JP2004043200A - Method of supporting optical fiber preform - Google Patents

Method of supporting optical fiber preform Download PDF

Info

Publication number
JP2004043200A
JP2004043200A JP2002199165A JP2002199165A JP2004043200A JP 2004043200 A JP2004043200 A JP 2004043200A JP 2002199165 A JP2002199165 A JP 2002199165A JP 2002199165 A JP2002199165 A JP 2002199165A JP 2004043200 A JP2004043200 A JP 2004043200A
Authority
JP
Japan
Prior art keywords
tube
core rod
quartz tube
synthetic quartz
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002199165A
Other languages
Japanese (ja)
Inventor
Hideya Morihira
森平 英也
Masamitsu Uehara
上原 正光
Tamotsu Kamiya
神谷 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002199165A priority Critical patent/JP2004043200A/en
Priority to PCT/JP2003/005760 priority patent/WO2003095379A1/en
Priority to CN 200710142414 priority patent/CN101125733B/en
Priority to CNB03800920XA priority patent/CN100363285C/en
Priority to CN2010102473980A priority patent/CN101913761B/en
Priority to CN201110218553.0A priority patent/CN102408191B/en
Publication of JP2004043200A publication Critical patent/JP2004043200A/en
Priority to US12/502,683 priority patent/US20090272152A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02736Means for supporting, rotating or feeding the tubes, rods, fibres or filaments to be drawn, e.g. fibre draw towers, preform alignment, butt-joining preforms or dummy parts during feeding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02754Solid fibres drawn from hollow preforms

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the disorder of the flow of a gas caused by the rapid fluctuation of furnace pressure at a place where a supporting tube for a clad begins to enter into the furnace in drawing. <P>SOLUTION: In the manufacture of the optical fiber by heating and fusing the tip part of an optical fiber preform constituted of a core rod and a synthetic quartz pipe into which the core rod is inserted and drawing the core rod and the synthetic quartz tube while integrating, the method of supporting the optical fiber preform is performed by inserting the core rod into the synthetic quartz tube provided with a supporting tube having an inside diameter larger than the inside diameter of the synthetic quartz tube in one end. The outside diameter of the supporting tube is equal to or smaller than the outside diameter of the synthetic quartz tube. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、通信用光ファイバの製造方法に関する。
【0002】
【従来の技術】
光ファイバは石英ガラスをベース素材とする。石英ガラスは、通常のガラス材と異なり、高純度を維持しながら溶融せしめるのが著しく困難である。そのため、あらかじめ所定の屈折率分布を持った母材を合成し、これを加熱炉を用いて溶融軟化させ、細く引き伸ばして紡糸する。
【0003】
母材の合成法としては、MCVD法、VAD法、OVD法などが考案されている。コアを含む中心部(以下コアロッドと言う)をこれらの製法で製造し、クラッド部に石英管を用いて加熱一体化して母材とする方法や、一体化を線引と同時に実施する方法も知られている。
【0004】
上記線引用の加熱炉には通常電気炉を用い、温度は2000℃以上とする。電気炉に母材を挿入して先端部を加熱溶融し、引き伸ばして紡糸する。紡糸が定常状態になると、母材の先端形状は、母材の外径や粘度、加熱炉ヒータによる温度分布、線引速度等によって定まるメニスカスを形成して安定する。挿入したコアロッドと石英管の間隙を、例えば、真空ポンプで吸引して減圧すると、メニスカス部分では加熱によりコアロッドと石英管が一体化し、細く引き伸ばすことで線引することができる。
【0005】
