JP2004042073A - Method and apparatus for conveying a group of molding flasks with hydraulic cylinder - Google Patents

Method and apparatus for conveying a group of molding flasks with hydraulic cylinder Download PDF

Info

Publication number
JP2004042073A
JP2004042073A JP2002201109A JP2002201109A JP2004042073A JP 2004042073 A JP2004042073 A JP 2004042073A JP 2002201109 A JP2002201109 A JP 2002201109A JP 2002201109 A JP2002201109 A JP 2002201109A JP 2004042073 A JP2004042073 A JP 2004042073A
Authority
JP
Japan
Prior art keywords
hydraulic
cylinder
speed
group
cushion cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002201109A
Other languages
Japanese (ja)
Other versions
JP3680997B2 (en
Inventor
Hiroshi Ueda
上田 浩
Yutaka Kajima
梶間 豊
Yasutsugu Ono
大野 泰嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2002201109A priority Critical patent/JP3680997B2/en
Publication of JP2004042073A publication Critical patent/JP2004042073A/en
Application granted granted Critical
Publication of JP3680997B2 publication Critical patent/JP3680997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Devices For Molds (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conveying method of a group of molding flasks with hydraulic cylinders and its apparatus by which the molding flask group arranging a plurality of the molding flasks is conveyed without shock and at high speed by using the hydraulic cylinders having large output. <P>SOLUTION: This apparatus is taken as a two-pressure control system in which a proportional controlling valve 32 is used for controlling the side of a hydraulic pusher cylinder 1 and decelerating solenoid valves 33, 34 are used for controlling the side of a hydraulic cushion cylinder 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、油圧プッシャーシリンダおよび油圧クッションシリンダにより直列状に配列された型枠群を挟み込み保持して1型枠分の1ピッチづつ間歇搬送する型枠群の油圧シリンダによる搬送方法及びその装置に関する。
【0002】
【従来の技術】
従来、直列状に配列された型枠群をプッシャーシリンダ及びクッションシリンダにより挟み込み保持して1型枠分のピッチづつ間歇搬送するものとしては、プッシャーシリンダ及びクッションシリンダとして空圧、油圧、電動シリンダが使用されている(例えば実公昭62ー46665号公報参照)。
そして空圧シリンダを使用するものは、その作動速度、作動距離、重量対応等を細かく制御することが困難であり、利用度合が少ないものである。また電動シリンダは、作動速度、作動距離、戻り距離等を細かく制御することができるが、重量の大きなものに対しては十分に対応することができない問題があった。さらに重量の大きなものに対応しうるものとしては、油圧シリンダが多く使用されているが、電動シリンダのような細かい制御コントロールができにくいという問題があった。
【0003】
一方、近年鋳物の薄肉軽量化が進められ、生砂鋳型造型後の型枠の搬送時における衝撃が鋳型に対し型落ち、中子倒れ等の悪影響を与えるため極力衝撃を与えずに搬送する必要性が生じてきている。
しかし市場ニーズとしては、鋳物製品の低価格化のため更なる鋳型の大型化、生産設備の高速化を求められるため鋳型搬送時の衝撃は大きくなる傾向にある。
【0004】
型枠搬送時の衝撃の原因としては、まず、複数個の型枠同士の間には隙間があり、この隙間分型枠を寄せる際に型枠が衝突することにより発生する。この隙間は各装置間の芯間距離を据付公差および型枠の搬入、搬出等ハンドリングに必要な計画当初からの隙間に加え、型枠の摩耗が進行することにより増加してゆく。また日々の操業により型枠は鋳物の熱による熱膨張が生じるため操業の前後では型枠間の隙間に変化が生じる。このような隙間の変化に対し、油圧シリンダで低速送り制御をする場合、作動油温の変化により送り速度が変化するため、これを加味し、低速送り時間が長くなり、設備の高速化の妨げとなる。
【0005】
次に設備の高速化に当たり、大きな慣性力を持つ型枠を減速後停止させる必要がある。そのため油圧プッシャーシリンダでの送り速度を高速から低速に切り替える必要があり、この高速と低速の速度差が大きい場合、バルブ切り替時の高速変化が衝撃となってしまう不具合が生じている。
さらに油圧プッシャーシリンダの速度変化に対し慣性力により型枠が先走りし、油圧プッシャーシリンダのヘッドと型枠との間に隙間ができ、再度隙間寄せする時に衝撃が発生する場合があった。
【0006】
なお油圧シリンダを連続的に速度制御する機構としては、従来からデセラレーションバルブがあるがこれは移動側にカムを取付け、移動中にこのカムにてデセラレーションバルブの流量、変更部を押し、機械的に油量を制御するバルブであるがカム及びデセラレーションバルブの接触部の損耗が発生する問題があった。
【0007】
【発明が解決しようとする課題】
本発明は上記の問題に鑑みて成されたもので、大出力を有する油圧シリンダを使用して複数の型枠を配列した型枠群を衝撃なく高速で搬送する型枠群の油圧シリンダによる搬送方法及びその装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明における型枠群の油圧シリンダによる搬送方法は、直列状に配列された型枠群を油圧プッシャーシリンダと油圧クッションシリンダとにより挟み込み1型枠分のピッチづつ間歇搬送する型枠群の油圧シリンダによる搬送方法であって、油圧プッシャーシリンダ、型枠、油圧クッションシリンダ間に隙間がある状態で、油圧プッシャーシリンダを低速作動させて直列状の型枠群を押し出して油圧クッションシリンダ前の型枠にて油圧クッションシリンダの枠押しヘッドを押して枠寄せをする工程と、前記油圧プッシャーシリンダと油圧クッションシリンダとにより型枠群を挟み込んだ状態で、油圧プッシャーシリンダに高速押し作動させると共に減速域にて油圧クッションシリンダを高背圧状態に切り替え、もって型枠群の挟み付け状態を維持させながら型枠群を1型枠分のピッチ搬送させる工程と、前記油圧プッシャーシリンダ及び油圧クッションシリンダが停止された後再度油圧クッションシリンダが縮引作動されて油圧クッションシリンダ前の型枠の前後に隙間を設ける工程と、を具備することを特徴とする。
