精度を有している。また、相対強度の値は、標準的な精度を有している。
また、示差走査熱量測定の結果から、結晶性エチドロン酸2ナトリウム水和物は2水和物だと推定された。
【0021】
比較例1
メタノールの滴下時間を1時間とする以外は、実施例1と同様の実験を行った。析出した結晶は、途中でシャーベット状になり攪拌羽のあるところ以外は攪拌がかからなくなった。また、この状態ではその流動性が悪いため、大部分は反応容器から取り出すことができなかった。
【0022】
比較例2
コンデンサーと攪拌機付きの反応容器に、メタノール728gを加え、攪拌下室温で、参考例の39%エチドロン酸2ナトリウム水溶液418gを滴下した。滴下したエチドロン酸2ナトリウムの液滴がそのまま固化し、反応容器の底に沈んだ。また、反応容器の抜き出し口のところが閉塞してしまい、製品化可能な結晶の取り出しができなかった。反応容器上部の滴下口からこの結晶を少量取り出し、減圧下乾燥後、分析した。不純物であるリン酸の含量は0.10%、亜リン酸の含量は0.40%であり、精製効果は不十分であった。
【0023】
Figure 2004043430
エチドロン酸2ナトリウム、結晶セルロースおよびヒドロキシプロピルセルロースを混合し、乾式造粒し、整粒し、ステアリン酸マグネシウムと混合して打錠することで、錠剤を製造することができる。
【0024】
Figure 2004043430
エチドロン酸2ナトリウム、低置換度ヒドロキシプロピルセルロースおよびヒドロキシプロピルセルロースを混合し、乾式造粒し、整粒し、ステアリン酸マグネシウムと混合して打錠することで、錠剤を製造することができる。
【0025】
Figure 2004043430
エチドロン酸2ナトリウム、トウモロコシデンプンおよびヒドロキシプロピルセルロースを混合し、乾式造粒し、整粒し、ステアリン酸マグネシウムと混合して打錠することで、錠剤を製造することができる。
【0026】
Figure 2004043430
エチドロン酸2ナトリウム、結晶セルロースおよび加工デンプンを混合し、乾式造粒し、整粒し、ステアリン酸マグネシウムと混合して打錠することで、錠剤を製造することができる。
【0027】
【発明の効果】
本発明方法によって、高品質のエチドロン酸2ナトリウムを容易に、高収率で製造することができる。
【図面の簡単な説明】
【図1】実施例6で製造された結晶性エチドロン酸2ナトリウム水和物の粉末X線回折図である。
【図2】実施例6でろ過直前のスラリーの一部をサンプリングして取った、結晶性エチドロン酸2ナトリウム水和物の顕微鏡写真である。1目盛りは100μmを表している。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing disodium etidronate used as a medicament.
[0002]
[Prior art]
Disodium etidronate has the structural formula:
Embedded image
Figure 2004043430
And is marketed as a therapeutic agent for osteoporosis, suppression of ectopic ossification in the early and advanced stages after spinal cord injury or hip arthroplasty, bone Paget's disease and the like.
Etidronic acid disodium is produced by neutralizing etidronic acid (Patent Document 1 etc.) produced by various methods with sodium hydroxide or the like. However, its industrial production method was not known.
[0003]
On the other hand, crystalline etidronate disodium hydrate is known from the following two documents.
Non-Patent Document 1 describes that etidronate disodium dihydrate was produced and its powder X-ray spectrum data. However, this document only describes a very simple example of the production of potassium etidronate, and specifically describes how etidronate disodium dihydrate was produced, and any physical properties, crystal habit, and crystallinity. No mention is made as to whether the crystal had a phase. According to the powder X-ray diffraction diagram, the crystalline etidronate disodium hydrate of the present invention is a crystal different from this crystal.
