JP2004042083A - Gas supply control method to casting stopper - Google Patents

Gas supply control method to casting stopper Download PDF

Info

Publication number
JP2004042083A
JP2004042083A JP2002202317A JP2002202317A JP2004042083A JP 2004042083 A JP2004042083 A JP 2004042083A JP 2002202317 A JP2002202317 A JP 2002202317A JP 2002202317 A JP2002202317 A JP 2002202317A JP 2004042083 A JP2004042083 A JP 2004042083A
Authority
JP
Japan
Prior art keywords
gas supply
stopper
casting
gas
pressure gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002202317A
Other languages
Japanese (ja)
Inventor
Takahiro Miyazaki
宮▲崎▼ 貴大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2002202317A priority Critical patent/JP2004042083A/en
Publication of JP2004042083A publication Critical patent/JP2004042083A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas supply control method to a casting stopper in which oxides or the like are prevented from adhering and depositing to an immersion nozzle part by preventing the oxides or the like of molten metals from being generated by the sucked atmosphere by preventing the atmosphere from being sucked in a stopper body of the casting stopper. <P>SOLUTION: An inert gas is supplied inside the stopper body via a gas supply system so that the measured value by a pressure gauge becomes 0.05-0.15 MPa by mounting the pressure gauge to the downstream part of the gas supply system to supply the inert gas inside the stopper body of the casting stopper. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は鋳造用ストッパーへのガス供給制御方法に関する。取鍋からタンディッシュ内へ移した溶融金属を、該タンディッシュの底部に取付けた浸漬ノズルを介しモールド内へ注入して、連続鋳造するとき、該タンディッシュから該モールドへの該溶融金属の注入量を調節するために、鋳造用ストッパーが用いられる。本発明はかかる鋳造用ストッパーへのガス供給制御方法に関する。
【0002】
【従来の技術】
従来、前記のような鋳造用ストッパーとしては一般に、内部にガス導入路及び該ガス導入路と連通して先端部へと到るノズル孔が形成されたストッパー本体と、該ガス導入路の周面に先端部が螺合して挿入された接続管と、該ストッパー本体の上端部にて該接続管に取付けられたフランジと、該接続管の中間部に取付けられた昇降用のアームと、該接続管を貫通して該ガス導入路へと挿入されたガス供給管と、該ガス供給管を該接続管に支持するテーパーネジと、該ガス供給管に接続されたガス供給系と、該ガス供給系の基端部に接続されたガス供給源とを備えるものが使用されている。
【0003】
かかる鋳造用ストッパーでは、ガス供給源から不活性ガス、例えばアルゴンガスを、ガス供給系、ガス供給管及びガス導入路を介して、タンディッシュ内の溶融金属中に浸漬ノズルを臨んで挿入されたストッパー本体のノズル孔から吹き出すようになっており、実際にも従来は、このように不活性ガスを吹き出している。ストッパー本体のノズル孔から不活性ガスが吹き出ていない場合は、タンディッシュ内溶融金属の静圧よりも不活性ガスの圧力が小さいことを意味しており、鋳造用ストッパーのフランジ部、テーパーネジ部及びガス供給系における継ぎ目部等からリークが発生した結果、ストッパー本体のノズル孔やガス導入路に大気が混入していると考えられ、かかる混入した大気が溶融金属等を酸化して、生成した酸化物等がモールドへ持ち込まれたり、とりわけ浸漬ノズル部に付着、堆積して、タンディッシュから浸漬ノズルを介するモールドへの溶融金属の円滑な注入を妨げ、場合によっては浸漬ノズルを閉塞してしまうからである。
【0004】
前記のような大気の吸引を防止するため、それ自体のシール性を改善した鋳造用ストッパーも提案されている(特開平10−296406、特開2001−191152)。しかし、従来は前記のような不活性ガスの供給及び吹き出しを主に経済的な理由で低く抑えているため、シール性を改善した鋳造用ストッパーを用いても、実際のところは前記のような大気の吸引を防止できず、したがって生成した酸化物等の浸漬ノズル部への付着、堆積を防止できないという問題がある。
【0005】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、鋳造用ストッパーのストッパー本体内への大気の吸引を防止し、したがって吸引した大気による酸化物等の生成を防止して、かかる酸化物等の浸漬ノズル部への付着、堆積を防止できる鋳造用ストッパーへのガス供給制御方法を提供する処にある。
【0006】
【課題を解決するための手段】
前記の課題を解決する本発明は、タンディッシュから浸漬ノズルを介してモールドへ溶融金属を注入するときにその注入量を調節するために用いる鋳造用ストッパーへのガス供給を制御する方法であって、鋳造用ストッパーのストッパー本体内へ不活性ガスを供給するガス供給系の下流部に圧力計を取付け、該圧力計による測定値が0.05〜0.15MPaの範囲内となるよう、該ガス供給系を介して該ストッパー本体内へ不活性ガスを供給することを特徴とする鋳造用ストッパーへのガス供給制御方法に係る。
【0007】
本発明では、鋳造用ストッパーのストッパー本体内へ不活性ガスを供給するガス供給系の下流部に圧力計を取付け、該圧力計による測定値が0.05〜0.15MPaの範囲内となるよう、該ガス供給系を介して該ストッパー本体内へ不活性ガスを供給し、該ストッパー本体のノズル孔からタンディッシュ内の溶融金属中へ吹き出させる。
【0008】
前記したように、鋳造用ストッパーとしては一般に、内部にガス導入路及び該ガス導入路と連通して先端部へと到るノズル孔が形成されたストッパー本体と、該ガス導入路の周面に先端部が螺合して挿入された接続管と、該ストッパー本体の上端部にて該接続管に取付けられたフランジと、該接続管の中間部に取付けられた昇降用のアームと、該接続管を貫通して該ガス導入路へと挿入されたガス供給管と、該ガス供給管を該接続管に支持するテーパーネジと、該ガス供給管に接続されたガス供給系と、該ガス供給系の基端部に接続されたガス供給源とを備えるものが使用されている。本発明では、圧力計をかかるガス供給系の下流部に取付けるが、ガス供給系の最下流部、言い替えればガス供給管の直前に取付けるのが好ましく、また大気の吸引原因となる部位、具体的にはフランジ部、テーパーネジ部及びガス供給系における継ぎ目部等にペース状の耐火シール材を塗布して、予めこれらをできるだけシールしておくのが好ましい。
【0009】