【0009】
また上記の目的を達成するために、本発明における型枠群の油圧シリンダによる搬送装置は、ライン始端とライン終端に対向して配置され、そのロッド先端に枠押しヘッドをそれぞれ取り付けた油圧プッシャーシリンダと油圧クッションシリンダで構成された型枠群の油圧シリンダによる搬送装置であって、油圧プッシャーシリンダを、コントローラにより制御される比例制御弁を設けて、高速、中速、低速制御可能にした油圧配管とし、油圧クッションシリンダを、第1電磁弁を介して制御可能にすると共にロッドの縮み方向に背圧を切り替える第2電磁弁を設けて背圧切り替えにより高速搬送中の型枠群を減速する構成の油圧配管にしたことを特徴とする。
【0010】
【発明の実施の形態】
以下本発明の実施の形態を図面に基づいて詳しく説明する。図1は対向して配置したプッシャーシリンダ1とクッションシリンダ2にて型枠群3、3を挟み込み、1型枠分ピッチ間歇枠送りする搬送ライン及び油圧配管系統図が示されている。
プッシャーシリンダ1とクッションシリンダ2の間には図示されない各種の装置があり、各装置の前後及びプッシャーシリンダ1及びクッションシリンダ2の前に隙間4、4が設けてある。
【0011】
前記プッシャーシリンダ1及びクッションシリンダ2としては油圧シリンダ11、11が使用され、そのピストンロッド12、12の先端には図2〜図6に示すように枠押しヘッド13、13を取付け、ガイドレール14、14をガイドローラ15、15で挟み込むことにより油圧シリンダ11、11の姿勢を保持させている。以下プッシャーシリンダ1側の油圧シリンダ11をまとめて油圧プッシャーシリンダ1と呼び、またクッションシリンダ2側の油圧シリンダ11をまとめて油圧クッションシリンダ2と呼ぶことにする。
油圧プッシャーシリンダ1に、カエリ端17、イキ減速18、イキ端19の各検出器が、また油圧クッションシリンダ2に、キキ端20、モドリ端21の各検出器がフレーム16、16に固定して配置されている。ガイドレール14、14には各検出器をON、OFFするためのアテ22、22及び長アテ23が取り付けてある。
【0012】
さらに油圧配管を図1により説明する。まず油圧プッシャーシリンダ1は、コントローラ31にて制御される比例制御弁32により速度制御される配管と連通されている。油圧クッションシリンダ2は、第1電磁弁33で制御し、ロッド12の縮み方向には第2電磁弁34を設け、背圧を切り替える2圧制御をすることにより大きな慣性力を持った高速搬送中の型枠群3、3を減速する。
【0013】
上記比例制御弁32のコントローラ31は、イキ方向チャンネル1(CH1)を高速に、チャンネル2(CH2)を中速に、カエリ方向チャンネル4(CH4)を高速に設定する。
また両油圧シリンダ1、2のヘッド側油圧配管にロジック弁35、35を設け、油圧ユニット36、36のポンプ起動時、比例制御弁32及び第1電磁弁33から油のリークにより両油圧シリンダ1、2のロッド12、12が飛び出すのをこのロジック弁35、35により防止している。
すなわち、プッシャーシリンダ1のカエリ端、クッションシリンダ2のキキ端にて、比例制御弁32及び第1電磁弁33が中立位置にある時(図1参照)、油圧ユニット36からの高圧作動油は、比例制御弁32及び第1電磁弁33のそれぞれのPポートにて閉じられているが、微量の作動油が、それぞれのA,Bポート側へ漏れ出す現象が生じる。ロジック弁35がない場合、同じ圧力の作動油で同時にシリンダ11のロッド側とヘッド側を押すと、断面積が大きいヘッド側の力が大きいため、シリンダ11のロッド12が徐々に出てくる状態となる。この状態を防止するため、シリンダ11のヘッド側の配管途中にロジック弁35を取り付ける。
尚、ロジック弁35は配管途中をスプリングで押し付ける弁で閉じる構造である。電磁弁のAポートからシリンダ11ヘッド側への作動油のリークは、スプリングの力で弁を押すことにより配管を閉じることで防止する。また、電磁弁の開閉でシリンダ11を駆動する場合、シリンダロッド12を出すときは、電磁弁Aポートからの作動圧力でピストンが押され弁が開く。シリンダロッド12を引くときは、シリンダヘッド側からの作動油で直接弁を押し開く。
【0014】
次に型枠群3、3の搬送について説明する。図2は油圧プッシャーシリンダ1と油圧クッションシリンダ2による型枠群3、3の送りの原位置を示す。油圧プッシャーシリンダ1は、ロッド12が縮み端にあり、カエリ端17がアテ22にてONしている。油圧クッションシリンダ2は、ロッド12が延び端にあり、モドリ端21がアテ22にてONしている。隙間4は、搬入型枠(左端)3の前後及び油圧クッションシリンダ2の枠押しヘッド13の前にある。
【0015】
油圧プッシャーシリンダ1は、スタートから枠寄せ完のモドリ端21がOFFするまでは比例制御弁32、チャンネル2(CH2)のみの中速でロッド12延び方向に型枠群3、3を送り、図3の状態にされると共にモドリ端21がOFF後は比例制御弁32、チャンネル1(CH1)の高速で型枠群3、3を送り出す。この場合単純にチャンネル2(CH2)からチャンネル1(CH1)へ切り替えずチャンネル2(CH2)中速送り通電中にチャンネル1(CH1)を重ね通電し、高速送りとすることによりチャンネル切り替え時の枠送り衝撃発生を防止する。
【0016】
次に図4に示すように、油圧プッシャーシリンダ1が高速枠送り時イキ減速18を長アテ23にてONした時に、油圧クッションシリンダ2は第2電磁弁34がOFFし、高背圧に切り替わり減速が開始される。
イキ減速18のON信号の検出漏れが発生した場合、型枠群3、3の減速がされず油圧クッションシリンダ2に高速で衝突する不具合が生じるため長アテ23が使用され、確実に減速信号を入力する構造にしてある。
【0017】
次に油圧プッシャーシリンダ1押し完了状態が図5に示されている。油圧プッシャーシリンダ1のロッド12は、延び端にあり、長アテ23にてイキ端19をONしている。この時油圧クッションシリンダ2は、縮み途中であり、キキ端20はまだアテ22にてONしていない。
【0018】
イキ減速18がONした後油圧クッションシリンダ2が高背圧となるため、油圧プッシャーシリンダ1は、チャンネル1(CH1)高速送り通電中のまま減速される。イキ端19がONされるとチャンネル1(CH1)高速をOFFする。イキ端19がONの後一定タイマー時間経過後、比例制御弁32をチャンネル4に切り替え、油圧プッシャーシリンダ1のロッド12を高速で縮み方向に返す。油圧クッションシリンダ2は、スタートと同時に第2電磁弁34を通電し、ロッド12縮み方向を低背圧とする。イキ減速18のONにて第2電磁弁34をOFFし、高背圧とする。低背圧時は、押された型枠群3、3が先走りしないように挟み込み、高背圧時は、高速枠送り中の型枠群3、3を減速する。
【0019】
次に図6に油圧クッションシリンダ2の再キキ完了状態が示されている。すなわち油圧プッシャーシリンダ1の押出し完了後油圧クッションシリンダ2のロッド12はキキ端20がONするまで縮むことにより油圧クッションシリンダ2前の型枠3の前後に隙間4、4が設けられる。この後油圧クッショッンシリンダ2前の型枠3をライン外に搬出した後ロッド12はモドリ端21がONするまで延び、図2に示す原位置に戻す。クッションシリンダ2の再キキ開始と同時に第2電磁弁34を通電し、低背圧にする。
【0020】
次に通常運転時の油圧プッシャーシリンダ1、油圧クッションシリンダ2の制御工程図を図7に、作動速度線図を図8に示す。なお図7〜図12に示す制御工程図及び作動速度線図においては油圧プッシャーシリンダ1をPSとし、油圧クッションシリンダ2をCCとし、さらにカエリ端17をB、イキ減速18をGS、イキ端19をG、キキ端20をK、モドリ端21をMとして示している。