Non-patent Document 2 describes that disodium etidronate tetrahydrate was produced by adding an aqueous solution of disodium etidronate to methanol, solidifying and crystallizing once, and then recrystallizing from water alone. ing. However, in this method, solidification / crystallization and filtration must be performed twice, which is difficult to carry out industrially, and the yield is as low as 51%.
[Patent Document 1]
Japanese Patent Publication No. 50-17456 [Non-Patent Document 1]
Monatshefte fur Chemie 99, p. 2016-2023 (1968)
[Non-patent document 2]
Zeitschrift fur Anorganische und Allgemeine Chemie Band 381, p. 247-259 (1971)
[0004]
[Problems to be solved by the invention]
First, the above-mentioned known crystallization method in which an aqueous solution of disodium etidronate was added to methanol was examined. In this method, it is difficult to control the size of the crystal because the crystal is precipitated at the same time as the dropping, so that it takes a lot of time for filtration and it is difficult to remove the crystal from the reaction tank. Further, there has been a problem that the removal of impurities becomes insufficient, and further, water and a hydrophilic organic solvent remain by simple drying. Therefore, an object of the present invention is to provide a method for producing disodium etidronate industrially and easily.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a method for producing etidronic acid disodium hydrate, and as a result, while adding a hydrophilic organic solvent to a disodium etidronate aqueous solution while controlling the method, etidronic acid having significantly improved filterability. The present invention has been found that crystals of disodium hydrate can be obtained, and that ethidronic acid disodium hydrate can be easily and easily industrially produced in a high yield.
That is, the present invention is as follows.
[1] Crystallizing treatment by adding a hydrophilic organic solvent to an aqueous solution of etidronate disodium at a rate that slows down the primary nucleation of crystalline etidronate disodium hydrate and promotes secondary nucleation. A method for producing crystalline etidronate disodium hydrate, which is characterized by the following.
[2] The production method according to [1], wherein the rate of delaying primary nucleation and promoting secondary nucleation is the rate of addition in 2 hours or more.
[3] The production method according to [1] or [2], wherein the temperature is lowered during crystallization.
[4] The production method according to [3], wherein the temperature at the start of crystallization is about 30 to about 60 ° C, and the temperature at the time of collecting the crystals is about -10 to about 20 ° C.
[5] The method according to any one of [1] to [4], wherein the pH of the aqueous solution of disodium etidronate is in the range of 4.2 to 5.2.
[6] The production method according to any one of [1] to [5], wherein the hydrophilic organic solvent is methanol, ethanol or acetone.
[7] A hydrophilic organic solvent is added to an aqueous solution of disodium etidronate, and seed crystals of disodium etidronate hydrate are added in a state where crystalline sodium disodium etidronate is saturated [1] to [1]. 6].
[0006]
[8] Crystalline etidronate disodium hydrate showing main peaks at diffraction angles (2θ): 8.3, 12.9 and 16.7 degrees in a powder X-ray diffraction diagram.
[9] A crystalline disodium etidronate hydrate having the following diffraction angle (2θ) and relative intensity in a powder X-ray diffraction pattern.
[Table 2]
Figure 2004043430
[10] The etidronate disodium hydrate according to [8] or [9], which is a dihydrate.
[11] The crystallinity produced by the production method according to any one of [1] to [7], wherein the average of the particle length is larger than about 100 μm and the average of the length to width aspect ratio is about 4: 1 or more. Etidronate disodium hydrate.
[12] The method according to any one of [1] to [7], wherein the average of the particle length is larger than about 100 μm, and the average of the length to width aspect ratio is in the range of about 5: 1 to about 15: 1. Crystalline etidronic acid disodium hydrate produced by the above.
[13] The crystalline etidronate disodium hydrate produced by the production method according to any one of [1] to [7], or the crystalline etidronate disodium sodium according to any of [8] to [12] A method for producing anhydrous etidronate disodium by drying a hydrate.