ところで、上記コアロッドを石英管の中空部に挿入するには、例えば、図5で示したような方法が用いられる。クラッド51はファイバになるので、外表面を保護する必要がある。作業途中で掴んだり、設備に取り付ける等のハンドリングを容易にするために支持管52が取付けられる。コアロッド54も有効長さを石英管51と合わせる方が有利であり、やはりハンドリングを容易にするため、支持棒55が取付けられる。
【0006】
例えば、コアロッド54に取付けた支持棒55を、垂直に作動可能な旋盤にチャック56で把持し、クラッド51の支持管52は、チャック53で把持する。そして、コアロッド54を図5中の矢印方向に徐々に下げて、石英管51の中空部に挿入する。
【0007】
【発明が解決しようとする課題】
従来は、コアロッドを石英管の中空部に挿入するには縦型あるいは横型の旋盤を使うか、あるいは、他のジグを用いていた。ところが、挿入に際して石英管やコアロッドが曲がっていたり、傾いていると、コアロッドが石英管内壁をこすることになる。石英管とコアロッドとの隙間が小さいほど、また、コアロッド等が長いほどこの危険が増すことになる。
【0008】
擦ってしまうとコアロッド外面あるいは石英管内面に傷が生じ、線引時にファイバ外径の変動やファイバ内への気泡発生の原因となる。挿入作業は、擦らないようコアロッドと石英管の位置を安定させながら行うので、手間と時間がかかる。
【0009】
挿入時には、例えばコアロッドに設けた支持棒を治具で把持して、クラッドの中空部に挿入するが、把持治具が管に触れる可能性があると、それ以上挿入することはできない。触れないようにするためには、例えば支持棒を長くする必要がある。長くすると、上述のようにこする原因にもなる。また、挿入後には、管から支持棒が飛び出た状態となり、以後の取り扱いの邪魔になる。
【0010】
発熱媒体としてカ−ボンを用いた線引炉の場合、カ−ボンの燃焼消耗を防止する必要があり、線引時に炉内に空気が侵入しないように、不活性ガスを流すのが一般的である。ところで、クラッドの支持管が炉内に入り始める箇所で外径が大きく変ると、炉内部の圧力が急激に変動してガスの流れが乱れる。その結果、炉の熱分布が不安定となってファイバの外径が変動することになる。
【0011】
【課題を解決するための手段】
前記課題を解決するために、本発明の第1の態様は、コアロッドと、前記コアロッドを中空部に挿入する合成石英管とで構成される光ファイバ用母材の先端部を加熱溶融し、前記コアロッドと前記石英合成管を一体化しながら線引して光ファイバを製造する際に、
一方端に前記合成石英管の内径より大きい内径の支持管を備えた前記合成石英管に、前記コアロッドを挿入することを特徴とする光ファイバ母材の支持方法である。
【0012】
本発明の第2の態様は、前記支持管の外径が前記合成石英管の外径と等し寸法を備えているか、又は、小さい寸法を備えていることを特徴とする光ファイバ母材の線引支持方法である。
【0013】
本発明の第3の態様は、前記合成石英管の端部に前記支持管を溶着する際に、前記合成石英管の端部と前記支持管との溶着部の外側が、前記合成石英管の外径と等しくなるように鏝を用いて整形することを特徴とする光ファイバ母材の支持方法である。
【0014】
本発明の第4の態様は、前記支持管の材質が天然の石英であることを特徴とする光ファイバ母材の線引支持方法である。
【0015】
【発明の実施の形態】
以下に実施の形態により、本発明を説明する。本発明は、コアロッドと、前記コアロッドを中空部に挿入する合成石英管とで構成される光ファイバ用母材の先端部を加熱溶融し、前記コアロッドと前記石英合成管を一体化しながら線引して光ファイバを製造する際に、前記合成石英管の一方端に前記合成石英管の内径より大きい内径を有する支持管を設けて、前記コアロッドを前記合成石英管に挿入することを特徴とする光ファイバ母材の支持方法である。
【0016】
本発明によれば、光ファイバを製造するにあたり、コアロッドを含む中心部を製造し、さらにクラッドに相当する部分に合成石英管を使用し、これらを加熱一体化する方法でかつ一体化を線引と同時に実施する際に、コアロッド材を合成石英管に挿入する作業効率を高めることができる。さらに、母材を線引装置にセットし、先端を溶融して引き伸ばしファイバに紡糸する際、得られたファイバの寸法特性を良好に保つことができる。
【0017】
また、ハンドリングを容易にする為、合成石英管に支持管を取り付けることとし、支持管の内径を合成石英管に求められる内径より大きくすることで、挿入作業中のコアロッド外表面と合成石英管内壁が当たって、傷が発生する危険を減らす効果がある。また、コアロッドに取り付ける支持棒が短くても、把持治具が邪魔にならずに合成石英管の中までコアロッドを挿入できる。その結果、挿入後にロッドの支持棒が管から飛び出すことがなく、ハンドリングが容易となる。
【0018】
線引にはカーボン抵抗炉を使用するのが一般的であるが、高温で酸素が混入すると炉材と反応して燃焼する。そのため、空気の浸入を防ぐために不活性ガスを流す。一般的に、線引終了側の合成石英管の端部は、合成石英管の把持用に接続した支持部に接続する。ところが、支持部が炉内に入り始め外径が大きく変動すると、炉内の圧力が急激に変動する。そのため、ガス流が乱れて熱分布が不安定となり、ファイバの外径が変動してしまう。
【0019】
本発明は、これを防ぐため、合成石英管と支持管の外径を合わすことに特徴がある。あらかじめ、外径を合わせておいても、接続時に肉が盛り上がり、この部分の径が変動する可能性があるので、火加工で整形することが望ましい。
【0020】
付帯効果として、支持管の肉厚が薄くなり、重量が減る。そのため、購入コストが下がり、ハンドリングも有利になる。材料を天然石英とすれば、さらにコストを下げられる。また、コアロッドの支持棒の寸法も短くなるので、同様なコスト低減効果がある。
【0021】
図3〜図4には、本発明によるコアロッドを石英管に挿入する場合の略図を示した。図3中の矢印は、挿入方向を示したものである。ところで、合成石英管の外径と内径の比率は所定のファイバ特性を得るためにコアロッドの屈折率分布特性から規定される。通常、合成石英管31の内径よりコアロッド35の外径は細い。
【0022】
コアロッド35を合成石英管31に挿入する場合、合成石英管31やコアロッド35が曲がっていたり、傾いていると、コアロッド35が合成石英管31の内壁を擦る可能性がある。隙間が小さいほど、またコアロッド35や合成石英管31が長いほど擦る可能性が増す。
【0023】
ところで、支持管32の内径はファイバ特性に直接影響することがない。そのため、支持管32の内径を合成石英管31の内径より大きくすることで、挿入作業中にコアロッド外表面と合成石英管内壁が接触する危険性を減らすことができる。さらに、作業が容易になるので時間を短縮できる。
【0024】