通常運転時とは油圧プッシャーシリンダPS側ロッド12が縮み端にあり、カエリ端17がアテ22にてONし、かつ油圧クッションシリンダCC側ロッド12が延び端にあり、モドリ端21がアテ22にてONしている状態からのスタート時のことである。
【0021】
またイキ高速送り時に非常停止がONした場合の油圧プッシャーシリンダPS、油圧クッションシリンダCCの制御工程図を図9に、作動速度線図を図10に示す。非常停止がONした場合は、油圧プッシャーシリンダPS、油圧クッションシリンダCC共に油圧ユニット36、36のポンプが停止し、全ての電磁弁の通電がOFFする。この場合油圧クッションシリンダCC側は高背圧となり、搬送中の型枠群3、3は急速減速され停止するため油圧回路は安全側に作動する。
【0022】
更に途中停止からの再スタートする場合の油圧プッシャーシリンダPS、油圧クッションシリンダCCの制御工程図を図11に、作動速度線図を図12に示す。途中停止からの再スタートする場合とは、油圧プッシャーシリンダPS側ロッド12が縮み端になく、返り端17がOFFしている状態と、油圧クッションシリンダCC側のロッド12が延び端になく、モドリ端21がOFFしている状態のどちらか、又は両方が成立している状態からスタートする場合のことである。
【0023】
上記条件のように非常停止後等途中停止からの再スタート時は必ずしも油圧プッシャーシリンダPSと油圧クッションシリンダCCとで型枠群3、3が挟み込まれている状態ではない。慣性力による型枠群3、3の先走りが発生するため油圧プッシャーシリンダPSと油圧クッションシリンダCC及び型枠3間に隙間4が発生している。そのため油圧プッシャーシリンダPS、比例制御弁32はチャンネル2(CH2)のみの中速でイキ端19がONするまで型枠3を送る。この場合型枠群3、3減速時の慣性力は小さいため、油圧クッションシリンダCC側を高背圧とした場合、油圧プッシャーシリンダPSにて押し切れない場合がある。そのため油圧クッションシリンダCCは再スタート開始時から第2電磁弁34を通電し、低背圧とする。このようにして、途中停止からの再スタート時は、通常運転時とは別工程の制御で低速搬送する。
【0024】
【発明の効果】
本発明は上記の説明から明らかなように、油圧プッシャーシリンダ側の制御に比例制御弁を使用し、油圧クッションシリンダ側の制御に減速用電磁弁を使用した2圧制御方式とすることにより、大型の型枠を衝撃なくかつ高速搬送できると共に鋳型の型落ち等衝撃による損傷をなくし、しかも隙間部の枠寄せ時の衝突音を低減できる等種々の効果がある。
【図面の簡単な説明】
【図1】本発明の基本的な装置構成及び油圧配管系統図である。
【図2】装置構成の原位置状態の正面図及び平面図である。
【図3】装置構成の枠寄せ時状態の正面図及び平面図である。
【図4】装置構成の減速開始時状態の正面図及び平面図である。
【図5】装置構成の油圧プッシャーシリンダ、押し完了時状態の正面図及び平面図である。
【図6】装置構成の油圧クッションシリンダ、キキ完了時状態の正面図及び平面図である。
【図7】通常運転時の制御工程図である。
【図8】通常運転時の作動速度線図である。
【図9】非常停止時の制御工程図である。
【図10】非常停止時の作動速度線図である。
【図11】再スタート時の制御工程図である。
【図12】再スタート時の作動速度線図である。
【符号の説明】
1 油圧プッシャーシリンダ
2 油圧クッションシリンダ
3 型枠
4 隙間
12 ロッド
13 枠押しヘッド
17 カエリ端(B)
18 イキ減速(GS)
19 イキ端(G)
20 キキ端(K)
21 モドリ端(M)
22 アテ
23 長アテ
31 コントローラ
32 比例制御弁
33 第1電磁弁
34 第2電磁弁
35 ロジック弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for transporting a group of molds that intermittently convey a group of molds at a pitch of one mold by holding and holding a group of molds arranged in series by a hydraulic pusher cylinder and a hydraulic cushion cylinder, and a device therefor. .
[0002]
[Prior art]
Conventionally, as a group in which form groups arranged in series are sandwiched and held by a pusher cylinder and a cushion cylinder and intermittently conveyed at a pitch of one form, pneumatic, hydraulic, and electric cylinders are used as a pusher cylinder and a cushion cylinder. (For example, see Japanese Utility Model Publication No. Sho 62-46665).
In the case of using the pneumatic cylinder, it is difficult to finely control the operation speed, the operation distance, the weight correspondence, and the like, and the use degree is small. Further, the electric cylinder can finely control the operation speed, the operation distance, the return distance and the like, but there is a problem that the electric cylinder cannot sufficiently cope with a heavy one. Although hydraulic cylinders are often used to cope with heavy ones, there is a problem that it is difficult to perform fine control and control as with electric cylinders.
[0003]
On the other hand, in recent years, castings have been made thinner and lighter, and the impact during transportation of the mold after green sand molding has dropped on the mold, causing adverse effects such as falling down of the core. The nature is emerging.
However, as market needs, there is a demand for further increase in the size of the mold and speeding up of production equipment in order to reduce the cost of the casting product, and therefore the impact during the transfer of the mold tends to increase.
[0004]