[14] The crystalline etidronate disodium hydrate produced by the production method according to any one of [1] to [7], and the crystalline etidronate disodium aqueous solution according to any of [8] to [12] The disodium etidronate anhydrous produced by the production method described in [13], or a pharmaceutically acceptable excipient and, if necessary, a disintegrant, a binder, and a lubricant. A method for producing a pharmaceutical preparation by mixing with an agent.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The aqueous solution of disodium etidronate used in the present invention can be prepared, for example, by reacting a commercially available aqueous solution of etidronic acid with a sodium base such as sodium hydroxide. At this time, it is preferable to add a sodium base so that the pH is in the range of 4.2 to 5.2. Thereby, high-purity crystalline etidronic acid disodium hydrate can be produced with a high yield.
The amount of water in the aqueous solution of disodium etidronate is not particularly limited as long as it dissolves disodium etidronate, and may be, for example, about 1 times or more by weight of disodium etidronate. However, if a large amount of water is used, the total amount of the crystallization solvent becomes large, and a large production apparatus is insignificant. Therefore, the amount of water is usually about 1 to about 10 weight per disodium etidronate. Times, more preferably about 1.3 to about 5 times by weight.
[0008]
Examples of the hydrophilic organic solvent include alcohols (eg, methanol, ethanol, isopropyl alcohol, ethylene glycol), ketones (eg, acetone, 2-butanone), nitriles (eg, acetonitrile), amides (eg, N, N-dimethylformamide, N, N). N-dimethylacetamide, formamide, etc.), ethers (tetrahydrofuran, dioxane, etc.), dimethylsulfoxide, N-methyl-2-pyrrolidone, and a mixed solvent thereof. Methanol, ethanol, acetone, and the like are preferred from the viewpoint of industrial low cost and ease of drying after taking out the crystals, and methanol is particularly preferred. During the crystallization, a hydrophobic organic solvent may be further added in such an amount that it does not separate into two phases of water and an organic solvent. In that case, the hydrophobic organic solvent may be previously mixed with the hydrophilic organic solvent, or may be added separately from the hydrophilic organic solvent. Examples of the hydrophobic organic solvent include aromatic hydrocarbons (benzene, toluene, chlorobenzene, etc.), hydrocarbons (hexane, heptane, etc.), halogenated solvents (chloroform, methylene chloride, etc.), and mixed solvents thereof. .
The amount of the hydrophilic organic solvent varies depending on the type of the solvent, but, for example, an amount in a range of about 10 to about 90% (w / w) as a ratio to the total amount of the solvent including water after completion of crystallization, Preferably, the amount is in the range of about 40 to about 80% (w / w). From the viewpoint of handling, the total amount of the solvent containing water after the crystallization is completed is usually about 3 to about 20 times by weight, preferably about 5 to about 12 times by weight based on disodium etidronate. .
In addition, a hydrophilic organic solvent can be previously mixed with an aqueous solution of disodium etidronate to such an extent that crystals do not precipitate. As the hydrophilic organic solvent used here, it is usually preferable to use the same hydrophilic organic solvent used for crystallization.
[0009]
The crystalline etidronate disodium hydrate of the present invention can be produced by adding a hydrophilic organic solvent at a rate that delays primary nucleation and promotes secondary nucleation. Examples of the rate at which the primary nucleation is delayed and the secondary nucleation is promoted include, for example, the rate at which the hydrophilic organic solvent is added in 2 hours or more. There is no particular upper limit on the time, but usually 24 hours or less is sufficient. If the addition time of the hydrophilic organic solvent is shorter than 2 hours, the precipitated crystals may become sherbet-like or form large lumps, and cannot be stirred, cannot be extracted from the reaction vessel, or may have impurities. A problem arises, making it difficult to produce industrially, and the purification effect is also insufficient.