本発明において、圧力計による測定値は、該圧力計の読み値であり、所謂ゲージ圧であって、したがって大気圧下では零になる。本発明では、かかる圧力計による測定値が0.05〜0.15MPaの範囲内となるよう、ガス供給管を介してストッパー本体内へ不活性ガスを供給し、該ストッパー本体のノズル孔からタンディッシュ内の溶融金属中へ吹き出させる。ストッパー本体のノズル孔やガス導入路には、浸漬ノズルを介してモールドへと流下する溶融金属の流れによって生じる負圧の他に溶融金属の静圧等が複合的に作用し、しかもかかる作用は連続鋳造時において経時的に変動するが、ガス供給系の下流部、好ましくは最下流部に取付けた圧力計による測定値が0.05〜0.15MPaの範囲内となるよう、該ガス供給系を介して該ストッパー本体内へ不活性ガスを供給すれば、該ストッパー本体内への大気の吸引を安定して且つ充分に防止できる。圧力計による測定値が0.05MPa未満では、ストッパー本体内への大気の吸引を安定して且つ充分に防止するのが難しく、逆に0.15MPa超では、単に非経済的に過ぎるというだけでなく、タンディッシュ内における溶融金属上のスラグを乱したり、場合によってはその一部がモールドへと持ち込まれてしまう不都合を生じる。同様の理由で、圧力計による測定値が0.05〜0.10MPaとなるようにするのが好ましく、0.05〜0.07MPaとなるようにするのがより好ましい。
【0010】
【発明の実施の形態】
図1は本発明の実施形態を、鋳造用ストッパー、タンディッシュ及び浸漬ノズルとの関係で例示する一部省略の断面図である。鋳造用ストッパー10は、内部にガス導入路11a及びガス導入路11aと連通して先端部へと到るノズル孔11bが形成されたストッパー本体11と、ガス導入路11aの周面に先端部が螺合して挿入された接続管12と、ストッパー本体11の上端部にて接続管12に取付けられたフランジ13と、接続管12の中間部に取付けられた昇降用のアーム14と、接続管12を貫通してガス導入路11a内へと挿入されたガス供給管15と、ガス供給管15を接続管12に支持するテーパーネジ16と、ガス供給管15に接続されたガス供給系17と、ガス供給系17の基端部に接続されたガス供給源18とを備えている。
【0011】
フランジ13は接続管12に螺合するナット13aで締め付けられており、またアーム14は接続管12に螺合する一対のナット14a,14bで締め付けられていて、ガス供給系17の最下流部に圧力計21が介装されている。そしてフランジ13、テーパーネジ16及びガス供給系17における継ぎ目17a〜17cの各部には、ペースト状の耐火シール材として所謂シリコンペースト31〜34が塗布され、これらの各部をシールしている。タンディッシュ41の底部には浸漬ノズル42が取付けられており、タンディッシュ41内には溶融金属51が装填されていて、ストッパー本体11はその先端部が浸漬ノズル42を直下に臨んで溶融金属51内に挿入されている。浸漬ノズル42の下方には図示しないモールドが配置されており、タンディッシュ41から浸漬ノズル42を介するモールドへの溶融金属51の注入量を、図示しない昇降装置によるアーム14を介してのストッパー本体11の昇降により、言い替えればストッパー本体11の先端部と浸漬ノズル42の上端部との間の開度により、調節するようになっている。
【0012】
図1に示した実施形態では、溶融金属を図示しない取鍋からタンディッシュ41へと順次移しつつ、タンディッシュ41内の溶融金属51を浸漬ノズル42を介して図示しないモールドへと注入する連続鋳造時において、不活性ガス供給源18からアルゴンガスを、ガス供給系17、圧力計21、ガス供給管15、ガス導入路11a及びノズル孔11bを介して、ストッパー本体11の先端部から溶融金属51中へと吹き出させており、この際のアルゴンガスの供給量を、圧力計21による測定値が0.05〜0.07MPaの範囲内となるよう制御している。
【0013】
【実施例】
図1について前述した実施形態にしたがい、ストッパー本体11の先端部からアルゴンガスを、圧力計21による測定値が0.05〜0.07MPaの範囲内となるよう吹き出させつつ、溶鋼を連続鋳造した(実施例)。別に、同様の操作で、ストッパー本体11の先端部からアルゴンガスを、圧力計21による測定値が0.02〜0.04MPaの範囲内となるよう吹き出させつつ、溶鋼を連続鋳造した(比較例)。実施例及び比較例において、所望通りの連続鋳造を行なうために調節した、ストッパー本体11の先端部と浸漬ノズル42の上端部との間の開度(mm)を図2に示した。図2は、横軸に取鍋からタンディッシュ41ヘ移した溶鋼の回数(回)を目盛り、縦軸に前記の開度(mm)を目盛っていて、開度(mm)が大きいほど、浸漬ノズル42に酸化物等の付着、堆積があり、それだけ浸漬ノズル42が閉塞していることを示している。図2の結果からも明らかなように、○印を結ぶ実線の折れ線Aで示した実施例の方が、×印を結ぶ破線の折れ線Bで示した比較例よりも、開度(mm)が小さく、したがってそれだけ、鋳造用ストッパー内部への大気の吸引を防止し、吸引した大気による酸化物等の発生を防止して、かかる酸化物の浸漬ノズル42への付着、堆積がすくなく、浸漬ノズル42の閉塞が少ない。
【0014】
【発明の効果】
既に明らかなように、以上説明した本発明には、鋳造用ストッパー内部への大気の吸引を防止し、したがって吸引した大気による酸化物等の発生を防止して、かかる酸化物等の浸漬ノズル部への付着、堆積を防止できるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施形態を、鋳造用ストッパー、タンディッシュ及び浸漬ノズルとの関係で例示する一部省略の断面図。
【図2】本発明等を適用した場合の連続鋳造時における鋳造用ストッパーの開度を示すグラフ。
【符号の説明】
10・・鋳造用ストッパー、11・・ストッパー本体、11a・・ガス導入路、11b・・ノズル孔、12・・接続管、13・・フランジ、14・・アーム、15・・ガス供給管、16・・テーパーネジ、17・・ガス供給系、18・・ガス供給源、21・・圧力計、41・・タンディッシュ、42・・浸漬ノズル、51・・溶融金属、A,B・・折れ線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for controlling gas supply to a casting stopper. When the molten metal transferred from the ladle into the tundish is injected into the mold through an immersion nozzle attached to the bottom of the tundish and continuously cast, the molten metal is injected from the tundish into the mold during continuous casting. A casting stopper is used to adjust the volume. The present invention relates to a method for controlling gas supply to such a casting stopper.
[0002]
[Prior art]
Conventionally, as a casting stopper as described above, generally, a stopper main body in which a gas introduction passage and a nozzle hole reaching a tip end communicating with the gas introduction passage are formed, and a peripheral surface of the gas introduction passage. A connecting pipe having a distal end screwed into the connecting pipe, a flange attached to the connecting pipe at an upper end of the stopper body, an elevating arm attached to an intermediate portion of the connecting pipe, A gas supply pipe inserted through the connection pipe into the gas introduction path, a tapered screw supporting the gas supply pipe to the connection pipe, a gas supply system connected to the gas supply pipe, A gas supply source connected to the base end of the supply system is used.
[0003]