As a cause of the impact at the time of transporting the mold, first, there is a gap between the plurality of molds, and the impact occurs when the molds collide when approaching the gap by the gap. This gap increases due to the progress of abrasion of the mold, in addition to the distance between the cores between the devices and the installation tolerance and the gap necessary for handling such as loading and unloading of the mold, from the beginning of planning. Further, due to the daily operation, the mold undergoes thermal expansion due to the heat of the casting, so that the gap between the molds changes before and after the operation. When low-speed feed control is performed with a hydraulic cylinder in response to such a change in the gap, the feed speed changes due to a change in the hydraulic oil temperature. It becomes.
[0005]
Next, to speed up the equipment, it is necessary to stop the formwork having a large inertial force after deceleration. Therefore, it is necessary to switch the feed speed of the hydraulic pusher cylinder from a high speed to a low speed, and when the speed difference between the high speed and the low speed is large, there is a problem that a high speed change at the time of valve switching becomes an impact.
Further, the formwork runs ahead due to the inertial force with respect to the speed change of the hydraulic pusher cylinder, and a gap is formed between the head of the hydraulic pusher cylinder and the formwork, and an impact may be generated when the gap is approached again.
[0006]
As a mechanism for continuously controlling the speed of the hydraulic cylinder, there is a conventional deceleration valve, which is equipped with a cam on the moving side and presses the flow rate of the deceleration valve and the change section with this cam during movement. Although the valve mechanically controls the amount of oil, there is a problem in that the contact portion between the cam and the deceleration valve is worn.
[0007]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a form group in which a plurality of form forms are arrayed using a hydraulic cylinder having a large output. It is an object to provide a method and an apparatus thereof.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a method for transporting a group of formwork by a hydraulic cylinder according to the present invention is a method of sandwiching a group of formwork arranged in series between a hydraulic pusher cylinder and a hydraulic cushion cylinder, with a pitch of one formwork. This is a method of transporting a group of formwork that is intermittently transported by a hydraulic cylinder. In a state where there is a gap between the hydraulic pusher cylinder, the formwork, and the hydraulic cushion cylinder, the hydraulic pusher cylinder is operated at low speed to extrude a series of formwork groups Pressing the frame pushing head of the hydraulic cushion cylinder with the mold in front of the hydraulic cushion cylinder to move the frame, and moving the high speed to the hydraulic pusher cylinder with the formwork group sandwiched between the hydraulic pusher cylinder and the hydraulic cushion cylinder. Pressing and switching the hydraulic cushion cylinder to high back pressure in the deceleration range A step of transporting the mold group by one mold pitch while maintaining the sandwiched state of the mold group; and a step in which the hydraulic cushion cylinder is contracted again after the hydraulic pusher cylinder and the hydraulic cushion cylinder are stopped. Providing gaps before and after the mold in front of the hydraulic cushion cylinder.