The temperature at the time of adding the hydrophilic organic solvent varies depending on the type of the organic solvent, but is usually about -10 to about 100C, preferably about 0 to about 60C. It is also preferred to reduce the temperature stepwise or continuously during crystallization, ie during or after the addition of the hydrophilic organic solvent. Specifically, for example, the temperature at the start of crystallization is set to about 30 to about 60 ° C., and the temperature is lowered stepwise or continuously, so that the temperature at the time of collecting the crystals can be reduced to about −10 to about 20 ° C. . After completion of the addition of the hydrophilic organic solvent, the temperature can be maintained without further aging.
At the stage when the solution becomes a saturated solution, seed crystals of crystalline etidronate disodium hydrate or anhydrous etidronate disodium can be added.
[0010]
The crystalline phase of the crystalline etidronate disodium hydrate of the present invention typically has an average particle length greater than about 100 μm and an average length to width aspect ratio of about 4: 1 or greater. More preferably, crystalline etidronate disodium hydrate having an average particle length greater than about 100 μm and an average length to width aspect ratio in the range of about 5: 1 to about 15: 1. . Due to this crystal phase, the crystalline etidronate disodium hydrate of the present invention has remarkably improved filterability, and can be easily filtered industrially. Further, it is possible to obtain crystalline etidronate disodium hydrate of good purity without further complicated operations such as recrystallization.
After the crystallization, the crystalline etidronate disodium hydrate of the present invention can be taken out by an operation such as filtration.
[0011]
The crystalline etidronate disodium hydrate taken out can be dried without releasing water of hydration, for example, by drying under reduced pressure at about 30 to about 40 ° C. In that case, it is preferable to dry while observing a decrease in weight.
The crystalline etidronate disodium hydrate of the present invention can be heated and dried as necessary to obtain anhydrous etidronate disodium. Examples of the drying method include ordinary drying methods such as ventilation drying and drying under reduced pressure, and the drying time is not particularly limited. The drying temperature generally ranges from about 90 to about 150C. Preferably, it is dried at about 100 to about 140 ° C. under reduced pressure.
The preferable degree of pressure reduction is, for example, a degree of pressure reduction (pressure) of about 1 to about 5 kPa.
[0012]
The crystalline etidronate disodium hydrate or anhydrous etidronate anhydrous of the present invention is pulverized, if necessary, and mixed with a pharmaceutically acceptable excipient or the like according to a conventional method to produce a pharmaceutical preparation. be able to. The granulation is preferably performed by dry granulation. Pharmaceutically acceptable excipients and the like to be mixed include, for example, lactose, corn starch, crystalline cellulose, D-mannitol, calcium hydrogen phosphate, partially pregelatinized starch, modified starch, carboxymethylcellulose, carboxymethylcellulose calcium, cloth Excipients or disintegrants such as carmellose sodium, sodium carboxymethyl starch, crospovidone, binders such as hydroxypropylcellulose (low-substituted hydroxypropylcellulose), hydroxypropylmethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, copolypidone, stearin Lubricants such as magnesium acid, calcium stearate, and talc.
[0013]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
Reference example
Preparation of Disodium Etidronate Aqueous Solution To 1000 g of a commercially available 60% etidronic acid aqueous solution, 863 g of a 27% aqueous sodium hydroxide solution was added to neutralize the solution to pH 4.7. In this way, 1863 g of a 39% aqueous solution of etidronate disodium was prepared.
[0014]
Example 1
Production of crystalline etidronate disodium hydrate and production of anhydride by drying thereof To a reaction vessel equipped with a condenser and a stirrer, 418 g of a 39% aqueous solution of disodium etidronate of Reference Example and 146 g of water were added. Stirred at 40 ° C. After confirming dissolution, 34 g of methanol was added at 42 ° C, and 694 g of methanol was further added dropwise at 40 ° C over 5 hours. The precipitated crystals were collected by filtration to obtain crystalline etidronic acid disodium hydrate as needle crystals.
By drying under reduced pressure, anhydrous etidronate disodium (purity 99.9%, yield 95.6%) was obtained.