In such a casting stopper, an inert gas, for example, argon gas, was inserted from a gas supply source through a gas supply system, a gas supply pipe, and a gas introduction path into the molten metal in the tundish facing the immersion nozzle. The inert gas is blown out from the nozzle hole of the stopper main body. When no inert gas is blown out from the nozzle hole of the stopper body, it means that the pressure of the inert gas is smaller than the static pressure of the molten metal in the tundish, and the flange portion and the tapered screw portion of the casting stopper are used. As a result, it was considered that air was mixed in the nozzle hole of the stopper main body and the gas introduction path, and the mixed air oxidized the molten metal and the like, and was generated. Oxides and the like are brought into the mold, and especially adhere to and deposit on the immersion nozzle, preventing smooth injection of the molten metal from the tundish into the mold through the immersion nozzle, and in some cases, closing the immersion nozzle. Because.
[0004]
In order to prevent the suction of the atmosphere as described above, a casting stopper in which the sealing performance of the casting itself is improved has been proposed (Japanese Patent Application Laid-Open Nos. 10-296406 and 2001-191152). However, in the past, since the supply and blowing of the inert gas as described above has been kept low mainly for economical reasons, even if a casting stopper with improved sealing properties is used, in fact, the above-described method is used. There is a problem that the suction of the atmosphere cannot be prevented, and thus the adhesion and deposition of the generated oxide and the like to the immersion nozzle cannot be prevented.
[0005]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to prevent the suction of air into the stopper main body of the casting stopper, thereby preventing the generation of oxides and the like due to the sucked air and to the immersion nozzle portion of such oxides and the like. It is an object of the present invention to provide a method for controlling the gas supply to a casting stopper which can prevent the adhesion and the deposition of the gas.
[0006]
[Means for Solving the Problems]
The present invention for solving the above-mentioned problems is a method for controlling gas supply to a casting stopper used for adjusting the injection amount when injecting molten metal from a tundish into a mold via an immersion nozzle, A pressure gauge is attached to a downstream side of a gas supply system for supplying an inert gas into a stopper body of a casting stopper, and the gas is supplied so that a value measured by the pressure gauge is in a range of 0.05 to 0.15 MPa. The present invention relates to a method for controlling gas supply to a casting stopper, which comprises supplying an inert gas into the stopper body via a supply system.
[0007]
In the present invention, a pressure gauge is attached to a downstream portion of a gas supply system for supplying an inert gas into the stopper body of the casting stopper, and a value measured by the pressure gauge is in a range of 0.05 to 0.15 MPa. An inert gas is supplied into the stopper main body via the gas supply system, and is blown out of the nozzle hole of the stopper main body into the molten metal in the tundish.
[0008]
As described above, as a casting stopper, generally, a stopper main body in which a gas introduction path and a nozzle hole reaching a tip end in communication with the gas introduction path are formed, and a peripheral surface of the gas introduction path. A connection pipe having a distal end screwed therein, a flange attached to the connection pipe at an upper end of the stopper body, an elevating arm attached to an intermediate portion of the connection pipe, A gas supply pipe inserted through the pipe into the gas introduction path, a tapered screw supporting the gas supply pipe to the connection pipe, a gas supply system connected to the gas supply pipe, One with a gas supply connected to the proximal end of the system has been used. In the present invention, the pressure gauge is attached to the downstream portion of the gas supply system. However, it is preferable to attach the pressure gauge to the most downstream portion of the gas supply system, in other words, it is preferable to attach the pressure gauge immediately before the gas supply pipe. It is preferable to apply a pace-like refractory sealing material to the flange portion, the tapered screw portion, the seam portion in the gas supply system, etc., and to seal them as much as possible in advance.