[0009]
Further, in order to achieve the above object, a transfer device of the present invention by a hydraulic cylinder of a form group is arranged opposite to a line start end and a line end, and a hydraulic pusher cylinder having a frame pushing head attached to a rod end thereof. And a hydraulic cylinder of a mold group composed of a hydraulic cushion cylinder and a hydraulic piping in which a hydraulic pusher cylinder is provided with a proportional control valve controlled by a controller so that high speed, medium speed and low speed can be controlled. A configuration in which the hydraulic cushion cylinder is controllable via the first electromagnetic valve and a second electromagnetic valve for switching back pressure in the contraction direction of the rod is provided to reduce the form group during high-speed conveyance by switching the back pressure. Characterized in that it is a hydraulic pipe.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a conveying line and a hydraulic piping system diagram in which form groups 3 and 3 are sandwiched between a pusher cylinder 1 and a cushion cylinder 2 which are arranged to face each other, and the pitch is intermittently fed by one form.
Various devices (not shown) are provided between the pusher cylinder 1 and the cushion cylinder 2, and gaps 4, 4 are provided before and after each device and before the pusher cylinder 1 and the cushion cylinder 2.
[0011]
Hydraulic cylinders 11, 11 are used as the pusher cylinder 1 and the cushion cylinder 2, and frame pushing heads 13, 13 are attached to the ends of the piston rods 12, 12 as shown in FIGS. , 14 are held between the guide rollers 15, 15 to maintain the posture of the hydraulic cylinders 11, 11. Hereinafter, the hydraulic cylinders 11 on the pusher cylinder 1 side are collectively referred to as a hydraulic pusher cylinder 1, and the hydraulic cylinders 11 on the cushion cylinder 2 side are collectively referred to as a hydraulic cushion cylinder 2.
The hydraulic pusher cylinder 1 has fixed detectors 17 at the burrs end 17, the speed reducer 18, and the end 19, and the hydraulic cushion cylinder 2 has fixed detectors at the cut end 20 and the mold end 21 fixed to the frames 16, 16. Are located. Attaches 22, 22 and a long abutment 23 for turning each detector ON and OFF are attached to the guide rails 14, 14, respectively.
[0012]
Further, the hydraulic piping will be described with reference to FIG. First, the hydraulic pusher cylinder 1 is connected to a pipe whose speed is controlled by a proportional control valve 32 controlled by a controller 31. The hydraulic cushion cylinder 2 is controlled by a first solenoid valve 33, and a second solenoid valve 34 is provided in the direction in which the rod 12 contracts. By performing two-pressure control to switch back pressure, high-speed conveyance with a large inertia force is performed. Form group 3, 3 is decelerated.
[0013]
The controller 31 of the proportional control valve 32 sets the direction channel 1 (CH1) at a high speed, the channel 2 (CH2) at a medium speed, and the flash direction channel 4 (CH4) at a high speed.
Logic valves 35, 35 are provided in the head-side hydraulic pipes of the two hydraulic cylinders 1, 2, and when the pumps of the hydraulic units 36, 36 are activated, oil leaks from the proportional control valve 32 and the first solenoid valve 33 so that the two hydraulic cylinders 1 The logic valves 35, 35 prevent the rods 12, 12 from jumping out.
That is, when the proportional control valve 32 and the first solenoid valve 33 are at the neutral position at the burrs end of the pusher cylinder 1 and the cut ends of the cushion cylinder 2 (see FIG. 1), the high-pressure hydraulic oil from the hydraulic unit 36 Although closed at the respective P ports of the proportional control valve 32 and the first solenoid valve 33, a phenomenon occurs in which a small amount of hydraulic oil leaks to the respective A and B port sides. When the logic valve 35 is not provided, when the rod side and the head side of the cylinder 11 are simultaneously pressed with hydraulic oil of the same pressure, the rod 12 of the cylinder 11 gradually comes out because the force on the head side having a large sectional area is large. It becomes. In order to prevent this state, a logic valve 35 is attached in the middle of the piping on the head side of the cylinder 11.
The logic valve 35 has a structure that is closed by a valve that presses the middle of the pipe with a spring. Leakage of hydraulic oil from the A port of the solenoid valve to the cylinder 11 head side is prevented by closing the piping by pressing the valve with the force of a spring. When the cylinder 11 is driven by opening and closing the solenoid valve, when the cylinder rod 12 is extended, the piston is pushed by the operating pressure from the solenoid valve A port and the valve is opened. When pulling the cylinder rod 12, the valve is directly pushed open by the hydraulic oil from the cylinder head side.
[0014]
Next, conveyance of the form groups 3 and 3 will be described. FIG. 2 shows the original positions of the feed of the form groups 3 by the hydraulic pusher cylinder 1 and the hydraulic cushion cylinder 2. In the hydraulic pusher cylinder 1, the rod 12 is at the contracted end, and the burred end 17 is turned on by the ate 22. In the hydraulic cushion cylinder 2, the rod 12 is at the extending end, and the molding end 21 is turned on by the ate 22. The gap 4 is located before and after the carry-in form frame (left end) 3 and before the frame pushing head 13 of the hydraulic cushion cylinder 2.