[0015]
Example 2
Production of crystalline etidronate disodium hydrate and production of anhydride by drying thereof To a reaction vessel equipped with a condenser and a stirrer, 418 g of a 39% disodium etidronate aqueous solution of Reference Example and 308 g of water were added. Stirred at 50 ° C. After confirming dissolution, 146 g of methanol was added at 50 ° C., 224 g of methanol was added dropwise over 3 hours, and 368 g of methanol was added dropwise over 4 hours. At this time, the internal temperature was cooled to 20 ° C. while dripping. The precipitated crystals were collected by filtration to obtain crystalline etidronic acid disodium hydrate as needle crystals.
By drying under reduced pressure, anhydrous etidronate disodium (purity 99.9%, yield 97.1%) was obtained.
[0016]
Example 3
Production of crystalline etidronic acid disodium hydrate and production of an anhydride by drying The method was carried out except that the amount of methanol to be dropped was 232 g, and after addition of methanol, the mixture was cooled to 20 ° C. over 2 hours. The same experiment as in Example 1 was performed to obtain anhydrous etidronate disodium (purity 100%, yield 97.1%).
[0017]
Example 4
Production of crystalline etidronate disodium hydrate and production of anhydride by drying thereof To a reaction vessel equipped with a condenser and a stirrer, 418 g of a 39% disodium etidronate aqueous solution of Reference Example and 308 g of water were added. Stirred at 50 ° C. After confirming dissolution, 146 g of methanol was added at 50 ° C., 224 g of methanol was added dropwise over 3 hours, and 368 g of methanol was added dropwise over 4 hours. At this time, the internal temperature was cooled to 20 ° C. while dripping. The precipitated crystals were collected by filtration to obtain crystalline etidronic acid disodium hydrate as needle crystals.
Drying under reduced pressure gave anhydrous etidronate disodium (purity 99.9%, yield 97.1%).
[0018]
Example 5
Production of crystalline etidronate disodium hydrate and production of anhydride by drying The same as in Example 3 except that acetone is used instead of methanol and cooling after the dropwise addition of acetone is carried out to 10 ° C. An experiment was conducted to obtain anhydrous sodium etidronate (purity 99.9%, pasturage rate 97.4%). The content of phosphoric acid as an impurity was less than 0.01%, and the content of phosphorous acid was 0.03%.
[0019]
Example 6
Production of crystalline etidronate disodium hydrate and production of anhydride by drying thereof To a reaction vessel equipped with a condenser and a stirrer, 189 g of a 25% disodium etidronate aqueous solution (pH 4.7) was added, and The temperature was kept at 50 ° C. At the same temperature, 44 g of methanol was slowly added dropwise, seed crystals of disodium etidronate anhydride were added, and 68 g of methanol was further added dropwise over 2 hours. Thereafter, 111 g of methanol was added dropwise over 3 hours while gradually cooling to 10 ° C. over 4 hours. The mixture was stirred at the same temperature for 30 minutes, and the precipitated crystals were collected by filtration to obtain 85 g of undried crystalline etidronate disodium hydrate as needle crystals.
83 g of the obtained undried crystalline hydrate was taken and dried under reduced pressure (about 1 kPa) at 110 ° C. for about 20 hours to obtain 44.9 g of disodium etidronate anhydride (yield). 97.5%).
[0020]
Example 7
X-ray powder diffraction The X-ray powder diffraction pattern of the crystalline etidronate disodium hydrate produced in Example 6 was measured by using an X-ray diffractometer RINT 2500V of Rigaku Denki Co., Ltd. 541 °. The diffraction angle (2θ) and the relative intensity in the powder X-ray diffraction pattern are as shown in Table 2 above, and the diffraction pattern is as shown in FIG.
Note that the value of the diffraction angle (2θ) has a standard accuracy, for example, an accuracy of about ± 0.1 degrees. Further, the value of the relative intensity has a standard accuracy.