[0009]
In the present invention, the value measured by the pressure gauge is the reading of the pressure gauge, which is the so-called gauge pressure, and therefore becomes zero under atmospheric pressure. In the present invention, the inert gas is supplied into the stopper main body through the gas supply pipe so that the value measured by the pressure gauge is in the range of 0.05 to 0.15 MPa, and the inert gas is supplied from the nozzle hole of the stopper main body. Blow into the molten metal in the dish. In addition to the negative pressure generated by the flow of the molten metal flowing down to the mold via the immersion nozzle, the static pressure of the molten metal acts on the nozzle hole and gas introduction path of the stopper body in a complex manner. Although it fluctuates with time during continuous casting, the gas supply system is controlled so that the value measured by a pressure gauge attached to the downstream portion of the gas supply system, preferably the most downstream portion, is in the range of 0.05 to 0.15 MPa. When the inert gas is supplied into the stopper main body through the stopper, suction of the atmosphere into the stopper main body can be stably and sufficiently prevented. If the value measured by the pressure gauge is less than 0.05 MPa, it is difficult to stably and sufficiently prevent the suction of the atmosphere into the stopper body, and if it exceeds 0.15 MPa, it is simply too uneconomical. In addition, the slag on the molten metal in the tundish is disturbed, and in some cases, a part of the slag is brought into the mold. For the same reason, the value measured by the pressure gauge is preferably set to 0.05 to 0.10 MPa, and more preferably set to 0.05 to 0.07 MPa.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a partially omitted cross-sectional view illustrating an embodiment of the present invention in relation to a casting stopper, a tundish, and an immersion nozzle. The casting stopper 10 includes a stopper main body 11 in which a gas introduction passage 11a and a nozzle hole 11b reaching the tip end communicating with the gas introduction passage 11a are formed, and a tip end portion on a peripheral surface of the gas introduction passage 11a. A connection pipe 12 screwed and inserted, a flange 13 attached to the connection pipe 12 at an upper end of the stopper body 11, an elevating arm 14 attached to an intermediate portion of the connection pipe 12, a connection pipe; A gas supply pipe 15 inserted into the gas introduction passage 11 a through the gas supply pipe 12, a tapered screw 16 supporting the gas supply pipe 15 on the connection pipe 12, and a gas supply system 17 connected to the gas supply pipe 15. And a gas supply source 18 connected to the base end of the gas supply system 17.
[0011]