[0015]
The hydraulic pusher cylinder 1 feeds the form groups 3, 3 in the extending direction of the rod 12 at a medium speed only in the proportional control valve 32 and the channel 2 (CH2) from the start until the frame end 21 of the frame approaching completion is turned off. After the cutting end 21 is turned off, the proportional control valve 32 and the form group 3, 3 are sent out at high speed in the channel 1 (CH1). In this case, without switching from channel 2 (CH2) to channel 1 (CH1), channel 1 (CH1) is superimposed and energized during medium-speed feeding of channel 2 (CH2), and high-speed feeding is performed. Prevents feeding impact.
[0016]
Next, as shown in FIG. 4, when the hydraulic pusher cylinder 1 turns on the high speed frame feed quill deceleration 18 with the long arm 23, the hydraulic cushion cylinder 2 switches to the high back pressure by turning off the second solenoid valve 34. Deceleration is started.
If the ON signal of the live deceleration 18 is missed, the form groups 3 and 3 are not decelerated and a collision with the hydraulic cushion cylinder 2 occurs at a high speed. It has a structure to input.
[0017]
Next, FIG. 5 shows a state in which the push of the hydraulic pusher cylinder 1 is completed. The rod 12 of the hydraulic pusher cylinder 1 is located at the extended end, and the long end 23 has the end 19 turned ON. At this time, the hydraulic cushion cylinder 2 is in the process of contracting, and the cut end 20 has not been turned on by the arm 22 yet.
[0018]
After the hydraulic deceleration 18 is turned on, the hydraulic cushion cylinder 2 has a high back pressure, so that the hydraulic pusher cylinder 1 is decelerated while the channel 1 (CH1) high-speed feed is energized. When the end 19 is turned on, the channel 1 (CH1) high speed is turned off. After a lapse of a predetermined timer time after the end 19 is turned on, the proportional control valve 32 is switched to the channel 4, and the rod 12 of the hydraulic pusher cylinder 1 is returned in the contracting direction at high speed. The hydraulic cushion cylinder 2 energizes the second solenoid valve 34 at the same time as the start, and sets the direction of contraction of the rod 12 to a low back pressure. The second solenoid valve 34 is turned off by turning on the speed reduction 18 to increase the back pressure. When the back pressure is low, the pressed form groups 3 and 3 are sandwiched so as not to advance, and when the back pressure is high, the form groups 3 and 3 during high-speed frame feeding are decelerated.
[0019]
Next, FIG. 6 shows a state in which the hydraulic cushion cylinder 2 has been re-started. That is, after the pushing of the hydraulic pusher cylinder 1 is completed, the rods 12 of the hydraulic cushion cylinder 2 are contracted until the cut end 20 is turned on, so that gaps 4 and 4 are provided before and after the mold 3 in front of the hydraulic cushion cylinder 2. Thereafter, after the mold 3 in front of the hydraulic cushion cylinder 2 is carried out of the line, the rod 12 extends until the molding end 21 is turned on, and returns to the original position shown in FIG. At the same time as the re-start of the cushion cylinder 2, the second solenoid valve 34 is energized to reduce the back pressure.
[0020]
Next, FIG. 7 shows a control process diagram of the hydraulic pusher cylinder 1 and the hydraulic cushion cylinder 2 during normal operation, and FIG. 8 shows an operation speed diagram. In the control process diagrams and the operation speed diagrams shown in FIGS. 7 to 12, the hydraulic pusher cylinder 1 is set to PS, the hydraulic cushion cylinder 2 is set to CC, the burrs end 17 is B, the speed reduction 18 is GS, and the speed end 19 is GS. Is denoted by G, the edge 20 is denoted by K, and the edge 21 is denoted by M.
At the time of normal operation, the hydraulic pusher cylinder PS side rod 12 is at the contracted end, the burrs end 17 is turned on at the ate 22, the hydraulic cushion cylinder CC side rod 12 is at the extended end, and the molding end 21 is at the ate 22. At the time of starting from the state where it is ON.
[0021]
FIG. 9 shows a control process diagram of the hydraulic pusher cylinder PS and the hydraulic cushion cylinder CC when the emergency stop is turned on at the time of high-speed feed, and FIG. 10 shows an operation speed diagram. When the emergency stop is turned on, the pumps of the hydraulic units 36, 36 are stopped for both the hydraulic pusher cylinder PS and the hydraulic cushion cylinder CC, and the power supply to all the solenoid valves is turned off. In this case, the hydraulic cushion cylinder CC side has a high back pressure, and the form groups 3 and 3 being conveyed are rapidly decelerated and stopped, so that the hydraulic circuit operates on the safe side.
[0022]
Further, FIG. 11 shows a control process diagram of the hydraulic pusher cylinder PS and the hydraulic cushion cylinder CC when restarting from an intermediate stop, and FIG. 12 shows an operation speed diagram. The restart from the halfway stop means that the rod 12 on the hydraulic pusher cylinder PS side is not at the contracted end and the return end 17 is OFF, and the rod 12 on the hydraulic cushion cylinder CC side is not at the extended end, and This is a case where the operation is started from a state in which one or both ends of the end 21 are OFF.
[0023]
At the time of restarting from an intermediate stop, such as after an emergency stop, as in the above condition, the form groups 3, 3 are not necessarily sandwiched between the hydraulic pusher cylinder PS and the hydraulic cushion cylinder CC. A gap 4 is generated between the hydraulic pusher cylinder PS, the hydraulic cushion cylinder CC, and the mold 3 because the form groups 3 and 3 advance due to inertial force. Therefore, the hydraulic pusher cylinder PS and the proportional control valve 32 send the mold 3 at medium speed only in the channel 2 (CH2) until the end 19 is turned on. In this case, since the inertia force at the time of deceleration of the mold groups 3 and 3 is small, when the hydraulic cushion cylinder CC side is set to a high back pressure, the hydraulic pusher cylinder PS may not be able to push the hydraulic cylinder. Therefore, the hydraulic cushion cylinder CC energizes the second solenoid valve 34 from the start of the restart to reduce the back pressure. In this way, at the time of restarting from a halfway stop, low-speed transport is performed by control of a process different from that during normal operation.