From the results of the differential scanning calorimetry, it was estimated that crystalline etidronate disodium hydrate was a dihydrate.
[0021]
Comparative Example 1
The same experiment as in Example 1 was performed, except that the methanol dripping time was 1 hour. The precipitated crystals became sherbet-like on the way, and were not stirred except for those having stirring blades. Further, in this state, most of the components could not be taken out of the reaction vessel due to poor fluidity.
[0022]
Comparative Example 2
To a reaction vessel equipped with a condenser and a stirrer, 728 g of methanol was added, and 418 g of a 39% aqueous solution of disodium etidronate of Reference Example was added dropwise at room temperature with stirring. The dropped sodium salt of etidronate was solidified as it was and settled at the bottom of the reaction vessel. In addition, the outlet of the reaction vessel was blocked, and it was not possible to take out a crystallizable product. A small amount of this crystal was taken out from the dropping port at the top of the reaction vessel, dried under reduced pressure, and analyzed. The content of phosphoric acid as an impurity was 0.10% and the content of phosphorous acid was 0.40%, and the purification effect was insufficient.
[0023]
Figure 2004043430
Tablets can be manufactured by mixing disodium etidronate, microcrystalline cellulose and hydroxypropyl cellulose, dry granulating, sizing, mixing with magnesium stearate and tableting.
[0024]
Figure 2004043430
Tablets can be manufactured by mixing disodium etidronate, low-substituted hydroxypropylcellulose and hydroxypropylcellulose, dry granulating, sizing, mixing with magnesium stearate and tableting.
[0025]
Figure 2004043430
Tablets can be manufactured by mixing disodium etidronate, corn starch and hydroxypropylcellulose, dry granulating, sizing, mixing with magnesium stearate and tableting.
[0026]
Figure 2004043430
Tablets can be made by mixing disodium etidronate, microcrystalline cellulose and modified starch, dry granulating, sizing, mixing with magnesium stearate and tableting.
[0027]
【The invention's effect】
By the method of the present invention, high quality disodium etidronate can be easily produced in high yield.
[Brief description of the drawings]
FIG. 1 is a powder X-ray diffraction chart of the crystalline etidronate disodium hydrate produced in Example 6.
FIG. 2 is a photomicrograph of crystalline etidronate disodium hydrate taken in Example 6 by sampling a part of the slurry immediately before filtration. One scale represents 100 μm.

Claims (14)

エチドロン酸2ナトリウムの水溶液に、結晶性エチドロン酸2ナトリウム水和物の一次核形成を遅らせると共に二次核形成を助長する速度で親水性有機溶媒を添加して結晶化処理することを特徴とする結晶性エチドロン酸2ナトリウム水和物の製造方法。It is characterized in that a crystallization treatment is performed by adding a hydrophilic organic solvent to an aqueous solution of disodium etidronate at a rate that delays the primary nucleation of crystalline disodium etidronate hydrate and promotes secondary nucleation. A method for producing crystalline etidronate disodium hydrate. 一次核形成を遅らせると共に二次核形成を助長する速度が2時間以上で添加する速度である請求項1記載の製造方法。2. The method according to claim 1, wherein the rate of delaying primary nucleation and promoting secondary nucleation is the rate of addition in 2 hours or more. 結晶化中に温度を下げる請求項1または2記載の製造方法。3. The method according to claim 1, wherein the temperature is lowered during crystallization. 結晶化開始時の温度が約30〜約60℃であり、結晶採取時の温度が約−10〜約20℃である請求項3記載の製造方法。The method according to claim 3, wherein the temperature at the start of crystallization is about 30 to about 60C, and the temperature at the time of collecting the crystals is about -10 to about 20C. エチドロン酸2ナトリウムの水溶液のpHが4.2〜5.2の範囲にある請求項1〜4のいずれか記載の製造方法。The method according to any one of claims 1 to 4, wherein the pH of the aqueous solution of disodium etidronate is in the range of 4.2 to 5.2. 親水性有機溶媒がメタノール、エタノールまたはアセトンである請求項1〜5のいずれか記載の製造方法。The method according to any one of claims 1 to 5, wherein the hydrophilic organic solvent is methanol, ethanol or acetone. エチドロン酸2ナトリウムの水溶液に親水性有機溶媒を加え、結晶性エチドロン酸2ナトリウム水和物が飽和した状態で、エチドロン酸2ナトリウム水和物の種晶を添加する請求項1〜6のいずれか記載の製造方法。A hydrophilic organic solvent is added to an aqueous solution of etidronate disodium, and seed crystals of etidronate disodium hydrate are added in a state where crystalline etidronate disodium hydrate is saturated. The manufacturing method as described. 粉末X線回折図において回折角(2θ):8.3、12.9および16.7度に主ピークを示す結晶性エチドロン酸2ナトリウム水和物。Crystalline etidronate disodium hydrate showing main peaks at diffraction angles (2θ) of 8.3, 12.9 and 16.7 degrees in a powder X-ray diffraction diagram. 粉末X線回折図において下記の回折角(2θ)および相対強度を示す結晶性エチドロン酸2ナトリウム水和物。
Figure 2004043430
Crystalline etidronate disodium hydrate having the following diffraction angle (2θ) and relative intensity in a powder X-ray diffraction pattern.
Figure 2004043430
2水和物である請求項8または9記載のエチドロン酸2ナトリウム水和物。The ethidronate disodium hydrate according to claim 8 or 9, which is a dihydrate. 粒子長の平均が約100μmより大きく、長さ対幅のアスペクト比の平均が約4:1以上である請求項1〜7のいずれか記載の製造方法で製造される結晶性エチドロン酸2ナトリウム水和物。The crystalline etidronic acid disodium aqueous solution produced by the production method according to any one of claims 1 to 7, wherein the average particle length is greater than about 100 µm and the average length to width aspect ratio is about 4: 1 or more. Japanese food. 粒子長の平均が約100μmより大きく、長さ対幅のアスペクト比の平均が約5:1〜約15:1の範囲である請求項1〜7のいずれか記載の製造方法で製造される結晶性エチドロン酸2ナトリウム水和物。The crystal produced by the method of any of claims 1 to 7, wherein the average of the particle length is greater than about 100 m and the average of the length to width aspect ratio is in the range of about 5: 1 to about 15: 1. Ethidronic acid disodium hydrate. 請求項1〜7のいずれか記載の製造方法で製造された結晶性エチドロン酸2ナトリウム水和物、または請求項8〜12のいずれか記載の結晶性エチドロン酸2ナトリウム水和物を乾燥することによる無水エチドロン酸2ナトリウムの製造方法。Drying the crystalline etidronate disodium hydrate produced by the production method according to any one of claims 1 to 7, or the crystalline etidronate disodium hydrate according to any one of claims 8 to 12. For the production of disodium etidronate anhydrous by the above method. 請求項1〜7のいずれか記載の製造方法で製造された結晶性エチドロン酸2ナトリウム水和物、請求項8〜12のいずれか記載の結晶性エチドロン酸2ナトリウム水和物、または請求項13記載の製造方法で製造された無水エチドロン酸2ナトリウムを、必要に応じて粉砕し、薬学上許容される賦形剤および必要に応じて崩壊剤、結合剤、滑沢剤と混合することによる医薬製剤の製造方法。A crystalline etidronate disodium hydrate produced by the production method according to any one of claims 1 to 7, a crystalline etidronate disodium hydrate according to any one of claims 8 to 12, or 13 Pharmaceuticals obtained by milling, if necessary, disodium etidronate disodium produced by the production method described above, and mixing with a pharmaceutically acceptable excipient and, if necessary, a disintegrant, a binder, and a lubricant. Manufacturing method of the preparation.
JP2003075422A 2002-03-20 2003-03-19 Crystalline etidronate disodium hydrate Expired - Lifetime JP3898662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003075422A JP3898662B2 (en) 2002-03-20 2003-03-19 Crystalline etidronate disodium hydrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002078239 2002-03-20
JP2003075422A JP3898662B2 (en) 2002-03-20 2003-03-19 Crystalline etidronate disodium hydrate

Publications (2)

Publication Number Publication Date
JP2004043430A true JP2004043430A (en) 2004-02-12
JP3898662B2 JP3898662B2 (en) 2007-03-28

Family

ID=31719236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003075422A Expired - Lifetime JP3898662B2 (en) 2002-03-20 2003-03-19 Crystalline etidronate disodium hydrate

Country Status (1)

Country Link
JP (1) JP3898662B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063285A1 (en) * 2022-09-23 2024-03-28 주식회사 경보제약 Stable monohydrate form of avibactam sodium salt and preparation method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063285A1 (en) * 2022-09-23 2024-03-28 주식회사 경보제약 Stable monohydrate form of avibactam sodium salt and preparation method therefor

Also Published As

Publication number Publication date
JP3898662B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
KR101153606B1 (en) Process for preparing atazanavir bisulfate and novel forms
JP2007302658A (en) POLYMORPHIC FORM AND NEW CRYSTAL FORM AND AMORPHOUS FORM OF IMATINIB MESYLATE, AND METHOD FOR PREPARING FORMalpha
AU2020276695A1 (en) New crystalline forms of N-(3-(2-(2-hydroxyethoxy)-6-morpholinopyridin-4-yl)-4-methvlphenyl)-2 (trifluoromethyl)isonicotinamide as Raf inhibitors for the treatment of cancer
WO2004056804A2 (en) Solid states of pantoprazole sodium, processes for preparing them and processes for preparing known pantoprazole sodium hydrates
EP3765464A1 (en) Solid state forms of relugolix
WO2015191945A2 (en) Solid state forms of sofosbuvir
WO2021236709A1 (en) Solid state forms of tapinarof
MXPA04007995A (en) Processes for desolvating solvates of atorvastatin hemi-calcium and atorvastatin hemi-calcium essentially free of organic solvent.
CN1880294B (en) Polymorphic forms of dexketoprofen trometamol, preparation and pharmaceutical compositions thereof
JP2004526714A (en) New crystalline forms of lamotrigine and methods for their preparation
JP3898662B2 (en) Crystalline etidronate disodium hydrate
WO2021119223A1 (en) Solid state form of lemborexant
KR20070034080A (en) Crystalline Form of 1,24 (S) -Dihydroxy Vitamin D2
US10611793B1 (en) Solid state forms of obeticholic acid salts
US20230373998A1 (en) Solid state forms of lorecivivint
JP2004512282A (en) Crystal form of 1- [6-chloro-5- (trifluoromethyl) -2-pyridinyl] piperazine hydrochloride
KR101338289B1 (en) A METHOD OF PREPARING CRYSTALLINE FORM OF INDOMETHACIN α-FORM AND CRYSTALLINE FORM OF INDOMETHACIN α-FORM PRODUCED BY THE SAME
EP1795530A1 (en) Process for preparing known pantoprazole sodium sesquihydrate
JP3532558B2 (en) Method for producing L-calcium aspartate trihydrate crystals
JP3931884B2 (en) Tablet manufacturing method
CA3167087A1 (en) Solid state forms of avasopasem manganese and process for preparation thereof
WO2020154581A1 (en) Solid state forms of fedovapagon-salicyclic acid co-crystal
WO2024069574A1 (en) Solid state forms of denifanstat
WO2023102085A1 (en) Solid state forms of deucravacitinib, deucravacitinib hcl and process for preparation of deucravacitinib and intermediates
WO2021046014A1 (en) Solid state forms of pamiparib and process for preparation thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3898662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term