また、支持管32の内径を大きくできるので、コアロッド35の支持棒36の把持治具37も支持管32の内側にまで挿入でき、合成石英管31の内側にまで支持棒36を含めたコアロッド35を挿入できるので、挿入後にコアロッドの支持棒36が管から出ることがなく、以後の操作が容易となる。
【0025】
また、支持管32の外径は合成石英管31の外径と同じか、又はやや小さい寸法とする。そのため、ファイバー線引の終了側で支持管32が炉内に入り始める箇所が炉内ガス流を乱すこともなくなる。その結果、ファイバ外径の変動を防ぐことができる。
【0026】
なお、あらかじめ、合成石英管31の外径と支持管32の外径を同じとしても、接続時に肉が盛り上がってしまい、この部分の径が変動することがある。そのため、火加工で整形することが望ましい。
【0027】
また、支持32管の内径を大きくすることにより、支持管32の肉厚を薄くすることができる。その結果、支持管32の重量が減るので、コストが下がり、ハンドリングも有利になる。
【0028】
また、本発明は、支持管の材質が天然の石英であることを特徴とする。材質を天然石英とすれば、さらにコストを下げることができる。さらに本発明ではロッドの支持棒も短尺にできるので重量減となり、コスト低減効果がある。
【0029】
図3〜図4を用いて、さらに説明する。合成石英管31に用いられる石英管の内側は、表面に異物の付着がなく、平滑に維持される。石英管はガラス加工施盤にセットし、一方端に石英製の支持管32が溶着される。
【0030】
また、本発明は、合成石英管と支持管の端部が酸素/水素火炎で加熱溶融され、溶融された端部同士が押し付けられて溶着されており、溶着された溶着部の外径が合成石英管の外径とほぼ等しくなるように鏝を用いて整形する。
【0031】
すなわち、合成石英管と支持管の端部を酸素/水素火炎にて加熱し、両端末を押し付けて溶着接続し、さらに溶着部の外径は管と概ね等しくなるよう鏝を用いて整形することが望ましい。
【0032】
【実施例】
以下に本発明を実施例を用いて説明する。本実施例では、VAD法により一部クラッドを含むコア材を製造し、さらに石英管を用いてクラッド部を付与することで、単一モード光ファイバを製造する例について説明する。なお、本発明を実施する場合には、本実施例以外のプロファイルであっても、コア材を他の方法で作製してもかまわない。
【0033】
図1に示したように、VAD法では多重管構造からなるコアバーナ5を通じて、気化させた四塩化珪素(SiCl)、四塩化ゲルマニウム(GeCl)、酸素(O)、及び水素(H)とで構成されるガス9を送り込み、点火燃焼させた。火炎中で加水分解反応させて、合成ガラス微粒子を得、これを種棒3に吹き付けて多孔質母材1を形成した。なお、種棒3と多孔質母材1は矢印で示すように半時計方向に回転しており、図面の上方向の矢印が引き上げられる方向である。
【0034】
多孔質母材1の特性を安定させるためにコアバーナ5の上部に類似のクラッドバーナ7を配置し、四塩化珪素(SiCl)、酸素(O)、水素(H)とで構成されるガス11を送り込み反応させて、コアスートの外周にクラッド部を付与した。この多孔質母材1を1500〜1600℃程度に加熱して透明なガラスとした。単一モードファイバではコアとクラッドの寸法比は1:13程度となるが、VAD法で作製したものは1:4.5であった。次に、当該コア母材を引き伸ばして外径30mmのVADコアロッドを作製した。
【0035】
別に、合成石英管用として外径90mmで内径33mmの石英管を用意した。VADコアロッドを合成石英管に挿入すると所定の比率とすることができる。たとえば、図2には、VADコアロッドコア部分21を中心部に備えたVADコアロッド23と合成石英管25の配置例を示した。
【0036】
図2中で矢印内で示した数字は、それぞれの寸法比を示しており、VADコアロッドのコア部分21の外形寸法を1とした場合、VADコアロッド23の寸法は4.5となっている。合成石英管25は、VADコアロッドのコア部分21の外形寸法を1とした場合、合成石英管25の外形の寸法が13となっている。
【0037】
図3には、本発明によるVADコアロッドを石英管に挿入する場合の略図を示した。合成石英管31に用いられる石英管の内側は、表面に異物の付着がなく、平滑に維持される。石英管はガラス加工施盤にセットし、一方端に外径が90mm、内径が70mmの石英製の支持管32を溶着させた。冷却後、これを旋盤から外した。
【0038】
なお、前記合成石英管と前記支持管の端部を酸素/水素火炎にて加熱し、両端末を押し付けて溶着接続し、さらに溶着部の外径は管と概ね等しくなるよう鏝を用いて整形した。
【0039】
次に、所定の寸法に加工したVADコアロッド35を施盤にセットし、酸素/水素火炎で加熱して石英製の支持棒36を溶着させ、冷却後はずした。支持棒36は、材質は天然石英であり、寸法は外径が約25mmであり長さは約300mmである。
【0040】
次に、合成石英管31とVADコアロッド35とを垂直に駆動する挿入旋盤にセットし、合成石英管31への挿入作業を実施した。VADコアロッド35の支持棒36は、旋盤にチャック37で固定した。合成石英管31の支持管32は、チャック33で固定した。そして、VADコアロッド35を図3中の矢印方向に徐々に下げて、合成石英管31の中空部に挿入した。
【0041】
図4には、VADコアロッドを合成石英管に挿入した状態を示した。
【0042】
次に、このようにして準備したVADコアロッドを挿入した支持管の上部管部に真空装置を取り付け、内部を減圧に吸引できるようにし、線引装置にセットした。内部を吸引減圧しながら徐々に炉に挿入すると先端部が加熱されて溶着が起こり、さらにこの部分が伸びて線引が開始できた。
【0043】
あとは、通常の線引と同様にして、ファイバを引き取りながらガラス体を炉に押し込んで行くと、一体化とファイバ化が同時に進行した。ファイバは、引取りキャプスタンにて引き伸ばしてガラスの外径が約125μmになるように線引し、紫外線硬化樹脂を約250μm径になるように塗って紫外線を照射して硬化させた。
【発明の効果】
本発明により、管の内部やコアロッドロッドの表面を汚染することなく挿入されたので、出来上がり母材を線引工程にてファイバ化する際、ファイバ線径不良が減少した。
【図面の簡単な説明】
【図1】VAD法の概略図である。
【図2】VAD法による、寸法比である。
【図3】コアロッドを合成石英管に挿入する際の概略図である。
【図4】コアロッドを合成石英管に挿入した概略図である。
【図5】従来の、コアロッドをクラッドに挿入する状況を示した図である。
【符号の説明】
1 多孔質母材
3 VAD種棒
5 コアロッド用バーナー
7 クラッド用バーナー
9 ガス
11 ガス
21 VADコアロッドコア部分
23 VADコアロッド
25 合成石英管
31 合成石英管
32 支持管
33 チャック
35 コアロッド
36 支持棒
37 チャック