[0024]
【The invention's effect】
As is clear from the above description, the present invention employs a two-pressure control system using a proportional control valve for control on the hydraulic pusher cylinder side and a solenoid valve for deceleration for control on the hydraulic cushion cylinder side, so that There are various effects such as the ability to transport the mold frame at high speed without impact, to eliminate damage due to impact such as mold dropping, and to reduce the collision noise when the frame is moved to the gap.
[Brief description of the drawings]
FIG. 1 is a basic device configuration and a hydraulic piping system diagram of the present invention.
FIGS. 2A and 2B are a front view and a plan view of an apparatus configuration in an original position.
FIGS. 3A and 3B are a front view and a plan view of the apparatus configuration when the frame is moved to a frame.
FIGS. 4A and 4B are a front view and a plan view of the apparatus configuration in a deceleration start state.
FIG. 5 is a front view and a plan view of a hydraulic pusher cylinder having a device configuration, in a state at the time of completion of pushing.
FIGS. 6A and 6B are a front view and a plan view of a hydraulic cushion cylinder having a device configuration, in a state at the time of completion of kick.
FIG. 7 is a control process diagram during normal operation.
FIG. 8 is an operating speed diagram during normal operation.
FIG. 9 is a control process diagram during an emergency stop.
FIG. 10 is an operation speed diagram at the time of an emergency stop.
FIG. 11 is a control process diagram at the time of restart.
FIG. 12 is an operation speed diagram at the time of restart.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hydraulic pusher cylinder 2 Hydraulic cushion cylinder 3 Form 4 Gap 12 Rod 13 Frame pushing head 17 Burr end (B)
18 Iki deceleration (GS)
19 Live end (G)
20 Kiki edge (K)
21 Mold edge (M)
22 ate 23 long ate 31 controller 32 proportional control valve 33 first solenoid valve 34 second solenoid valve 35 logic valve

Claims (5)

直列状に配列された型枠群を油圧プッシャーシリンダと油圧クッションシリンダとにより挟み込み1型枠分のピッチづつ間歇搬送する型枠群の油圧シリンダによる搬送方法であって、
油圧プッシャーシリンダ、型枠、油圧クッションシリンダ間に隙間がある状態で、油圧プッシャーシリンダを低速作動させて直列状の型枠群を押し出して油圧クッションシリンダ前の型枠にて油圧クッションシリンダの枠押しヘッドを押して枠寄せをする工程と、
前記油圧プッシャーシリンダと油圧クッションシリンダとにより型枠群を挟み込んだ状態で、油圧プッシャーシリンダに高速押し作動させると共に減速域にて油圧クッションシリンダを高背圧状態に切り替え、もって型枠群の挟み付け状態を維持させながら型枠群を1型枠分のピッチ搬送させる工程と、
前記油圧プッシャーシリンダ及び油圧クッションシリンダが停止された後再度油圧クッションシリンダが縮引作動されて油圧クッションシリンダ前の型枠の前後に隙間を設ける工程と、
を具備することを特徴とする型枠群の油圧シリンダによる搬送方法。
A method of transporting a form group arranged in series by a hydraulic cylinder of a form group, wherein the form group is sandwiched between a hydraulic pusher cylinder and a hydraulic cushion cylinder and intermittently carried at a pitch of one form.
When there is a gap between the hydraulic pusher cylinder, the mold and the hydraulic cushion cylinder, operate the hydraulic pusher cylinder at low speed to push out the series of formwork groups and push the frame of the hydraulic cushion cylinder with the mold in front of the hydraulic cushion cylinder. A step of pushing the head to align the frame,
With the formwork group sandwiched between the hydraulic pusher cylinder and the hydraulic cushion cylinder, the hydraulic pusher cylinder is operated at a high speed and the hydraulic cushion cylinder is switched to a high back pressure state in the deceleration range, thereby clamping the formwork group. A step of carrying the form group at a pitch of one form while maintaining the state;
After the hydraulic pusher cylinder and the hydraulic cushion cylinder are stopped, the hydraulic cushion cylinder is again contracted to provide a gap before and after the mold in front of the hydraulic cushion cylinder,
A method of transporting a group of molds by a hydraulic cylinder, comprising:
イキ高速送り時に非常停止がONした場合は、油圧プッシャーシリンダ、油圧クッションシリンダ共に油圧ユニットのポンプが停止し、全ての電磁弁の通電がOFFすると共に、この場合油圧クッションシリンダ側は高背圧となり、搬送中の型枠群は急速減速され停止するため油圧回路は安全側に作動することを特徴とする請求項1に記載の型枠群の油圧シリンダによる搬送方法。If the emergency stop is turned on during high-speed feed, the pumps of the hydraulic unit are stopped for both the hydraulic pusher cylinder and the hydraulic cushion cylinder, and all the solenoid valves are turned off. 2. The method according to claim 1, wherein the hydraulic circuit is operated on the safe side because the group of formwork being transported is rapidly decelerated and stopped. 途中停止からの再スタート時は、通常運転時とは別工程の制御で低速搬送することを特徴とする請求項1に記載の型枠群の油圧シリンダによる搬送方法。2. The method according to claim 1, wherein, when restarting from the middle stop, low-speed transfer is performed by control of a process different from that of the normal operation. ライン始端とライン終端に対向して配置され、そのロッド12、先端に枠押しヘッド13を取り付けた油圧プッシャーシリンダ1と油圧クッションシリンダ2で構成された型枠群の油圧シリンダによる搬送装置であって、
油圧プッシャーシリンダ1に、コントローラ31により制御される比例制御弁32を設けて、高速、中速、低速制御可能にした油圧配管とし、
油圧クッションシリンダ2に、第1電磁弁33を介して制御可能にすると共にロッド12の縮み方向に背圧を切り替える第2電磁弁34を設けて、背圧切り替えにより高速搬送中の型枠群3、3を減速する構成の油圧配管にしたことを特徴とする型枠群の油圧シリンダによる搬送装置。
This is a transfer device using a hydraulic cylinder of a formwork group composed of a hydraulic pusher cylinder 1 and a hydraulic cushion cylinder 2 which are disposed opposite to a line start end and a line end and have a rod 12 and a frame pushing head 13 at the end. ,
The hydraulic pusher cylinder 1 is provided with a proportional control valve 32 controlled by a controller 31 to form a hydraulic pipe capable of high-speed, medium-speed, and low-speed control.