The flange 13 is fastened by a nut 13a screwed to the connection pipe 12, and the arm 14 is fastened by a pair of nuts 14a, 14b screwed to the connection pipe 12, and is provided at the most downstream portion of the gas supply system 17. A pressure gauge 21 is interposed. So-called silicone pastes 31 to 34 are applied to the flanges 13, the tapered screws 16 and the joints 17a to 17c of the gas supply system 17 as paste-like refractory sealing materials to seal these parts. An immersion nozzle 42 is attached to the bottom of the tundish 41, and a molten metal 51 is loaded in the tundish 41. The stopper main body 11 has a tip portion facing the immersion nozzle 42 directly below the molten metal 51. Is inserted inside. A mold (not shown) is arranged below the immersion nozzle 42, and the amount of the molten metal 51 injected from the tundish 41 into the mold via the immersion nozzle 42 is adjusted by a lifting device (not shown) via the arm body 14 via the arm 14. In other words, the opening is adjusted by the degree of opening between the tip of the stopper body 11 and the upper end of the immersion nozzle 42.
[0012]
In the embodiment shown in FIG. 1, continuous casting in which molten metal 51 in the tundish 41 is injected into a mold (not shown) through the immersion nozzle 42 while the molten metal is sequentially transferred from a ladle (not shown) to the tundish 41. At this time, argon gas is supplied from the inert gas supply source 18 to the molten metal 51 through the gas supply system 17, the pressure gauge 21, the gas supply pipe 15, the gas introduction path 11a, and the nozzle hole 11b from the tip of the stopper body 11. The supply amount of the argon gas at this time is controlled so that the value measured by the pressure gauge 21 is in the range of 0.05 to 0.07 MPa.
[0013]
【Example】
According to the embodiment described above with reference to FIG. 1, molten steel was continuously cast while blowing argon gas from the tip of the stopper body 11 so that the value measured by the pressure gauge 21 was in the range of 0.05 to 0.07 MPa. (Example). Separately, by the same operation, molten steel was continuously cast while blowing argon gas from the tip of the stopper body 11 so that the value measured by the pressure gauge 21 was in the range of 0.02 to 0.04 MPa (Comparative Example). ). FIG. 2 shows the degree of opening (mm) between the tip of the stopper body 11 and the upper end of the immersion nozzle 42, which was adjusted to perform the desired continuous casting in Examples and Comparative Examples. In FIG. 2, the horizontal axis indicates the number of times of molten steel transferred from the ladle to the tundish 41, and the vertical axis indicates the opening (mm). As the opening (mm) increases, Oxide and the like are deposited and deposited on the immersion nozzle 42, which indicates that the immersion nozzle 42 is closed. As is clear from the results of FIG. 2, the opening degree (mm) of the embodiment shown by the solid broken line A connecting the 印 marks is larger than that of the comparative example shown by the broken broken line B connecting the 印 marks. It is so small that it prevents suction of air into the interior of the casting stopper, prevents oxides and the like from being generated by the sucked air, and prevents such oxides from adhering to and accumulating on the immersion nozzle 42, and the immersion nozzle 42 Less blockage.
[0014]
【The invention's effect】
As already apparent, the present invention described above prevents the suction of the atmosphere into the casting stopper, thereby preventing the generation of oxides and the like due to the sucked air, and immersing the oxides and the like into the nozzle. There is an effect that adhesion and deposition to the surface can be prevented.
[Brief description of the drawings]
FIG. 1 is a partially omitted cross-sectional view illustrating an embodiment of the present invention in relation to a casting stopper, a tundish, and an immersion nozzle.
FIG. 2 is a graph showing the opening of a casting stopper during continuous casting when the present invention and the like are applied.
[Explanation of symbols]
10 ··· Casting stopper, 11 ·· Stopper body, 11a ·· Gas introduction path, 11b ·· Nozzle hole, 12 ·· Connection pipe, 13 ·· Flange, 14 · Arm, 15 ·· Gas supply pipe, 16 ..Taper screw, 17 gas supply system, 18 gas supply source, 21 pressure gauge, 41 tundish, 42 immersion nozzle, 51 molten metal, A, B, broken line

Claims (2)

タンディッシュから浸漬ノズルを介してモールドへ溶融金属を注入するときにその注入量を調節するために用いる鋳造用ストッパーへのガス供給を制御する方法であって、鋳造用ストッパーのストッパー本体内へ不活性ガスを供給するガス供給系の下流部に圧力計を取付け、該圧力計による測定値が0.05〜0.15MPaの範囲内となるよう、該ガス供給系を介して該ストッパー本体内へ不活性ガスを供給することを特徴とする鋳造用ストッパーへのガス供給制御方法。This is a method of controlling gas supply to a casting stopper used for adjusting the injection amount when a molten metal is injected from a tundish into a mold through an immersion nozzle. A pressure gauge is attached to the downstream of the gas supply system for supplying the active gas, and the pressure is measured into the stopper main body through the gas supply system so that the value measured by the pressure gauge is in the range of 0.05 to 0.15 MPa. A method for controlling gas supply to a casting stopper, comprising supplying an inert gas. 圧力計による測定値が0.05〜0.10MPaの範囲内となるよう、ガス供給系を介してストッパー本体内へ不活性ガスを供給する請求項1記載の鋳造用ストッパーへのガス供給制御方法。2. The method for controlling gas supply to a casting stopper according to claim 1, wherein an inert gas is supplied into the stopper body via a gas supply system such that a value measured by a pressure gauge falls within a range of 0.05 to 0.10 MPa. .
JP2002202317A 2002-07-11 2002-07-11 Gas supply control method to casting stopper Pending JP2004042083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202317A JP2004042083A (en) 2002-07-11 2002-07-11 Gas supply control method to casting stopper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202317A JP2004042083A (en) 2002-07-11 2002-07-11 Gas supply control method to casting stopper

Publications (1)

Publication Number Publication Date
JP2004042083A true JP2004042083A (en) 2004-02-12

Family

ID=31708537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202317A Pending JP2004042083A (en) 2002-07-11 2002-07-11 Gas supply control method to casting stopper

Country Status (1)

Country Link
JP (1) JP2004042083A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096762A1 (en) * 2007-02-07 2008-08-14 Krosakiharima Corporation Stopper structure, and its manufacturing method
KR101412536B1 (en) 2012-01-31 2014-06-26 현대제철 주식회사 Device for forecasting number of continuous-continuous casting on continuous casting process and method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096762A1 (en) * 2007-02-07 2008-08-14 Krosakiharima Corporation Stopper structure, and its manufacturing method
JP2008188663A (en) * 2007-02-07 2008-08-21 Kurosaki Harima Corp Stopper structure, and method for producing the same
KR101412536B1 (en) 2012-01-31 2014-06-26 현대제철 주식회사 Device for forecasting number of continuous-continuous casting on continuous casting process and method therefor

Similar Documents

Publication Publication Date Title
JP2004042083A (en) Gas supply control method to casting stopper
JP2934187B2 (en) Long nozzle for continuous casting
JPS5924902B2 (en) Continuous casting nozzle
JP3579568B2 (en) Stopper rod for continuous casting
JP3954728B2 (en) Refractory molded body for gas blowing
JP2003245759A (en) Forcibly opening method of tundish nozzle for continuous casting and device
JP2001172712A (en) Method and device for preventing deposition of metal on water-cooled lance for refining
JP2012526659A (en) Casting nozzle used in molten metal container
US20050023737A1 (en) Ladle
JPH01262055A (en) Continuous casting method
US6659165B1 (en) Metal casting device and metal casting method using the same
JP2004082024A (en) Internal supply type flame spraying apparatus
KR200180092Y1 (en) Device for Protecting hot metal attached porous plug in ladle
KR100952745B1 (en) The Argon Shieling Box for Protecting an Oxid on Casting Ingot
JPS6027580Y2 (en) Seal tube for continuous casting tundish
JP3727278B2 (en) container
JPS62279059A (en) Submerged nozzle
JP4421136B2 (en) Continuous casting method
JP2000084647A (en) Method for blowing gas into upper nozzle in tundish
JPH0243551Y2 (en)
JP2003531728A (en) Assembly with refractory parts and improved sealing for introducing inert gas
JPH05185191A (en) Method for pouring molten metal into casting mold from tundish and structure of pouring nozzle
JPH06297120A (en) Tundish stopper and device for feeding wire in immersion nozzle
JPH07155913A (en) Continuous casting method
JPH07266021A (en) Low pressure casting apparatus