51 クラッド
52 支持管
53 チャック
54 コアロッド
55 支持管
56 チャック
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a communication optical fiber.
[0002]
[Prior art]
The optical fiber is made of quartz glass as a base material. Quartz glass, unlike ordinary glass materials, is extremely difficult to melt while maintaining high purity. For this purpose, a base material having a predetermined refractive index distribution is synthesized in advance, melt-softened using a heating furnace, stretched thinly, and spun.
[0003]
As a method of synthesizing a base material, an MCVD method, a VAD method, an OVD method, and the like have been devised. There is also known a method in which a central part including a core (hereinafter referred to as a core rod) is manufactured by these manufacturing methods, and a cladding part is heated and integrated using a quartz tube as a base material, and the integration is performed simultaneously with drawing. Have been.
[0004]
An electric furnace is usually used for the heating furnace described above, and the temperature is 2000 ° C. or higher. The base material is inserted into an electric furnace, the tip is heated and melted, stretched and spun. When the spinning is in a steady state, the tip shape of the base material is stabilized by forming a meniscus determined by the outer diameter and viscosity of the base material, the temperature distribution by the heating furnace heater, the drawing speed, and the like. When the gap between the inserted core rod and the quartz tube is reduced by, for example, suctioning with a vacuum pump, the core rod and the quartz tube are integrated by heating in the meniscus portion, and can be drawn by thinly stretching.
[0005]
In order to insert the core rod into the hollow portion of the quartz tube, for example, a method as shown in FIG. 5 is used. Since the cladding 51 becomes a fiber, it is necessary to protect the outer surface. A support tube 52 is attached to facilitate handling such as gripping during work or attachment to equipment. It is more advantageous that the core rod 54 has the same effective length as that of the quartz tube 51, and a support rod 55 is attached to facilitate handling.
[0006]
For example, the support rod 55 attached to the core rod 54 is gripped by a chuck 56 on a vertically operable lathe, and the support tube 52 of the clad 51 is gripped by the chuck 53. Then, the core rod 54 is gradually lowered in the direction of the arrow in FIG. 5 and inserted into the hollow portion of the quartz tube 51.
[0007]
[Problems to be solved by the invention]
Conventionally, a vertical or horizontal lathe has been used to insert the core rod into the hollow portion of the quartz tube, or another jig has been used. However, if the quartz tube or the core rod is bent or inclined at the time of insertion, the core rod rubs the inner wall of the quartz tube. This danger increases as the gap between the quartz tube and the core rod becomes smaller and as the core rod and the like become longer.
[0008]
Scratching causes damage to the outer surface of the core rod or the inner surface of the quartz tube, which causes fluctuations in the outer diameter of the fiber and the generation of bubbles in the fiber during drawing. The insertion work is performed while stabilizing the positions of the core rod and the quartz tube so as not to rub, so that it takes time and effort.
[0009]
At the time of insertion, for example, the support rod provided on the core rod is gripped by a jig and inserted into the hollow portion of the clad. However, if the gripping jig may touch the pipe, it cannot be inserted any further. In order to prevent touch, it is necessary to elongate the support bar, for example. A longer length can cause rubbing as described above. Also, after insertion, the support rods protrude from the tube, hindering subsequent handling.
[0010]
In the case of a drawing furnace using carbon as a heat generating medium, it is necessary to prevent burning and consumption of carbon, and it is general to flow an inert gas to prevent air from entering the furnace during drawing. It is. By the way, when the outer diameter changes greatly at the place where the cladding support tube starts to enter the furnace, the pressure inside the furnace fluctuates rapidly and the gas flow is disturbed. As a result, the heat distribution in the furnace becomes unstable and the outer diameter of the fiber fluctuates.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problem, a first aspect of the present invention is to heat and melt a distal end portion of an optical fiber preform composed of a core rod and a synthetic quartz tube in which the core rod is inserted into a hollow portion, When manufacturing an optical fiber by drawing while integrating the core rod and the quartz synthetic tube,
A method for supporting an optical fiber preform, wherein the core rod is inserted into the synthetic quartz tube having a support tube having an inner diameter larger than the inner diameter of the synthetic quartz tube at one end.
[0012]
According to a second aspect of the present invention, there is provided an optical fiber preform characterized in that the outer diameter of the support tube has a dimension equal to the outer diameter of the synthetic quartz tube, or has a smaller dimension. This is a drawing support method.
[0013]
According to a third aspect of the present invention, when the support tube is welded to the end of the synthetic quartz tube, the outside of the welded portion between the end of the synthetic quartz tube and the support tube is formed of the synthetic quartz tube. This is a method for supporting an optical fiber preform, characterized by shaping with an iron so as to be equal to the outer diameter.
[0014]
A fourth aspect of the present invention is a method for drawing and supporting an optical fiber preform, wherein the material of the support tube is natural quartz.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to embodiments. The present invention heats and melts the tip of an optical fiber preform composed of a core rod and a synthetic quartz tube into which the core rod is inserted into a hollow portion, and draws the core rod and the quartz synthetic tube while integrating them. When manufacturing an optical fiber, a supporting tube having an inner diameter larger than the inner diameter of the synthetic quartz tube is provided at one end of the synthetic quartz tube, and the core rod is inserted into the synthetic quartz tube. This is a method of supporting a fiber preform.
[0016]
According to the present invention, in manufacturing an optical fiber, a central portion including a core rod is manufactured, and a synthetic quartz tube is used in a portion corresponding to a clad, and these are heated and integrated, and the integration is drawn. At the same time, the efficiency of inserting the core rod material into the synthetic quartz tube can be improved. Further, when the base material is set in a drawing apparatus, and the tip is melted and stretched and spun into a fiber, the dimensional characteristics of the obtained fiber can be kept good.
[0017]
In addition, to facilitate handling, a support tube is attached to the synthetic quartz tube, and the inner diameter of the support tube is made larger than the inner diameter required for the synthetic quartz tube, so that the outer surface of the core rod and the inner wall of the synthetic quartz tube during insertion work are set. This has the effect of reducing the risk of scratching. Further, even if the support rod attached to the core rod is short, the core rod can be inserted into the synthetic quartz tube without the holding jig being in the way. As a result, the support bar of the rod does not jump out of the tube after insertion, and handling becomes easy.
[0018]
Generally, a carbon resistance furnace is used for drawing, but when oxygen is mixed at a high temperature, it reacts with the furnace material and burns. Therefore, an inert gas is flowed to prevent air from entering. In general, the end of the synthetic quartz tube on the drawing end side is connected to a supporting portion connected for gripping the synthetic quartz tube. However, when the outer diameter of the supporting portion starts to enter the furnace and fluctuates greatly, the pressure in the furnace fluctuates rapidly. Therefore, the gas flow is disturbed, the heat distribution becomes unstable, and the outer diameter of the fiber fluctuates.
[0019]
The present invention is characterized in that in order to prevent this, the outer diameters of the synthetic quartz tube and the support tube are matched. Even if the outer diameter is adjusted in advance, the flesh rises at the time of connection and the diameter of this portion may fluctuate.
[0020]
As an additional effect, the thickness of the support tube is reduced, and the weight is reduced. Therefore, the purchase cost is reduced and the handling becomes advantageous. If the material is natural quartz, the cost can be further reduced. In addition, since the size of the support rod of the core rod is shortened, there is a similar cost reduction effect.
[0021]
FIGS. 3 and 4 show schematic views when the core rod according to the present invention is inserted into a quartz tube. Arrows in FIG. 3 indicate the insertion direction. Incidentally, the ratio between the outer diameter and the inner diameter of the synthetic quartz tube is determined from the refractive index distribution characteristics of the core rod in order to obtain predetermined fiber characteristics. Usually, the outer diameter of the core rod 35 is smaller than the inner diameter of the synthetic quartz tube 31.
[0022]
When inserting the core rod 35 into the synthetic quartz tube 31, if the synthetic quartz tube 31 or the core rod 35 is bent or inclined, the core rod 35 may rub the inner wall of the synthetic quartz tube 31. The smaller the gap, and the longer the core rod 35 or the synthetic quartz tube 31, the greater the possibility of rubbing.
[0023]
Incidentally, the inner diameter of the support tube 32 does not directly affect the fiber characteristics. Therefore, by making the inner diameter of the support tube 32 larger than the inner diameter of the synthetic quartz tube 31, the risk of contact between the outer surface of the core rod and the inner wall of the synthetic quartz tube during the insertion operation can be reduced. Further, since the work is facilitated, the time can be reduced.
[0024]
Further, since the inner diameter of the support tube 32 can be increased, the holding jig 37 of the support rod 36 of the core rod 35 can also be inserted inside the support tube 32, and the core rod 35 including the support rod 36 even inside the synthetic quartz tube 31. Can be inserted, the support rod 36 of the core rod does not come out of the tube after the insertion, and the subsequent operation becomes easy.
[0025]
The outer diameter of the support tube 32 is the same as or slightly smaller than the outer diameter of the synthetic quartz tube 31. Therefore, the place where the support tube 32 starts to enter the furnace on the end side of the fiber drawing does not disturb the gas flow in the furnace. As a result, a change in the outer diameter of the fiber can be prevented.
[0026]
Even if the outer diameter of the synthetic quartz tube 31 and the outer diameter of the support tube 32 are the same in advance, the wall may rise when connected, and the diameter of this portion may fluctuate. Therefore, it is desirable to shape by fire processing.
[0027]
In addition, by increasing the inner diameter of the support tube 32, the thickness of the support tube 32 can be reduced. As a result, the weight of the support tube 32 is reduced, so that the cost is reduced and the handling becomes advantageous.
[0028]
Further, the present invention is characterized in that the material of the support tube is natural quartz. If the material is natural quartz, the cost can be further reduced. Furthermore, according to the present invention, the length of the rod support rod can be reduced, so that the weight is reduced and the cost is reduced.
[0029]
This will be further described with reference to FIGS. The inside of the quartz tube used for the synthetic quartz tube 31 is kept smooth without any foreign matter adhering to its surface. The quartz tube is set on a glass processing lathe, and a quartz support tube 32 is welded to one end.
[0030]
Further, according to the present invention, the ends of the synthetic quartz tube and the support tube are heated and melted by an oxygen / hydrogen flame, and the melted ends are pressed and welded to each other. It is shaped using a trowel so as to be approximately equal to the outer diameter of the quartz tube.
[0031]
In other words, the ends of the synthetic quartz tube and the support tube are heated with an oxygen / hydrogen flame, and both ends are pressed together for welding connection. Further, the outer diameter of the welded portion is shaped using a trowel so that the outer diameter is approximately equal to the tube. Is desirable.
[0032]
【Example】
Hereinafter, the present invention will be described with reference to examples. In the present embodiment, an example will be described in which a core material partially including a clad is manufactured by the VAD method, and a cladding portion is provided using a quartz tube to manufacture a single mode optical fiber. In practicing the present invention, a core material may be manufactured by another method, even if the profile is other than that of the present embodiment.
[0033]
As shown in FIG. 1, in the VAD method, silicon tetrachloride (SiCl 4 ), germanium tetrachloride (GeCl 4 ), oxygen (O 2 ), and hydrogen (H 2 ) are vaporized through a core burner 5 having a multi-tube structure. ), And the mixture was ignited and burned. A hydrolysis reaction was performed in a flame to obtain synthetic glass fine particles, which were sprayed on a seed rod 3 to form a porous preform 1. The seed rod 3 and the porous preform 1 are rotating counterclockwise as indicated by the arrows, and the upward arrow in the drawing is the direction in which the arrow is pulled up.
[0034]
A similar clad burner 7 is disposed above the core burner 5 in order to stabilize the characteristics of the porous base material 1 and is composed of silicon tetrachloride (SiCl 4 ), oxygen (O 2 ), and hydrogen (H 2 ). The gas 11 was fed to cause a reaction, and a clad portion was provided on the outer periphery of the core soot. The porous base material 1 was heated to about 1500 to 1600 ° C. to obtain a transparent glass. In the single mode fiber, the dimensional ratio between the core and the clad is about 1:13, but that produced by the VAD method is 1: 4.5. Next, the core base material was stretched to produce a VAD core rod having an outer diameter of 30 mm.
[0035]
Separately, a quartz tube having an outer diameter of 90 mm and an inner diameter of 33 mm was prepared for a synthetic quartz tube. When the VAD core rod is inserted into the synthetic quartz tube, a predetermined ratio can be obtained. For example, FIG. 2 shows an example of the arrangement of a VAD core rod 23 having a VAD core rod core portion 21 at the center and a synthetic quartz tube 25.
[0036]
The numbers shown in the arrows in FIG. 2 indicate the respective dimensional ratios, and when the outer dimension of the core portion 21 of the VAD core rod is 1, the size of the VAD core rod 23 is 4.5. In the synthetic quartz tube 25, when the outer size of the core portion 21 of the VAD core rod is 1, the outer size of the synthetic quartz tube 25 is 13.
[0037]
FIG. 3 shows a schematic diagram when the VAD core rod according to the present invention is inserted into a quartz tube. The inside of the quartz tube used for the synthetic quartz tube 31 is kept smooth without any foreign matter adhering to its surface. The quartz tube was set on a glass working lathe, and a quartz support tube 32 having an outer diameter of 90 mm and an inner diameter of 70 mm was welded to one end. After cooling, it was removed from the lathe.
[0038]
The ends of the synthetic quartz tube and the supporting tube are heated by an oxygen / hydrogen flame, and both ends are pressed and welded together. Further, the outer diameter of the welded portion is shaped using a trowel so that the outer diameter of the welded portion is substantially equal to the tube. did.
[0039]
Next, the VAD core rod 35 processed to a predetermined size was set on a lathe, heated by an oxygen / hydrogen flame to weld a support rod 36 made of quartz, and removed after cooling. The support rod 36 is made of natural quartz, and has dimensions of about 25 mm in outer diameter and about 300 mm in length.
[0040]
Next, the synthetic quartz tube 31 and the VAD core rod 35 were set on an insertion lathe that is driven vertically, and an insertion operation into the synthetic quartz tube 31 was performed. The support rod 36 of the VAD core rod 35 was fixed to a lathe with a chuck 37. The support tube 32 of the synthetic quartz tube 31 was fixed with a chuck 33. Then, the VAD core rod 35 was gradually lowered in the direction of the arrow in FIG. 3 and inserted into the hollow portion of the synthetic quartz tube 31.
[0041]
FIG. 4 shows a state where the VAD core rod is inserted into a synthetic quartz tube.
[0042]
Next, a vacuum device was attached to the upper tube portion of the support tube into which the VAD core rod prepared as described above was inserted, so that the inside could be sucked to a reduced pressure, and set in a drawing device. When the inside was gradually inserted into the furnace while the pressure was being reduced, the tip was heated and welding occurred, and this portion was further extended to start drawing.
[0043]
After that, as in the case of ordinary drawing, the glass body was pushed into the furnace while the fiber was being pulled, and the integration and fiberization proceeded simultaneously. The fiber was stretched with a take-off capstan, drawn so that the outer diameter of the glass became about 125 μm, applied with an ultraviolet curable resin so as to have a diameter of about 250 μm, and cured by irradiating ultraviolet rays.
【The invention's effect】
According to the present invention, since the insertion is performed without contaminating the inside of the tube or the surface of the core rod rod, when the finished base material is converted into a fiber in the drawing step, the fiber wire diameter defect is reduced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a VAD method.
FIG. 2 is a dimensional ratio according to a VAD method.
FIG. 3 is a schematic diagram when a core rod is inserted into a synthetic quartz tube.
FIG. 4 is a schematic diagram in which a core rod is inserted into a synthetic quartz tube.
FIG. 5 is a diagram showing a conventional situation in which a core rod is inserted into a clad.
[Explanation of symbols]
Reference Signs List 1 porous base material 3 VAD seed rod 5 core rod burner 7 clad burner 9 gas 11 gas 21 VAD core rod core part 23 VAD core rod 25 synthetic quartz tube 31 synthetic quartz tube 32 support tube 33 chuck 35 core rod 36 support rod 37 chuck 51 Cladding 52 Support tube 53 Chuck 54 Core rod 55 Support tube 56 Chuck

Claims (4)

コアロッドと、前記コアロッドを中空部に挿入する合成石英管とで構成される光ファイバ用母材の先端部を加熱溶融し、前記コアロッドと前記石英合成管を一体化しながら線引して光ファイバを製造する際に、
一方端に前記合成石英管の内径に比べてより大きい内径の支持管を備えた前記合成石英管に、前記コアロッドを挿入することを特徴とする光ファイバ母材の支持方法。
A core rod and a synthetic silica tube for inserting the core rod into the hollow portion are heated and melted at the distal end of the optical fiber preform, and the optical fiber is drawn by integrating the core rod and the quartz synthetic tube while drawing. When manufacturing,
A method for supporting an optical fiber preform, wherein the core rod is inserted into the synthetic quartz tube having a support tube having an inner diameter larger than the inner diameter of the synthetic quartz tube at one end.
前記支持管の外径が前記合成石英管の外径と等しい寸法を備えているか、又は、小さい寸法を備えていることを特徴とする請求項1に記載の光ファイバ母材の支持方法。The method for supporting an optical fiber preform according to claim 1, wherein an outer diameter of the support tube has a size equal to or smaller than an outer diameter of the synthetic quartz tube. 前記合成石英管の端部に前記支持管を溶着する際に、前記合成石英管の端部と前記支持管との溶着部の外側が、前記合成石英管の外径と等しくなるように鏝を用いて整形することを特徴とする請求項1又は2に記載の光ファイバ母材の支持方法。When welding the support tube to the end of the synthetic quartz tube, a trowel is used so that the outside of the welded portion between the end of the synthetic quartz tube and the support tube is equal to the outer diameter of the synthetic quartz tube. The method for supporting an optical fiber preform according to claim 1 or 2, wherein the optical fiber preform is shaped by using. 前記支持管の材質が天然の石英であることを特徴とする請求項1〜3のいずれか1項に記載の光ファイバ母材の線引支持方法。The method for drawing and supporting an optical fiber preform according to any one of claims 1 to 3, wherein the support tube is made of natural quartz.
JP2002199165A 2002-05-09 2002-07-08 Method of supporting optical fiber preform Pending JP2004043200A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002199165A JP2004043200A (en) 2002-07-08 2002-07-08 Method of supporting optical fiber preform
PCT/JP2003/005760 WO2003095379A1 (en) 2002-05-09 2003-05-08 Method of manufacturing optical fiber
CN 200710142414 CN101125733B (en) 2002-05-09 2003-05-08 Method of manufacturing optical fiber
CNB03800920XA CN100363285C (en) 2002-05-09 2003-05-08 Method of manufacturing optical fiber
CN2010102473980A CN101913761B (en) 2002-05-09 2003-05-08 Method of manufacturing optical fiber
CN201110218553.0A CN102408191B (en) 2002-05-09 2003-05-08 The manufacture method of optical fiber
US12/502,683 US20090272152A1 (en) 2002-05-09 2009-07-14 Method for manufacturing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199165A JP2004043200A (en) 2002-07-08 2002-07-08 Method of supporting optical fiber preform

Publications (1)

Publication Number Publication Date
JP2004043200A true JP2004043200A (en) 2004-02-12

Family

ID=31706416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199165A Pending JP2004043200A (en) 2002-05-09 2002-07-08 Method of supporting optical fiber preform

Country Status (1)

Country Link
JP (1) JP2004043200A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8789393B2 (en) 2004-11-29 2014-07-29 The Furukawa Electric Co., Ltd. Optical fiber preform, method of manufacturing optical fiber preform, and method of manufacturing optical fiber
JP2015151279A (en) * 2014-02-12 2015-08-24 住友電気工業株式会社 Method for manufacturing multicore optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8789393B2 (en) 2004-11-29 2014-07-29 The Furukawa Electric Co., Ltd. Optical fiber preform, method of manufacturing optical fiber preform, and method of manufacturing optical fiber
JP2015151279A (en) * 2014-02-12 2015-08-24 住友電気工業株式会社 Method for manufacturing multicore optical fiber

Similar Documents

Publication Publication Date Title
JP3531647B2 (en) Apparatus and method for overcladding optical fiber preform rod and method for drawing optical fiber
EP0738691B1 (en) Method of forming an elongated glass article
JP2001510430A (en) Method for manufacturing optical fiber having reduced refractive index core region
EP0176263A2 (en) Optical fiber
KR950004058B1 (en) Method for producing glass preform for optical fiber
JP5213116B2 (en) Method for manufacturing preform for optical fiber
JP2004043200A (en) Method of supporting optical fiber preform
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
JP5207571B2 (en) Rod-shaped preform for manufacturing optical fiber and method for manufacturing fiber
JP3819614B2 (en) Method for producing quartz glass preform for optical fiber
JP2004091304A (en) Aligning method for optical fiber preform
JP3838846B2 (en) Method for manufacturing preform for optical fiber
JP3197069B2 (en) Optical fiber manufacturing method
JP3838850B2 (en) Manufacturing method for optical fiber preform
US20070157674A1 (en) Apparatus for fabricating optical fiber preform and method for fabricating low water peak fiber using the same
JP2001019454A (en) Production of base material for optical fiber
KR100251774B1 (en) Method of over-cladding optical fiber preform and drawing optical fiber
JP2004043199A (en) Process for manufacturing optical fiber preform
JP2004175663A (en) Optical fiber and its fabrication method
JP2004043201A (en) Method of working tip of optical fiber preform
JP2005089241A (en) Optical fiber preform, optical fiber, method of manufacturing optical fiber, and method of manufacturing optical fiber preform
JPH0818842B2 (en) Method for manufacturing base material for optical fiber
JP3788503B2 (en) Manufacturing method and manufacturing apparatus for glass preform for optical fiber
JP2003300749A (en) Glass preform and method for fabricating glass preform
JP2004035330A (en) Method of heating/processing glass member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111