The hydraulic cushion cylinder 2 is provided with a second solenoid valve 34 that is controllable via the first solenoid valve 33 and switches back pressure in the direction in which the rod 12 contracts. 3. A transfer device using a hydraulic cylinder for a group of molds, wherein the hydraulic pipe is configured to reduce the speed of 3.
前記油圧プッシャーシリンダ1及び前記油圧クッションシリンダ2に、各々ロジック弁35,35を更に設けたことを特徴とする請求項4に記載の型枠群の油圧シリンダによる搬送装置。5. The transfer device according to claim 4, wherein the hydraulic pusher cylinder 1 and the hydraulic cushion cylinder 2 are further provided with logic valves 35, 35, respectively. 6.
JP2002201109A 2002-07-10 2002-07-10 Method and apparatus for transporting formwork group by hydraulic cylinder Expired - Fee Related JP3680997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201109A JP3680997B2 (en) 2002-07-10 2002-07-10 Method and apparatus for transporting formwork group by hydraulic cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201109A JP3680997B2 (en) 2002-07-10 2002-07-10 Method and apparatus for transporting formwork group by hydraulic cylinder

Publications (2)

Publication Number Publication Date
JP2004042073A true JP2004042073A (en) 2004-02-12
JP3680997B2 JP3680997B2 (en) 2005-08-10

Family

ID=31707741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201109A Expired - Fee Related JP3680997B2 (en) 2002-07-10 2002-07-10 Method and apparatus for transporting formwork group by hydraulic cylinder

Country Status (1)

Country Link
JP (1) JP3680997B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296544A (en) * 2006-04-28 2007-11-15 Metal Eng Kk Flask conveying apparatus
JP2009073662A (en) * 2007-08-29 2009-04-09 Sintokogio Ltd Carrying facility of dolly
JP2013052422A (en) * 2011-09-05 2013-03-21 Sintokogio Ltd Method and apparatus for conveying molding flask group with temperature change using hydraulic cylinder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105134682A (en) * 2015-10-14 2015-12-09 大隆机器有限公司 Return cushioning mechanism of sole pressing machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296544A (en) * 2006-04-28 2007-11-15 Metal Eng Kk Flask conveying apparatus
JP4624298B2 (en) * 2006-04-28 2011-02-02 メタルエンジニアリング株式会社 Cast frame conveyor
JP2009073662A (en) * 2007-08-29 2009-04-09 Sintokogio Ltd Carrying facility of dolly
JP2013052422A (en) * 2011-09-05 2013-03-21 Sintokogio Ltd Method and apparatus for conveying molding flask group with temperature change using hydraulic cylinder
CN103071769A (en) * 2011-09-05 2013-05-01 新东工业株式会社 Conveying method and device for conveying sand box set with temperature change through hydraulic cylinder

Also Published As

Publication number Publication date
JP3680997B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
CN102274948B (en) Method of high quality die casting
US6644951B2 (en) Molding apparatus with mold block section transfer system
JP2004042073A (en) Method and apparatus for conveying a group of molding flasks with hydraulic cylinder
JP6306379B2 (en) Cast frame conveyor
CN102407288A (en) High-efficiency lost foam casting production line
CN110789063B (en) Mold replacing device
JP3725040B2 (en) Transfer feeder
JP2009050910A (en) Cooling line for green sand mold poured with molten metal
JP5737089B2 (en) Method and apparatus for conveying a form group with temperature change by a hydraulic cylinder
JP4370549B2 (en) Molding line and casting line
JP6400058B2 (en) Rotary type injection molding machine
CN102632571A (en) Automatic manipulator mechanism of press vulcanizer
JP2007152365A (en) Method for transferring mold truck and device therefor
JP2000095322A (en) Work carrying device
JP3843801B2 (en) Die casting machine mold opening device
CN202291253U (en) Efficient lost foam casting production line
JP5212795B2 (en) Carriage transportation equipment
JP2005074476A (en) Operation control method of press
JP4257956B2 (en) Die casting apparatus and die casting method
JP3099622U (en) Production facilities for synthetic resin molded products
JP2003039152A (en) Die-casting device and replacing method for mold of the die-casting device
JPH0320032Y2 (en)
WO2017208515A1 (en) Formwork group transfer device and transfer method
JP2007210015A (en) Transporting method of mold cart and its facility
JP2010110778A (en) Trimming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent or registration of utility model

Ref document number: 3680997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees