JP2004040072A - テレメトリーおよび/またはリモートコントロールを組み込んだ製造システム - Google Patents
テレメトリーおよび/またはリモートコントロールを組み込んだ製造システム Download PDFInfo
- Publication number
- JP2004040072A JP2004040072A JP2002353552A JP2002353552A JP2004040072A JP 2004040072 A JP2004040072 A JP 2004040072A JP 2002353552 A JP2002353552 A JP 2002353552A JP 2002353552 A JP2002353552 A JP 2002353552A JP 2004040072 A JP2004040072 A JP 2004040072A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- light beam
- operable
- manufacturing system
- modulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/114—Indoor or close-range type systems
- H04B10/1149—Arrangements for indoor wireless networking of information
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C23/00—Non-electrical signal transmission systems, e.g. optical systems
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C2201/00—Transmission systems of control signals via wireless link
- G08C2201/40—Remote control systems using repeaters, converters, gateways
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C2201/00—Transmission systems of control signals via wireless link
- G08C2201/50—Receiving or transmitting feedback, e.g. replies, status updates, acknowledgements, from the controlled devices
- G08C2201/51—Remote controlling of devices based on replies, status thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/53039—Means to assemble or disassemble with control means energized in response to activator stimulated by condition sensor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/53087—Means to assemble or disassemble with signal, scale, illuminator, or optical viewer
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
- Selective Calling Equipment (AREA)
Abstract
【解決手段】製品を出力するため、出発材料を処理するよう動作可能な生産システムを備えた製造システムが説明される。ある実施形態において、かかる製造システムは、前記生産システムのパラメーターを表すデータ信号を生成するよう動作可能なセンサーであって、前記センサーは、システム管理装置と関連づけられた適切な信号装置から入ってきた光ビームを受信し、前記データ信号に基づき前記入射光ビームを変調し、さらに、前記データ信号を伝達する前記変調光ビームを前記第二信号装置に逆反射する再帰反射変調器、を備え、自身と関連づけられた信号装置、を有している。
【効果】フリースペース光学通信を用いて、システムマネージャと1以上の処理装置間で信号を転送するシステムが提供できる。
【選択図】 図1
【効果】フリースペース光学通信を用いて、システムマネージャと1以上の処理装置間で信号を転送するシステムが提供できる。
【選択図】 図1
Description
【0001】
【発明の技術分野】
この発明は、センサからのデータが、リモートシステムマネージャーに対して送信され、および/又は、システムマネージャーが、リモートアクチュエーターに対して制御信号を送る、製造システムに関するものである。
【0002】
【背景】
リモート処理装置を制御するため、又は、リモート処理装置からのデータを分析するため、システムマネージャーを用いることが、一般的になりつつある。例えば、ある固体をユーザーが定めた形状に加工するため、リモートコンピュータ端末を介し、遠隔より切削機(milling machine)を制御することができる。コンピュータ端末は、通信リンクを介し、切削機に制御信号を送信する。これにより、切削機械に設けられている専用コンピュータによる制限が取除される。これに代え、温度センサ等の、産業環境の至るところに配されている一以上のセンサ、からのデータを、分析のため、共通処理装置に送るようにしてもよい。
【0003】
通常、リモート処理装置は、ケーブルを介して、システムマネージャー、又は、システムマネージャーと接続するネットワーク用のネットワークソケット、に接続されている。ケーブルを用いることから生じる問題はとしては、処理装置が新しい場所に移動した場合に、まず最初にケーブルを抜き、次に、ケーブルを差し込み直す必要があった。これにより、ケーブル、ならびに、それに接続されるソケットが必然的に摩耗し、破損してしまう。さらに、ケーブルの長さにより、処理装置が移動出来る位置が制限を受けてしまう。
【0004】
システムマネージャー、又は、それに対して、システムマネージャーも接続されているネットワークに接続されたRFトランシーバーとリモート処理装置との間にデータを伝達するため、無線周波数(RF)リンクを用いることが知られている。しかし、電磁スペクトラムの無線周波数部分は、ほとんどの国で、厳しく規制されており、かかるRFリンクは、他の産業環境に存する他の電子回路と干渉を起こすおそれがある。また、爆発性のガスを伴う危険な環境下において、火花の発生を防止するため求められる遮断レベルは、厄介な問題である。
【0005】
本発明の側面によると、フリースペース光学通信を用いて、システムマネージャーと一以上の処理装置間で信号を転送する製造システムが提供される。
【0006】
フリースペース光学通信を用いることにより、電磁スペクトラムの光学部分は、規制から比較的自由になる、という利点がある。また、光学信号は、RF信号が及ぶ範囲の電子回路と干渉することがない。
【0007】
【発明の実施の形態】
ここで、添付の図面を参照しつつ、本発明の実施形態の例を説明する。
【0008】
−第一の実施形態−
−システムの概要−
図1は、製品を生産する産業システムの主要部を概略的に示す。出発材料入力装置15(stariting materials input)を介して、製品出力装置19において製品を製造するため、出発材料を処理する製造システム17に出発材料が投入される。この実施形態においてはポイント・ツー・マルチポイント(一点対多点)信号伝達システムが、制御センター1と複数の処理装置3aから3c間にデータを送信する。処理装置3aについて示したように、各処理装置は、製造システムのパラメーターを検知するセンサ4、当該製造システムのパラメーターを調整する駆動部6を含んでいる。
【0009】
かかるポイント・ツー・マルチポイント信号伝達システムは、製造システムの全体を制御するプロセス管理ユニット7と、そのそれぞれが対応する処理装置3に接続された複数のリモート端末9aから9c間にデータを送信するため、フリースペース光学リンク5aから5cを用いている。図1に示すように、制御センター1は、複数のマイクロハブ11aから11cであって、各マイクロハブ11がそれぞれの光学リンク5を介し、対応する各リモート端末9と通信を行うもの、を有している。
【0010】
図示の便宜上、図1には、処理装置3が3台、リモート端末9を3台、マイクロハブ11が3台示されている。しかし、より多くの、又は、より少ない数の処理装置3が、ポイント・ツー・マルチポイント信号伝達システムを介して、制御センター1と通信が行えるよう、処理装置3の数、それに対応するリモート端末9およびマイクロハブ11の数を変更することも可能である。
【0011】
各リモート端末9は、制御センター1へ伝達されるアップリンクデータに基づいて変調された低拡散のフリースペース光ビームを発し、当該光ビームを各マイクロハブ11へ導く。この実施形態において、アップリンクデータは、対応する処理装置のセンサ4による測定値に相当する。各マイクロハブ11は、対応するリモート端末9からの光ビームの一部を検出し、アップリンクデータを再生する検出器(図1に図示せず)、および、制御センター1から処理装置3へダウンリンクデータを伝達するため、対応するユーザー端末9からの光ビームの一部を変調し逆反射する、再帰反射変調器(図1に図示せず)を有している。本実施形態においては、ダウンリンクデータは、対応する処理装置3のアクチュエーター6用の制御信号に相当する。
【0012】
プロセス管理ユニット7は、全ての処理装置3からダウンリンクデータを受信し、製造システムの動作を監視するため、かかるダウンリンクデータを処理する。また、プロセス管理ユニット7は、製造システムを所望の動作状態に維持するため、又は、製造システムの動作状態を調整するため、処理装置3のためのアップリンクデータを生成する。制御センター1は、各マイクロハブ11に接続され、マイクロハブとリモート端末9間のフリースペース光学リンク5の動作を監視する通信管理ユニット13をも含んでいる。
【0013】
ここで、リモート端末9およびマイクロハブ11の詳細について説明する。
【0014】
−リモート端末−
図2は、図1に示すリモート端末9の主要部の詳細を図示している。図示したように、リモート端末9は、直線偏光のコーヒーレント光のビーム23を出力するレーザーダイオード21を備えている。当該リモート端末9は、200メートルの範囲内で、高いリンク利用性を保ちつつ、制御センター1との通信を行うよう設計されている。これを達成するため、レーザーダイオード21は、785nmの波長を有するレーザービームを出力する50mWのレーザーである。
【0015】
出力された光ビーム23は、以後、コリメーテイングレンズと呼ばれる、非常に発散の小さい光ビーム27を生成するため、光ビーム23の発散角度を小さくするための光レンズ25を通過する。低発散光ビーム27の発散は、コリメーテイングレンズ25とレーザーダイオード21間の距離を変えることによって調節することができる。しかし、レーザーダイオード21の発光開口において回折が生じるので、完全に平行な(perfectly collimated)光ビームを作り出すことは不可能である。コリメーテイングレンズ25は、発散の小さい光ビーム27が比較的均一な波面を有するよう、50nmの直径と、レーザーダイオード21によって発せられた全ての光を集めるのにちょうど良いFの値(F−number)と、を有する収差の低いレンズである。
【0016】
光ビーム27の発散は小さいが、配信ノード7における対応するマイクロハブ11により反射された後のリモート端9末上に入射する光ビーム29のサイズは、発散の小さい光ビーム27のそれよりも大きい。帰還光ビーム29の一部は、以後、ダウンリンク検出レンズ31と呼ばれる、受けた光ビーム29からの光を、本実施形態ではアバランシェ・フォトダイオードである検出器33上に収束させるレンズ31上に、入射させる。ダウンリンク検出レンズ31の直径は100nmであるが、検出器33上にできるだけ多くの光を集めることがその主要な目的であるので、コリメーテイングレンズ25ほどの品質は求められない。
【0017】
検出器33の検出面の直径は、500nmであるが、受けた光ビーム29からの光を収束させるダウンリンク検出レンズ31によって形成された検出面上の光点の直径は、約50マイクロメーターである。これにより、レーザーダイオード21と検出器33との位置決めに要求される精度の要件が緩和される。
【0018】
検出器33は、受信した光を、制御センター1において提供された変調に基づいて変化する、対応電気信号に変換する。かかる電気信号は、アンプ35によって増幅され、その後、フィルター37によってフィルタ処理される。フィルタ処理後の信号は、制御センター1からのデータを再生するため、クロックリカバリーならびにデータ取り込み動作を実行する中央制御ユニット39に入力する。取り込まれたデータは、次に、対応する処理装置3に接続されたインターフェースユニット41に引き渡される。
【0019】
また、インターフェースユニット41は、レーザーダイオード21により出力された光ビーム23がアップリンクデータに基づいて変調されるよう、処理装置3からのアップリンクデータ(制御センター1へ送信される)を、制御信号をレーザードライバー43へ送る、中央制御ユニット39へと導く。リモート端末9とマイクロハブ11間での全二重通信を可能にするため、レーザーダイオード21により出力された光ビーム23に対して小さい振幅変調が適用される、低信号振幅スキーム(small signal modulation scheme)が用いられる。図3は、かかる変調を示すとともに、CWレーザーレベル65、および、それに適用された低信号変調67を示す。具体的には、レーザーダイオード21により出力された光ビーム23の出力レベルは、アッパー出力レベルP1とローワー出力レベルP2間で変調される。
【0020】
このアップリンク変調データは、ダウンリンクデータの別のノイズ源となってしまう。このことは、干渉アップリンクデータ67、ならびにこれによって生じるノイズマージン71の低下を含む、ダウンリンクデータ69に関するアイダイヤグラムを示す図4に表されている
しかし、アップリンクの変調の深さが、非常に低く保たれている場合には、アップリンクとダウンリンクの双方が、同じ周波数帯域により動作することができる。
【0021】
リモート端末9とマイクロハブ11間の光リンク5は、基本的にデータのパイプとして機能する、すなわち、リモート端末9により受信されたデータは、それ以上暗号化されることなく(例えば、別のエラー検出および訂正ビットを付加することなしに)、マイクロハブ11へ送信され、その逆も行われる。リモート端末9とマイクロハブ11間の光リンク5に関する情報を送信するため、OAMデータに基づいて、データクロック信号のタイミングを調節することにより、それとは別の”オペレーションおよびメインテナンス”(OAM)チャネルが形成される。クロック及びデータ再生動作を実行した場合、中央制御ユニット39は、マイクロハブ11により送信されれたOAMデータを復活させるため、光リンク5の他端においてクロックのタイミングを監視する。
【0022】
中央制御ユニット39は、第一ステッパモーター47aへ駆動信号を供給するため、第一モータードライバー45aに接続され、第二ステッパモーター47bへ駆動信号を供給するために第二モータードライバー45bに接続されている。レーザーダイオード21、コリメーテイングレンズ25、検出器33ならびにダウンリンク検出レンズ31が、全体で一つの光学アセンブリ51を形成するよう設けられ、第一および第二ステッパモーター47は、光学アセンブリ51が、直交するそれぞれの軸の周囲を回転できるよう動作する。リモート端末9が設けられている場合、通常、かかる端末は、第一および第二ステッパモーター47が、垂直方向のいずれかの側に45°傾斜する軸の周囲で光学アセンブリ51を回転させるよう、傾けられている。これにより、対応するマイクロハブ11への位置決めを行うため、発光された光ビームの方向を変えることができる。
【0023】
−マイクロハブ−
図5は、マイクロハブ11の主要部の概略を示す図である。図示したように、マイクロハブ11は、プロセス管理ユニット7に接続されているインターフェースユニット81、を含んでいる。このインターフェースユニット81は、変調器駆動回路83の入力および検出回路85の出力にも接続されている。変調器駆動回路83の出力は、光学変調器87に接続され、検出回路85の入力は、フォトダイオード89に接続されている。
【0024】
光学変調器87は、組込み層(intrinsic layer)内に形成された100個の量子ウエル、および、n−導電型膜内に形成されたブラグ反射器(Bragg reflector)を有するp−i−nダイオードを含む量子閉じ込めシュタルク効果(Quantum ConfinedStark Effect)(QCSE)装置を備えている。テレセントリックレンズ91によって受光された光は、p−i−nダイオードのp−導電型膜を介し、変調器駆動回路83を用いてp−i−nダイオードの両端に印加された電位差に基づき光の吸収量が変化する組込み層に導かれ、次に、ブラグ反射器は、組込み層(さらに光が吸収される)を介して、テレセントリックレンズ91に光を反射する。
【0025】
インターフェースユニット81は、プロセス管理ユニット7から受信したダウンリンクデータを、光学変調器87用の駆動信号を生成する変調器駆動回路83に導く。理想的な場合、図6に示すように、バイナリ1を送信するために、0ボルトのバイアスがQCSE変調器87のp−i−nダイオードの両端に印加され、これにより、リモート端末9からの光は、QCSE変調器87から反射され、バイナリ0を送信するために、DCのバイアス電圧がQCSE変調器87のp−i−nダイオードの両端に印加され、これによっては、QCSE変調器87からリモート端末9へ光が反射されることはない。しかし、実際には、組込み層内に形成された100個の量子ウエルにより、QCSE変調器87は、5Vの逆バイアスが印加された場合、受信した光の約40%を反射し、15Vの逆バイアスが印加された場合、受信した光の約10%を反射する。これにより、バイナリ0が送信される場合とバイナリ1が送信される場合で、リモート端末9へ反射される光の量に約75%の差を生じさせる。
【0026】
変調器87は、レンズエレメント93、および、前方焦点面に中央開口97を有する遮光部材(stop member)により、図7に概略的に示されたテレセントリックレンズ91のほぼ後方焦点面、に位置する。実際には、テレセントリックレンズ91には、特定の取り付け条件によって決まる設計変更事項である正確な位置決めがなされた、一以上のレンズエレメントが用いられる。開口97のサイズも、設計変更事項であり、開口97を大きくすると、開口97が小さい場合よりも対応するリモート端末9からより多くの光が通過するが、開口97が小さい場合に必要なレンズ構成よりも複雑かつ高価なレンズ構成が必要となる。
【0027】
テレセントリックレンズ91は、軸対象となっており、変調器87上のアクテイブ領域を0.5°から2.5°間の半角(half−angle)を有する円錐状の視野に合わされる。具体的には、テレセントリックレンズ91は、異なる入射角の光が変調器87上のアクテイブ領域上に位置づけられるよう、入射光を、光の入射角によって決まる後方焦点面内の、ある位置に集中させる。また、テレセントリックレンズ91を介して送られた主光線(principle rays)は、後方焦点面に対して、直角に入射するので、変調器87は、主光線に沿い、その入射経路に沿って入射光を反射する。これにより、変調器87およびテレセントリックレンズ91は、再帰反射器として機能する。
【0028】
テレセントリックレンズ91を用いる利点としては、既存の光学変調器87の変調効率(すなわち、変調深さ)が、実質的に、変調器87に当たる光ビームの角度によって決定されることであり、さらに、テレセントリックレンズ91を用いると、テレセントリックレンズ91の視野内で入射光を生成するリモート端末9の位置に関係なく、光ビームの主光線が変調器87の光軸(optical axis)に対し、確実に平行に入射することがある。したがって、制御センター1と関連するリモート端末9の位置によって決まる変調効率の依存性は、実質的に取り除かれる。また、テレセントリックレンズ91を用いることにより、反射された光ビームの発散を低減させるため、必要に応じて、変調器87の位置をテレセントリックレンズの後方焦点面から若干移動させることができるので、リモート端末9における信号レベルを向上させることができるという利点を得ることができる。
【0029】
インターフェースユニット81は、フォトダイオード89に入射した光により構成された電気信号から、検出回路85によって生成されたアップリンクデータ信号を受信し、受信したアップリンクデータ信号をプロセス管理ユニット7に送信する。検出器85は、リモート端末9からのOAMデータ信号も取り込み、取り込んだOAMデータ信号を通信管理ユニット13に送信する。
【0030】
フォトダイオード89は、アップリンク検出レンズ99の後方焦点面に置かれる。図5に図示したように、アップリンク検出レンズ99の集光開口および焦点距離は、テレセントリックレンズ91のそれより小さい。これにより、フォトダイオード89のアクテイブエリアを、光学変調器87よりも小さくすることができ、したがって、フォトダイオード89のキャパシタンス(および応答速度も)が低下する、という利点がある。アップリンク検出レンズ99の集光開口をテレセントリックレンズ91のそれよりも小さくすることができる理由は、フォトダイオード89が、アップリンクデータ信号およびOAM信号を再生するのに十分な光を検出することのみを必要するのに対し、リモート端末9の検出器33において十分な信号レベルを達成するよう、再帰反射光ビームが十分なエネルギーを確実に有するため、テレセントリックレンズ91が十分な光を集めなければならないからである。
【0031】
ここで、マイクロハブ11のQCSE変調器87、変調器駆動回路83ならびに検出回路85の詳細について説明する。
【0032】
−QCSE変調器−
図7は、変調器87の概略斜視図を示す。図示したように、変調器87は、基板103上の直角八角形のプリズム型のテーブル構造(mesa−structure)101により構成される。第一電極105は、テーブル構造101のベース周囲の八角形のリングにより形成され、第二電極107は、テーブル構造101の頂面に形成されている。第一電極105は、図8Aに示された第一電極の平面図に最も明らかに表されるように、接触パッド109aから109fまでの6個の接触パッドを備えている。
【0033】
図8Bは、テーブル構造101の頂面上に形成された第二電極の平面図である。図示したように、第二電極107は、第一C型コンダクタ111aから第二C型111bへ伸張する18本の帯状コンダクタ113_1から113_18、および、第二C型コンダクタ111bから第一C型コンダクタへ伸張する別の18本の帯状コンダクタ113_19から113_36を有する第一および第二C型コンダクタ111a、111bから構成されている。かかる帯状コンダクタは、帯状コンダクタ113による18組のペアを構成するため、各々が、第二のC型電極111bと位置決めされている第一のC型電極111aに接続された18本の帯状コンダクタ113を有することにより、その全てが互いに平行に構成されている。帯状コンダクタ113の各ペアは、変調器87の製造工程中、帯状コンダクタ113間にエッチング液が流れ込むことのできる狭いギャップによって分離されている。
【0034】
図7で第二C型コンダクタ111として示したように、各C型コンダクタ111は、テーブル構造101の側壁の下側に第一電極105を超えて伸張する18本のコンダクテイブトラック117aから117hを介し、3つの接続パッド115aから115cに接続されている。テーブル構造101の側壁とコンダクテイブトラック117間、ならびに、第一電極とコンダクテイブトラック117間には、絶縁膜(図示せず)が設けられる。図8Cは、変調器87の半導体基板103に垂直であって、帯状電極113に平行な断面を示し、図8Dは、変調器87の半導体基板103に垂直であって、帯状電極113にも直角な断面を示している。図示したように、テーブル構造101の側壁は、半導体基板103の表面に対して垂直ではない。具体的には、その上をコンダクテイブトラック117が伸張する側壁は、ベースからテーブル構造101の頂面へと、内側に傾斜している。これにより、かかる頂面上にコンダクテイブトラックを堆積させることが可能となる。図8Dに示すように、その上にコンダクテイブトラックが伸張しないテーブル構造の側壁は、テーブル構造101の頂面の一部がテーブル構造101のベースに覆いかぶさり(overhang)、したがって、コンダクテイブトラックがそれらの上に堆積されないよう、ベースからテーブル構造101の頂面へと、外側に傾斜している。
【0035】
図8Cおよび図8Dに示すように、変調器87は、5つの膜を備えており、その3つはテーブル構造101内に形成されている。かかる3つの膜は、ガリウムヒ素(GaAs)および、アルミニウムガリウムヒ素(AlGaAs)によるものである。
【0036】
具体的には、テーブル構造101は、その中に、100個の量子ウエルを有する組込みアルミニウムガリウムヒ素膜(intrinsicAlGaAs layer)101_2上に形成されたp−導電型ガリウムヒ素膜101_1によって構成され、組込みアルミニウムガリウムヒ素膜は、その中に形成されたブラグ反射器を有するn−導電型アルミニウムガリウムヒ素膜101_3上により構成される。かかるテーブル構造101は、組み込みガリウムヒ素基板103_2上に形成されたn−導電型ガリウムヒ素コンタクト膜103_1に形成される。
【0037】
帯状コンダクタ113は、変調器駆動回路83から、p−導電型ガリウムヒ素膜101_1を介して駆動信号を配信する。これにより、テーブル構造101の中心を流れていた電流は、帯状コンダクタ113に沿って、テーブル構造101の頂面の中央へと流れることができるので、帯状電極125が設けられていない(例えば、第二電極がC型コンダクタ111のみによって形成されている)場合と比べ、変調器87の実効直列抵抗が低減される。
【0038】
帯状コンダクタ113は、2マイクロメーターの幅で真っ直ぐに形成されている。この幅は、帯状コンダクタ113が、アクテイブエリアのほとんど部分を覆うことなく、p−導電型ガリウムヒ素膜101_1と比べ、低い抵抗値となるのに十分な幅である。具体的には、テレセントリックレンズ91が、変調器87上に、20マイクロメーターから80マイクロメーターの領域で、ある直径を有するスポットを形成するので、帯状コンダクタ113は、再帰反射された光ビームに大きな影響を与えない。
【0039】
−変調器駆動回路−
図9は、変調器駆動回路83の主要部を、変調器87とともに示している。図示したように、変調器駆動回路83は、それらを介し、インターフェースユニット81からダウンリンクデータがPECL(positive emitter−coupled logic)差分データ信号として受信される2本の入力線を備えている。かかる入力線121、123は、それぞれ75オームの並列端子(それぞれ91オームの抵抗器125a、125bおよび470オームの抵抗器127a、127b)を介して、デュアルPECL・ツー・TTL変換器129(集積回路 SV100ELT23)に接続されている。PECL・ツー・TTL変換器129のPECL入力の2つのペアD0、nD0、および、D1、nD1は、いずれも、ダウンリンクデータ信号によって駆動されるが、これらの入力は、2つのTTL出力Q0およびQ1が互いに逆位相となるよう、逆位相に接続される。
【0040】
PECL・ツー・TTL変換器129のTTL出力Q0、Q1は、それぞれ、以後、ドライバチップ131と呼ばれる、おのおの8つのCMOSバッファ133aから133h、133iから133pまで、を有する第一および第二の8極のCMOSラインドライバー131a、131b(集積回路74ACT245)に接続される。変調器87のp−i−nダイオードのキャパシタンスは、劣化した状態(depleted conditions)で約400pFであり、74ACT CMOSバッファ133は、ほぼ20オームの出力インピーダンスを有する。したがって、変調器87を駆動するため、一の74ACT CMOSバッファ133が用いられた場合、変調器87の量子ウエルにわたる電界を変化させるためのRC時定数は、ほぼ8nsである。しかし、これでは、毎秒100Mビットを超えるデータレートの通信を行うには遅すぎる。
【0041】
図9に示すように、PECL・ツー・TTL変換器129の各出力Q0、Q1は、対応するドライバーチップ131の8つのCMOSバッファ133に共通して接続されており、当該8つのCMOSバッファ133の出力は、抵抗器135aから135pのそれぞれを介し、第一および第二キャパシタ137a、137bのいずれかにまとめて接続されている。ドライバチップ131の並列接合された8つのCMOSバッファ133の全てを駆動させることにより、ドライバーの出力インピーダンスが低下し、これによりRC時定数が低減されるので、変調器87の両端の電位差をより迅速に切り換えることが出来る。各ドライバチップ131における各々のCMOSバッファ133の切り換え時間は、若干変化するので、同じドライバチップ133の2つのCMOSバッファ133が異なった状態にある場合に生じる急上昇(shoot−through)と呼ばれるサージ電流を一時的に減少させるため、それぞれが10オームの抵抗を有する抵抗器135が変調器駆動回路83内に設けられている。
【0042】
第一および第二キャパシタ137a、137bは、それぞれ、100nFのキャパシタンスを有する。第一キャパシタ137aは、変調器87を構成するp−i−n
ダイオードのカソードに接続されているが、第二キャパシタ137bは、変調器87を構成するp−i−nダイオードのアノードに接続されている。変調器87のカソードは、ダイオード139aおよび抵抗器141を介し、変調器のカソードにおける電圧が約4.3Vを下回らないようにする5Vの電源にも接続されており、変調器87のアノードは、ダイオード139bを介し、変調器のアノードにおける電圧が約0.7Vを超えないようにするグランドにも接続されている。1キロオームの抵抗を有するブリード抵抗器143は、照射時に、変調器87によって生成された光電流用のDCパスを提供するため、変調器87のアノードとカソード間に接続される。
【0043】
ダウンリンクデータ信号がハイの状態になるよう駆動されている場合、第一ドライバーチップ131のCMOSバッファ133の出力は、ハイで駆動され、第二ドライバーチップ131のCMOSバッファ133の出力は、ローで駆動される。これにより、変調器87のカソードにおける電圧は、9.3Vであり、変調器87のアノードの電圧は、−4.3Vとなるので、変調器のアノードとカソード間の電位差が約13.6Vとなる。ダウンリンクデータ信号がローの状態になるよう駆動されている場合、第一ドライバチップ131のCMOSバッファ133の出力は、ローで駆動され、第二ドライバチップ131のCMOSバッファ133の出力は、ハイで駆動される。これにより、変調器87のカソードにおける電圧は、4.3Vであり、変調器87のアノードの電圧は、0.7Vとなるので、変調器のアノードとカソード間の電位差が約3.6Vとなる。したがって、当該ダウンリンクデータに基づき、変調器87の両端に10Vの電圧振幅(voltage
swing)が印加される。
【0044】
−検出回路−
検出器89からの電気信号は、対応するリモート端末9から入力する光ビームの変調部分、対応するリモート端末9から入力する光ビームの未変調部分、ならびに、バックグラウンド光、の3つの主な成分から構成される。これら3つの成分の各振幅は、通信経路の変化に起因して、最大約100kHzの割合で変化する。
【0045】
図10は、マイクロハブ11における検出回路85の主要部を示している。図示したように、フォトダイオード89からの電気信号は、前記入力光ビームの未変調部分および前記バックグラウンド光に関する電気信号の成分のほとんどを除去するとともに、通信経路の変化に起因するいずれの低周波数の変動を低減させるDC打ち消しユニット(DC cancellation unit)151、に入力する。残りの電気信号は、DC打ち消しユニット151によって出力され、アンプ153に入力する。アンプ153により出力された増幅信号は、アップリンクデータ信号およびリモート端末9からのいずれのOAM信号を再生する、クロック再生ユニット155に入力する。また、DC打ち消しユニット151は、以後、DC−RSSI信号と呼ばれる受信DC信号強度の合計を表す信号を、クロック再生ユニット155に出力し、アンプ153は、以後、AC−RSSI信号と呼ばれるデータ送信周波数の信号強度を表す信号を、クロック再生ユニット155に出力する。クロック再生ユニット155は、DC−RSSI信号およびAC−RSSI信号を、通信管理ユニット13に送る。
【0046】
図11は、検出回路85のDC打ち消しユニット151およびアンプ153の詳細を示している。図示したように、フォトダイオード89のカソードは、本実施形態において3.3nFのキャパシタンスを有するキャパシタC1を介し、グランド、および、第一電流ミラー161の入力ブランチ(input branch)、に接続される。第一電流ミラー161は、おのおのが470オームの抵抗を有するエミッター抵抗器R1およびR2を伴う従来のダブルp−n−pトランジスタによって形成されている。
【0047】
第一電流ミラー161の入力ブランチは、本実施形態では470オームの抵抗を有する第三抵抗器R3の一端に接続されている。本実施形態では100キロオームの抵抗を有する第四抵抗器R4、および、本実施形態では10nFのキャパシタンスを有する第二キャパシタンスC2は、第三抵抗器R3の他端とグランドとの間に並列に接続されている。第三抵抗器R3の他端は、本実施形態では、従来のダブルn−p−nトランジスタ167および一のn−p−nトランジスタ169により構成されるウイルソンミラーである第二電流ミラー165の入力ブランチ、にも接続されている。第二電流ミラー165の出力ブランチは、47マイクロHのインダクタンスを有するインダクタLを介して、フォトダイオード89のアノードに接続される。当該フォトダイオード89のアノードは、プリアンプ171の入力にも接続されている。
【0048】
フォトダイオード上に光が入射すると、電流Icがフォトダイオードのカソードを通じて流れ、フォトダイオードのアノードを通じて対応する電流Iaが流れる。カソード電流Icは、キャパシタC1を介し、グランドへ流れる高周波数部分Ih、および、第一電流ミラー161に入力する低周波数部分Ilから構成される。高周波数部分Ihと低周波数部分Il間の3dBの遮断周波数(3dB cutt−offfrequency)は、100kHZである。したがって、毎秒100Mビットを超えるデータトラフィック成分は、第一電流ミラー161よりもキャパシタC1を通じて流れる。
【0049】
第一電流ミラー161は、低周波数部分Ilが第三抵抗器R3を通じて流れるようマッチングさせる、ミラー電流を生じさせる。第二電流ミラー165の入力における電圧は、ウイルソンミラー構造により約1.4Vの制限を受けるので、以後、ブリード電流Ibと呼ばれる、最大約14マイクロアンペアの電流が、第四抵抗器R4を介して、グランドへ流れる。同様に、高周波数ノイズ電流Inが、第二キャパシタC2を介して、グランドへ流れる。したがって、第二電流ミラー165の入力ブランチに流れ込む電流Isは、以下の式によって求められる:
Is =Il −Ib −In (1)
第二電流ミラー165は、電流Isが第二電流ミラー165の出力ブランチを通じて流れるようマッチングさせる、ミラー電流を生じさせる。したがって、プリアンプ171に流れ込む検出電流Idは、以下の式によって求められる:
Id=Ia −Is (2)
これにより、検出電流Idは、基本的に、入力する光ビームの変調成分に相当する。しかし、ブリード電流Ibとほぼ等しい低周波数電流の一部は、検出電流Idの一部をも構成する。これによって、プリアンプ171の入力から第二電流ミラー165の出力への電流の供給が阻止される。プリアンプ171は、マキシムインテグレーテイッドプロダクツ社が販売するMAX3963トランスインピーダンス式のプリアンプである。かかるプリアンプ171は、入力電流信号を、非反転出力ポート(OUT+)および反転出力ポート(OUT−)から出力された対応する差動電圧信号(differential voltage signal)に変換する。プリアンプ171の非反転出力ポート(OUT+)は、第三キャパシタC3を介し、本実施形態ではマキシムインテグレーテイッドプロダクツ社が販売するMAX3694制限増幅器である、制限増幅器173の反転入力(IN−)に静電的に結合される。同様に、プリアンプ171の反転出力ポート(OUT−)は、第四キャパシタC4を介し、制限増幅器173の非反転入力(IN+)に静電的に結合される。第五キャパシタC5は、高周波数ノイズを低減するため、プリアンプ171の非反転および反転出力の間に接続される。
【0050】
制限増幅器173は、本実施形態においては50オームの同軸ケーブルコネクタである第一コネクタ175を通じて、クロック再生ユニット155に出力されるPECL(正のエミッタ結合型論理)差動データ信号を、非反転および反転出力(OUT+、OUT−)を介して出力する。また、制限増幅器173は、入力パワーレベルが第五抵抗器R5および第六抵抗器R6によって定められたしきい値を下回った場合を示す、補完的信号損失出力ポート(loss−of−signal output ports)LOS+、LOS−を介して、信号を出力する。非反転の信号損失出力ポートLOS+により出力されたかかる信号は、本実施形態においてはリボンケーブルコネクタ(ribbon cable connector)である第二コネクタ177を介して、クロック再生ユニット155に出力される。
【0051】
上述したように、入力における電圧であって、第二電流ミラー165に対するものは、ウイルソンミラー構造により約1.4Vの制限を受け、第三抵抗器R3を通じて流れる電流は、カソード電流Icの低周波数部分Ilとマッチする。したがって、第一電流ミラー161の出力における電圧レベルは、以後、DC信号レベルと呼ばれる検出された低周波数信号のレベルを表す。かかる電圧レベルは、第一電流ミラー161と第三抵抗器R3間の配線を、第一ローパスフィルター179を介し、第一ユニテイーゲインバッファ181に接続することによりサンプリングされる。第一ユニテイーゲインバッファ181の出力は、第二ローパスフィルター183を介して、第二コネクタ177に接続される。これにより、DC−RSSI信号が、クロック再生ユニット155に送信される。制限増幅器173は、クロック再生ユニット155への送信のため、第二ユニテイーゲインバッファ185を介し、第二コネクター177にAC−RSSI信号を出力するRSSIポートを備えている。
【0052】
クロック再生ユニット155は、第一コネクタ175を介して、制限増幅器173により出力された差動データ信号を受信し、クロックタイミング中の変化を監視することにより、OAM信号が取り込まれる間にクロック再生およびデータ再生成動作を行う。クロック再生ユニット155によって再生成されたアップリンクデータ信号は、イーサネット(商標)スイッチ13に送信され、LOS信号、DC−RSSI信号およびAC−RSSI信号とともに、OAM信号がネットワーク管理ユニット15に送信される。
【0053】
−第二実施形態−
第一実施形態においては、各リモート端末用に、それぞれのマイクロハブが設けられていた。また、リモート端末に各光リンク用の光源が位置し、各マイクロハブに再帰反射変調器が設けられていた。ここで説明する第二実施形態においては、第一の実施形態におけるマイクロハブ11の少なくともいくつかが、複数のリモート端末1003と通信が可能なローカル配信ハブ1001に置き換えられる。
【0054】
図12に示すように、ローカル配信ハブ1001は、各画素内に垂直キャビテイー表面発光レーザー(VCSEL)を伴う二次元の画素アレイを有するエミッタアレイ1005、を備えている。エミッタアレイ1005は、ウエハを切断することなく一枚の半導体ウエハから製造することが出来るので、VCSELを用いることが好ましい。これにより、従来のダイオードレーザーで行うより、発光エレメント(lasing elements)を高密度にすることが可能となる。エミッタアレイ1005中の各VCSELは、直線的に偏向した発散光ビームを出力し、かかる発散は、基本的にVCSELの発光用開口における回折によって引き起こされる。
【0055】
エミッタアレイ1005のVCSELにより発せられた直線偏向発散光ビームは、ビームスプリッター1007を通して送信され、直線偏向発散光ビームを円状偏光(circulary−polarized light)に変換する四分の一波長板(quarter−wave plate)1009上に入射する。次に、かかる円状偏光は、図12においてテレセントリックレンズの後方焦点面に位置するエミッタアレイ1005とともにレンズエレメント1013の前方焦点面に位置する遮光部材1011、により表されているテレセントリックレンズを通過する。図示したように、レンズエレメント1013は、各VCSELにより発光された発散ビームを集め、これらを、対応する低発散光ビーム1015a、1015bに変換する。当業者であれば理解するように、各光ビーム1015が、テレセントリックレンズの射出ひとみ(exit pupil)から出て行く角度は、対応する発散ビームを発するVCSELのエミッタアレイ1005内の空間上の位置によって決定される。ローカル配信ハブ1001内でテレセントリックレンズシステムを用いる利点は、どこから光が発せられようと、エミッタアレイ1005からの光の集光効率は、エミッタアレイ1005内の位置と無関係であること、である。
【0056】
上述のように、エミッタアレイ1005の各画素は、エミッタアレイ1005に対応する視野内のそれぞれ異なる角度に設定される。図12に示すように、ローカル配信ノード1001からの第一光ビーム1015aは、第一リモート端末1003aに入射し、ローカル配信ノード1001からの第二光ビーム1015bは、第二リモート端末1003bに入射する。本実施形態においては、エミッタアレイ1005のVCSELは、選択的にアドレス可能なので、第一および第二リモート端末1003に、それぞれ異なるデータを送信することが可能である。具体的には、データ信号D1(IN)は、第一リモート端末1003aの方向に対応するVCSELの出力を変調するため用いられ、信号D2(IN)は、第二リモート端末1003bの方向に対応するVCSELの出力を変調するため用いられる。
【0057】
各リモート端末1003は、図12において遮光部材1017a、1017bおよび受けた光を検出/変調アレイ1021a、1021bのアレイ上に集光するレンズエレメント1019a、1019bで概略的に示した、テレセントリックレンズを備えている。第一リモート端末1003aの検出/変調アレイ1021aは、信号D1(IN)を再生するため、第一光ビーム1015aを検出し、データ信号D1(OUT)により変調された第一反射光を返送する。同様に、第二リモート端末1003bの検出/変調アレイ1021bは、信号D2(IN)を再生するため、第二光ビーム1015bを検出し、データ信号D2(OUT)により変調された第二反射光を返送する。
【0058】
本実施形態において、検出/変調アレイ1021の各エレメントが、変調器(第一実施形態で説明したように)および検出器のいずれとしても機能するp−i−nダイオード形式のQCSE装置、を備えている。リモート端末1003により反射された光ビーム1015は、ローカル配信ハブ1001に返送され、遮光部材1011、レンズエレメント1013、および、反射ビームの円状偏光をエミッタアレイ1005により発せられた光ビームと直行する直線偏光に変換する四分の一波長板1009、を通過する。次に、反射された光ビームは、その位置が入って来る反射ビームに対応する検出アレイ1023の各検出エレメント上に光ビームを反射する、偏光ビームスプリッター1007上に入射する。したがって、第一リモート端末1003aから反射された光ビームは、データ信号D1(OUT)を再生する第一検出エレメントに導かれ、第二リモート端末1003bから反射された光ビーム1015bは、データ信号D2(OUT)を再生する第二検出エレメントに導かれる。
【0059】
−変更例ならびに他の実施形態−
上述の実施形態においては、プロセス管理ユニットが、リモートセンサから測定信号を受信するか、リモートアクチュエーターに制御信号を送信していた。かかるセンサは、例えば、温度センサ、重量センサ、位置センサ又は電流センサ、であってもよい。また、アクチュエーターは、モーター、ヒーター又は電気リレー等、であってもよい。
【0060】
本発明が適用可能な製造システムの例は、自動生産ライン(例えば、自動車製造用の)を含むものがある。また、本発明は、化学品生産ライン(例えば、薬品の製造用)にも適用可能である。
【0061】
上述の実施形態においては、各リモート端末とプロセス管理ユニット間に双方向通信リンクが確立されていた。リモート端末がセンサのみに接続されている場合には、光学リンクのリモート端末側に再帰反射変調器が位置する、単方向通信リンクを用いることができること、が理解されよう。これに代えて、リモート端末がアクチュエーターのみに接続される場合、光学リンクのプロセス管理ユニット側に再帰反射変調器ビームを用いる単方向通信リンクを用いることができる。
【0062】
第一の実施形態において、変調器は、ほぼ直角八角形のプリズム型のテーブル構造を含んでいたが、他の形状のテーブル構造、例えば、円状の断面を有する円柱、を用いることもできる。しかし、テーブル構造は、円状断面よりも製造が容易なので八角形の断面の方が好ましいが、八角形の断面は、ほぼ円形の断面を有するので、テレセントリックレンズの視野が、効率的にテーブル構造の頂面上に設定される。視野に設定されていないアクテイブエリアの部分は役に立たないだけでなく、変調器の全域にわたる電界の切り換え速度を低下させるキャパシタンスを伴うので、テレセントリックレンズの視野がアクテイブエリア上に効率的に設定されることが重要である。
【0063】
第一の実施形態においては、変調器の直列抵抗を低減させるため、複数の並列帯コンダクタがアクテイブエリアを横切っていた。当業者であれば、当該帯状コンダクタのレイアウト自身が重要なのではなく、他の帯状コンダクタのレイアウトを用いることができること、を理解する。
【0064】
第一実施形態において説明された変調器は、ガリウムヒ素(GaAs)および、アルミニウムガリウムヒ素(AlGaAs)膜を含んでいた。当業者であれば、他の半導体材料を用いることが可能であること、を理解する。例えば、インジウムガリウムヒ素(InGaAs)等の他のIII−V族半導体材料、を用いることも出来る。また、II−VI族半導体材料を用いて、QCSE変調器を構成することも可能である。
【0065】
第一実施形態において、CMOSラインドライバーは、変調器の複数の量子ウエルにわたる電界を切り換えるのに用いられていた。他の方式のプッシュプルドライバーを用いてもよいこと、が理解されよう。例えば、p−チャネルのMOSFETおよびn−チャネルのMOSFETを用いる代わりに、相補型バイポーラートランジスタを用いることもできる。また、当業者であれば、通常、ラインドライバーは、その性能を向上させるため、通常、シュミットトリガ等の他の回路を含んでいること、を理解する。
【0066】
当業者は、マイクロハブおよびユーザー端末に、他の異なる種類の検出器を用いてもよいこと、を理解する。例えば、フォトトランジスタを用いることも可能である。一般に、検出器は、必要とされるビットレートおよび感度、光ビームの波長、ならびに、コスト面、に基づいて選択される。上述の実施形態においては、ブラグミラー上に形成されたQCSE変調器を有する集積半導体装置が、用いられていた。当業者であれば、他の種類の反射器および変調器を用いてもよいこと、を理解する。例えば、反射器として平面鏡を用いてもよく、透過型変調器(液晶等の)を、テレセントリックレンズと鏡との間に設けることも可能である。さらに、当業者であれば、再帰反射器がテレセントリックレンズである必要はないこと、を理解する。これに代え、逆反射鏡(corner−cube reflector)又はキャッツアイ反射器(cat’s−eye reflector)により、再帰反射器を構成することもできる。しかし、再帰反射ビームの発散を調節する能力を考慮すると、テレセントリックレンズを用いることが好ましい。
【0067】
第一の実施形態において、変調器ユニットの視野は、0.5°から2.5°間の半角を有する円錐状であること、が好ましい。これにより、広い開口を有するがユーザー端末と正確な位置決めが必要とされない、テレセントリックレンズを比較的安価に製造することが可能となる。
【0068】
上述の実施形態においては、マイクロハブとユーザー端末間の光学リンクは、データパイプとして機能した。これに代えて、光学リンクを介した通信を行う前に、データを、エラー検出および訂正ビット等を含むプロトコルによって暗号化するようにしてもよい。
【0069】
上述の実施形態においては、150メートルの範囲内で、対応するローカル配信ノードとの通信ができるよう、各リモート端末内に50mWのレーザーダイオードが設けられていた。実際のところ、ユーザー端末とローカル配信ノード間の距離は、数メートル程度と比較的短いので、通常CDプレイヤー又は発光ダイオードに用いられている出力の小さいレーザーダイオード、を用いるようにしてもよい。
【0070】
当業者であれば、”光”という表現には、可視領域とともに、紫外線中の電磁波および電磁スペクトルの赤外線領域、が含まれていることを理解する。上記で説明した実施形態は、785nmの波長を有するレーザービームを用いていたが、他の光ビームを用いるようにしてもよい。具体的には、より目に優しく、しかも、この波長の発信器および検出器が光ファイバー通信用に開発されているので、約1.5ミクロンの波長が代替用の波長としてふさわしい。
【0071】
マイクロハブおよびリモート端末内のレンズは、一つのレンズによって概略的に示されているが、実際には、各レンズが複数のレンズエレメントによって構成されてもよいこと、が理解される。
【0072】
本発明は、上述の例示された実施形態に限定されるものではなく、他の様々な変更ならびに実施形態が可能であることは、当業者にとって明らかである。
【図面の簡単な説明】
【図1】図1は、制御センターと複数の処理装置との間でデータを配信するためのポイント・ツー・マルチポイント信号伝達システムを組み込んだ製造システムの部品を示す回路図である。
【図2】図2は、図1に示す製造システムの一部を構成するリモート端末の概念図である。
【図3】図3は、リモート端末から、図1に示す通信システムの一部を構成する処理マネージメントユニットに対してアップリンクデータを送信するため、微少な信号変調を達成するよう、図2に示したリモート端末により発せられたレーザービームの出力が変化する状態を表したグラフである。
【図4】図4は、リモート端末によってなされる、制御センターからリモート端末へ送信されたダウンリンクの検出、における微少信号変調の効果を概略的に示したアイダイアグラム(eye diagram)である。
【図5】図5は、図1に示す製造システムの制御センターの一部を構成するマイクロハブの概略図である。
【図6】図6は、図5に示した変調器上に入射した光が、その電極に印加されたバイアス電圧に基づいて変化する状態、を概念的に示す信号図である。
【図7】図7は、図5に示すマイクロハブの一部を構成する変調器の概略斜視図である。
【図8A】図8Aは、図7に示す変調器の一部を構成する第一電極のレイアウトを示す平面図である。
【図8B】図8Bは、図7に示す変調器の一部を構成する第二電極のレイアウトを示す平面図である。
【図8C】図8Cは、図7に示す変調器の第一断面を概略的に示している。
【図8D】図8Dは、図7に示す変調器の第二断面を概略的に示している。
【図9】図9は、図5に示すマイクロハブの一部を構成する変調器駆動回路の部品の詳細を示す概略ブロック図である。
【図10】図10は、図5に示すマイクロハブの一部を構成する検出回路の詳細を示す概略ブロック図である。
【図11】図11は、図10に示す検出回路の一部を構成するDC打ち消しユニットおよびアンプの詳細を示す回路図である。
【図12】図12は、図1に示す製造システムとは別の製造システム用の配信ハブおよび複数のリモート端末を概略的に示す図である。
【発明の技術分野】
この発明は、センサからのデータが、リモートシステムマネージャーに対して送信され、および/又は、システムマネージャーが、リモートアクチュエーターに対して制御信号を送る、製造システムに関するものである。
【0002】
【背景】
リモート処理装置を制御するため、又は、リモート処理装置からのデータを分析するため、システムマネージャーを用いることが、一般的になりつつある。例えば、ある固体をユーザーが定めた形状に加工するため、リモートコンピュータ端末を介し、遠隔より切削機(milling machine)を制御することができる。コンピュータ端末は、通信リンクを介し、切削機に制御信号を送信する。これにより、切削機械に設けられている専用コンピュータによる制限が取除される。これに代え、温度センサ等の、産業環境の至るところに配されている一以上のセンサ、からのデータを、分析のため、共通処理装置に送るようにしてもよい。
【0003】
通常、リモート処理装置は、ケーブルを介して、システムマネージャー、又は、システムマネージャーと接続するネットワーク用のネットワークソケット、に接続されている。ケーブルを用いることから生じる問題はとしては、処理装置が新しい場所に移動した場合に、まず最初にケーブルを抜き、次に、ケーブルを差し込み直す必要があった。これにより、ケーブル、ならびに、それに接続されるソケットが必然的に摩耗し、破損してしまう。さらに、ケーブルの長さにより、処理装置が移動出来る位置が制限を受けてしまう。
【0004】
システムマネージャー、又は、それに対して、システムマネージャーも接続されているネットワークに接続されたRFトランシーバーとリモート処理装置との間にデータを伝達するため、無線周波数(RF)リンクを用いることが知られている。しかし、電磁スペクトラムの無線周波数部分は、ほとんどの国で、厳しく規制されており、かかるRFリンクは、他の産業環境に存する他の電子回路と干渉を起こすおそれがある。また、爆発性のガスを伴う危険な環境下において、火花の発生を防止するため求められる遮断レベルは、厄介な問題である。
【0005】
本発明の側面によると、フリースペース光学通信を用いて、システムマネージャーと一以上の処理装置間で信号を転送する製造システムが提供される。
【0006】
フリースペース光学通信を用いることにより、電磁スペクトラムの光学部分は、規制から比較的自由になる、という利点がある。また、光学信号は、RF信号が及ぶ範囲の電子回路と干渉することがない。
【0007】
【発明の実施の形態】
ここで、添付の図面を参照しつつ、本発明の実施形態の例を説明する。
【0008】
−第一の実施形態−
−システムの概要−
図1は、製品を生産する産業システムの主要部を概略的に示す。出発材料入力装置15(stariting materials input)を介して、製品出力装置19において製品を製造するため、出発材料を処理する製造システム17に出発材料が投入される。この実施形態においてはポイント・ツー・マルチポイント(一点対多点)信号伝達システムが、制御センター1と複数の処理装置3aから3c間にデータを送信する。処理装置3aについて示したように、各処理装置は、製造システムのパラメーターを検知するセンサ4、当該製造システムのパラメーターを調整する駆動部6を含んでいる。
【0009】
かかるポイント・ツー・マルチポイント信号伝達システムは、製造システムの全体を制御するプロセス管理ユニット7と、そのそれぞれが対応する処理装置3に接続された複数のリモート端末9aから9c間にデータを送信するため、フリースペース光学リンク5aから5cを用いている。図1に示すように、制御センター1は、複数のマイクロハブ11aから11cであって、各マイクロハブ11がそれぞれの光学リンク5を介し、対応する各リモート端末9と通信を行うもの、を有している。
【0010】
図示の便宜上、図1には、処理装置3が3台、リモート端末9を3台、マイクロハブ11が3台示されている。しかし、より多くの、又は、より少ない数の処理装置3が、ポイント・ツー・マルチポイント信号伝達システムを介して、制御センター1と通信が行えるよう、処理装置3の数、それに対応するリモート端末9およびマイクロハブ11の数を変更することも可能である。
【0011】
各リモート端末9は、制御センター1へ伝達されるアップリンクデータに基づいて変調された低拡散のフリースペース光ビームを発し、当該光ビームを各マイクロハブ11へ導く。この実施形態において、アップリンクデータは、対応する処理装置のセンサ4による測定値に相当する。各マイクロハブ11は、対応するリモート端末9からの光ビームの一部を検出し、アップリンクデータを再生する検出器(図1に図示せず)、および、制御センター1から処理装置3へダウンリンクデータを伝達するため、対応するユーザー端末9からの光ビームの一部を変調し逆反射する、再帰反射変調器(図1に図示せず)を有している。本実施形態においては、ダウンリンクデータは、対応する処理装置3のアクチュエーター6用の制御信号に相当する。
【0012】
プロセス管理ユニット7は、全ての処理装置3からダウンリンクデータを受信し、製造システムの動作を監視するため、かかるダウンリンクデータを処理する。また、プロセス管理ユニット7は、製造システムを所望の動作状態に維持するため、又は、製造システムの動作状態を調整するため、処理装置3のためのアップリンクデータを生成する。制御センター1は、各マイクロハブ11に接続され、マイクロハブとリモート端末9間のフリースペース光学リンク5の動作を監視する通信管理ユニット13をも含んでいる。
【0013】
ここで、リモート端末9およびマイクロハブ11の詳細について説明する。
【0014】
−リモート端末−
図2は、図1に示すリモート端末9の主要部の詳細を図示している。図示したように、リモート端末9は、直線偏光のコーヒーレント光のビーム23を出力するレーザーダイオード21を備えている。当該リモート端末9は、200メートルの範囲内で、高いリンク利用性を保ちつつ、制御センター1との通信を行うよう設計されている。これを達成するため、レーザーダイオード21は、785nmの波長を有するレーザービームを出力する50mWのレーザーである。
【0015】
出力された光ビーム23は、以後、コリメーテイングレンズと呼ばれる、非常に発散の小さい光ビーム27を生成するため、光ビーム23の発散角度を小さくするための光レンズ25を通過する。低発散光ビーム27の発散は、コリメーテイングレンズ25とレーザーダイオード21間の距離を変えることによって調節することができる。しかし、レーザーダイオード21の発光開口において回折が生じるので、完全に平行な(perfectly collimated)光ビームを作り出すことは不可能である。コリメーテイングレンズ25は、発散の小さい光ビーム27が比較的均一な波面を有するよう、50nmの直径と、レーザーダイオード21によって発せられた全ての光を集めるのにちょうど良いFの値(F−number)と、を有する収差の低いレンズである。
【0016】
光ビーム27の発散は小さいが、配信ノード7における対応するマイクロハブ11により反射された後のリモート端9末上に入射する光ビーム29のサイズは、発散の小さい光ビーム27のそれよりも大きい。帰還光ビーム29の一部は、以後、ダウンリンク検出レンズ31と呼ばれる、受けた光ビーム29からの光を、本実施形態ではアバランシェ・フォトダイオードである検出器33上に収束させるレンズ31上に、入射させる。ダウンリンク検出レンズ31の直径は100nmであるが、検出器33上にできるだけ多くの光を集めることがその主要な目的であるので、コリメーテイングレンズ25ほどの品質は求められない。
【0017】
検出器33の検出面の直径は、500nmであるが、受けた光ビーム29からの光を収束させるダウンリンク検出レンズ31によって形成された検出面上の光点の直径は、約50マイクロメーターである。これにより、レーザーダイオード21と検出器33との位置決めに要求される精度の要件が緩和される。
【0018】
検出器33は、受信した光を、制御センター1において提供された変調に基づいて変化する、対応電気信号に変換する。かかる電気信号は、アンプ35によって増幅され、その後、フィルター37によってフィルタ処理される。フィルタ処理後の信号は、制御センター1からのデータを再生するため、クロックリカバリーならびにデータ取り込み動作を実行する中央制御ユニット39に入力する。取り込まれたデータは、次に、対応する処理装置3に接続されたインターフェースユニット41に引き渡される。
【0019】
また、インターフェースユニット41は、レーザーダイオード21により出力された光ビーム23がアップリンクデータに基づいて変調されるよう、処理装置3からのアップリンクデータ(制御センター1へ送信される)を、制御信号をレーザードライバー43へ送る、中央制御ユニット39へと導く。リモート端末9とマイクロハブ11間での全二重通信を可能にするため、レーザーダイオード21により出力された光ビーム23に対して小さい振幅変調が適用される、低信号振幅スキーム(small signal modulation scheme)が用いられる。図3は、かかる変調を示すとともに、CWレーザーレベル65、および、それに適用された低信号変調67を示す。具体的には、レーザーダイオード21により出力された光ビーム23の出力レベルは、アッパー出力レベルP1とローワー出力レベルP2間で変調される。
【0020】
このアップリンク変調データは、ダウンリンクデータの別のノイズ源となってしまう。このことは、干渉アップリンクデータ67、ならびにこれによって生じるノイズマージン71の低下を含む、ダウンリンクデータ69に関するアイダイヤグラムを示す図4に表されている
しかし、アップリンクの変調の深さが、非常に低く保たれている場合には、アップリンクとダウンリンクの双方が、同じ周波数帯域により動作することができる。
【0021】
リモート端末9とマイクロハブ11間の光リンク5は、基本的にデータのパイプとして機能する、すなわち、リモート端末9により受信されたデータは、それ以上暗号化されることなく(例えば、別のエラー検出および訂正ビットを付加することなしに)、マイクロハブ11へ送信され、その逆も行われる。リモート端末9とマイクロハブ11間の光リンク5に関する情報を送信するため、OAMデータに基づいて、データクロック信号のタイミングを調節することにより、それとは別の”オペレーションおよびメインテナンス”(OAM)チャネルが形成される。クロック及びデータ再生動作を実行した場合、中央制御ユニット39は、マイクロハブ11により送信されれたOAMデータを復活させるため、光リンク5の他端においてクロックのタイミングを監視する。
【0022】
中央制御ユニット39は、第一ステッパモーター47aへ駆動信号を供給するため、第一モータードライバー45aに接続され、第二ステッパモーター47bへ駆動信号を供給するために第二モータードライバー45bに接続されている。レーザーダイオード21、コリメーテイングレンズ25、検出器33ならびにダウンリンク検出レンズ31が、全体で一つの光学アセンブリ51を形成するよう設けられ、第一および第二ステッパモーター47は、光学アセンブリ51が、直交するそれぞれの軸の周囲を回転できるよう動作する。リモート端末9が設けられている場合、通常、かかる端末は、第一および第二ステッパモーター47が、垂直方向のいずれかの側に45°傾斜する軸の周囲で光学アセンブリ51を回転させるよう、傾けられている。これにより、対応するマイクロハブ11への位置決めを行うため、発光された光ビームの方向を変えることができる。
【0023】
−マイクロハブ−
図5は、マイクロハブ11の主要部の概略を示す図である。図示したように、マイクロハブ11は、プロセス管理ユニット7に接続されているインターフェースユニット81、を含んでいる。このインターフェースユニット81は、変調器駆動回路83の入力および検出回路85の出力にも接続されている。変調器駆動回路83の出力は、光学変調器87に接続され、検出回路85の入力は、フォトダイオード89に接続されている。
【0024】
光学変調器87は、組込み層(intrinsic layer)内に形成された100個の量子ウエル、および、n−導電型膜内に形成されたブラグ反射器(Bragg reflector)を有するp−i−nダイオードを含む量子閉じ込めシュタルク効果(Quantum ConfinedStark Effect)(QCSE)装置を備えている。テレセントリックレンズ91によって受光された光は、p−i−nダイオードのp−導電型膜を介し、変調器駆動回路83を用いてp−i−nダイオードの両端に印加された電位差に基づき光の吸収量が変化する組込み層に導かれ、次に、ブラグ反射器は、組込み層(さらに光が吸収される)を介して、テレセントリックレンズ91に光を反射する。
【0025】
インターフェースユニット81は、プロセス管理ユニット7から受信したダウンリンクデータを、光学変調器87用の駆動信号を生成する変調器駆動回路83に導く。理想的な場合、図6に示すように、バイナリ1を送信するために、0ボルトのバイアスがQCSE変調器87のp−i−nダイオードの両端に印加され、これにより、リモート端末9からの光は、QCSE変調器87から反射され、バイナリ0を送信するために、DCのバイアス電圧がQCSE変調器87のp−i−nダイオードの両端に印加され、これによっては、QCSE変調器87からリモート端末9へ光が反射されることはない。しかし、実際には、組込み層内に形成された100個の量子ウエルにより、QCSE変調器87は、5Vの逆バイアスが印加された場合、受信した光の約40%を反射し、15Vの逆バイアスが印加された場合、受信した光の約10%を反射する。これにより、バイナリ0が送信される場合とバイナリ1が送信される場合で、リモート端末9へ反射される光の量に約75%の差を生じさせる。
【0026】
変調器87は、レンズエレメント93、および、前方焦点面に中央開口97を有する遮光部材(stop member)により、図7に概略的に示されたテレセントリックレンズ91のほぼ後方焦点面、に位置する。実際には、テレセントリックレンズ91には、特定の取り付け条件によって決まる設計変更事項である正確な位置決めがなされた、一以上のレンズエレメントが用いられる。開口97のサイズも、設計変更事項であり、開口97を大きくすると、開口97が小さい場合よりも対応するリモート端末9からより多くの光が通過するが、開口97が小さい場合に必要なレンズ構成よりも複雑かつ高価なレンズ構成が必要となる。
【0027】
テレセントリックレンズ91は、軸対象となっており、変調器87上のアクテイブ領域を0.5°から2.5°間の半角(half−angle)を有する円錐状の視野に合わされる。具体的には、テレセントリックレンズ91は、異なる入射角の光が変調器87上のアクテイブ領域上に位置づけられるよう、入射光を、光の入射角によって決まる後方焦点面内の、ある位置に集中させる。また、テレセントリックレンズ91を介して送られた主光線(principle rays)は、後方焦点面に対して、直角に入射するので、変調器87は、主光線に沿い、その入射経路に沿って入射光を反射する。これにより、変調器87およびテレセントリックレンズ91は、再帰反射器として機能する。
【0028】
テレセントリックレンズ91を用いる利点としては、既存の光学変調器87の変調効率(すなわち、変調深さ)が、実質的に、変調器87に当たる光ビームの角度によって決定されることであり、さらに、テレセントリックレンズ91を用いると、テレセントリックレンズ91の視野内で入射光を生成するリモート端末9の位置に関係なく、光ビームの主光線が変調器87の光軸(optical axis)に対し、確実に平行に入射することがある。したがって、制御センター1と関連するリモート端末9の位置によって決まる変調効率の依存性は、実質的に取り除かれる。また、テレセントリックレンズ91を用いることにより、反射された光ビームの発散を低減させるため、必要に応じて、変調器87の位置をテレセントリックレンズの後方焦点面から若干移動させることができるので、リモート端末9における信号レベルを向上させることができるという利点を得ることができる。
【0029】
インターフェースユニット81は、フォトダイオード89に入射した光により構成された電気信号から、検出回路85によって生成されたアップリンクデータ信号を受信し、受信したアップリンクデータ信号をプロセス管理ユニット7に送信する。検出器85は、リモート端末9からのOAMデータ信号も取り込み、取り込んだOAMデータ信号を通信管理ユニット13に送信する。
【0030】
フォトダイオード89は、アップリンク検出レンズ99の後方焦点面に置かれる。図5に図示したように、アップリンク検出レンズ99の集光開口および焦点距離は、テレセントリックレンズ91のそれより小さい。これにより、フォトダイオード89のアクテイブエリアを、光学変調器87よりも小さくすることができ、したがって、フォトダイオード89のキャパシタンス(および応答速度も)が低下する、という利点がある。アップリンク検出レンズ99の集光開口をテレセントリックレンズ91のそれよりも小さくすることができる理由は、フォトダイオード89が、アップリンクデータ信号およびOAM信号を再生するのに十分な光を検出することのみを必要するのに対し、リモート端末9の検出器33において十分な信号レベルを達成するよう、再帰反射光ビームが十分なエネルギーを確実に有するため、テレセントリックレンズ91が十分な光を集めなければならないからである。
【0031】
ここで、マイクロハブ11のQCSE変調器87、変調器駆動回路83ならびに検出回路85の詳細について説明する。
【0032】
−QCSE変調器−
図7は、変調器87の概略斜視図を示す。図示したように、変調器87は、基板103上の直角八角形のプリズム型のテーブル構造(mesa−structure)101により構成される。第一電極105は、テーブル構造101のベース周囲の八角形のリングにより形成され、第二電極107は、テーブル構造101の頂面に形成されている。第一電極105は、図8Aに示された第一電極の平面図に最も明らかに表されるように、接触パッド109aから109fまでの6個の接触パッドを備えている。
【0033】
図8Bは、テーブル構造101の頂面上に形成された第二電極の平面図である。図示したように、第二電極107は、第一C型コンダクタ111aから第二C型111bへ伸張する18本の帯状コンダクタ113_1から113_18、および、第二C型コンダクタ111bから第一C型コンダクタへ伸張する別の18本の帯状コンダクタ113_19から113_36を有する第一および第二C型コンダクタ111a、111bから構成されている。かかる帯状コンダクタは、帯状コンダクタ113による18組のペアを構成するため、各々が、第二のC型電極111bと位置決めされている第一のC型電極111aに接続された18本の帯状コンダクタ113を有することにより、その全てが互いに平行に構成されている。帯状コンダクタ113の各ペアは、変調器87の製造工程中、帯状コンダクタ113間にエッチング液が流れ込むことのできる狭いギャップによって分離されている。
【0034】
図7で第二C型コンダクタ111として示したように、各C型コンダクタ111は、テーブル構造101の側壁の下側に第一電極105を超えて伸張する18本のコンダクテイブトラック117aから117hを介し、3つの接続パッド115aから115cに接続されている。テーブル構造101の側壁とコンダクテイブトラック117間、ならびに、第一電極とコンダクテイブトラック117間には、絶縁膜(図示せず)が設けられる。図8Cは、変調器87の半導体基板103に垂直であって、帯状電極113に平行な断面を示し、図8Dは、変調器87の半導体基板103に垂直であって、帯状電極113にも直角な断面を示している。図示したように、テーブル構造101の側壁は、半導体基板103の表面に対して垂直ではない。具体的には、その上をコンダクテイブトラック117が伸張する側壁は、ベースからテーブル構造101の頂面へと、内側に傾斜している。これにより、かかる頂面上にコンダクテイブトラックを堆積させることが可能となる。図8Dに示すように、その上にコンダクテイブトラックが伸張しないテーブル構造の側壁は、テーブル構造101の頂面の一部がテーブル構造101のベースに覆いかぶさり(overhang)、したがって、コンダクテイブトラックがそれらの上に堆積されないよう、ベースからテーブル構造101の頂面へと、外側に傾斜している。
【0035】
図8Cおよび図8Dに示すように、変調器87は、5つの膜を備えており、その3つはテーブル構造101内に形成されている。かかる3つの膜は、ガリウムヒ素(GaAs)および、アルミニウムガリウムヒ素(AlGaAs)によるものである。
【0036】
具体的には、テーブル構造101は、その中に、100個の量子ウエルを有する組込みアルミニウムガリウムヒ素膜(intrinsicAlGaAs layer)101_2上に形成されたp−導電型ガリウムヒ素膜101_1によって構成され、組込みアルミニウムガリウムヒ素膜は、その中に形成されたブラグ反射器を有するn−導電型アルミニウムガリウムヒ素膜101_3上により構成される。かかるテーブル構造101は、組み込みガリウムヒ素基板103_2上に形成されたn−導電型ガリウムヒ素コンタクト膜103_1に形成される。
【0037】
帯状コンダクタ113は、変調器駆動回路83から、p−導電型ガリウムヒ素膜101_1を介して駆動信号を配信する。これにより、テーブル構造101の中心を流れていた電流は、帯状コンダクタ113に沿って、テーブル構造101の頂面の中央へと流れることができるので、帯状電極125が設けられていない(例えば、第二電極がC型コンダクタ111のみによって形成されている)場合と比べ、変調器87の実効直列抵抗が低減される。
【0038】
帯状コンダクタ113は、2マイクロメーターの幅で真っ直ぐに形成されている。この幅は、帯状コンダクタ113が、アクテイブエリアのほとんど部分を覆うことなく、p−導電型ガリウムヒ素膜101_1と比べ、低い抵抗値となるのに十分な幅である。具体的には、テレセントリックレンズ91が、変調器87上に、20マイクロメーターから80マイクロメーターの領域で、ある直径を有するスポットを形成するので、帯状コンダクタ113は、再帰反射された光ビームに大きな影響を与えない。
【0039】
−変調器駆動回路−
図9は、変調器駆動回路83の主要部を、変調器87とともに示している。図示したように、変調器駆動回路83は、それらを介し、インターフェースユニット81からダウンリンクデータがPECL(positive emitter−coupled logic)差分データ信号として受信される2本の入力線を備えている。かかる入力線121、123は、それぞれ75オームの並列端子(それぞれ91オームの抵抗器125a、125bおよび470オームの抵抗器127a、127b)を介して、デュアルPECL・ツー・TTL変換器129(集積回路 SV100ELT23)に接続されている。PECL・ツー・TTL変換器129のPECL入力の2つのペアD0、nD0、および、D1、nD1は、いずれも、ダウンリンクデータ信号によって駆動されるが、これらの入力は、2つのTTL出力Q0およびQ1が互いに逆位相となるよう、逆位相に接続される。
【0040】
PECL・ツー・TTL変換器129のTTL出力Q0、Q1は、それぞれ、以後、ドライバチップ131と呼ばれる、おのおの8つのCMOSバッファ133aから133h、133iから133pまで、を有する第一および第二の8極のCMOSラインドライバー131a、131b(集積回路74ACT245)に接続される。変調器87のp−i−nダイオードのキャパシタンスは、劣化した状態(depleted conditions)で約400pFであり、74ACT CMOSバッファ133は、ほぼ20オームの出力インピーダンスを有する。したがって、変調器87を駆動するため、一の74ACT CMOSバッファ133が用いられた場合、変調器87の量子ウエルにわたる電界を変化させるためのRC時定数は、ほぼ8nsである。しかし、これでは、毎秒100Mビットを超えるデータレートの通信を行うには遅すぎる。
【0041】
図9に示すように、PECL・ツー・TTL変換器129の各出力Q0、Q1は、対応するドライバーチップ131の8つのCMOSバッファ133に共通して接続されており、当該8つのCMOSバッファ133の出力は、抵抗器135aから135pのそれぞれを介し、第一および第二キャパシタ137a、137bのいずれかにまとめて接続されている。ドライバチップ131の並列接合された8つのCMOSバッファ133の全てを駆動させることにより、ドライバーの出力インピーダンスが低下し、これによりRC時定数が低減されるので、変調器87の両端の電位差をより迅速に切り換えることが出来る。各ドライバチップ131における各々のCMOSバッファ133の切り換え時間は、若干変化するので、同じドライバチップ133の2つのCMOSバッファ133が異なった状態にある場合に生じる急上昇(shoot−through)と呼ばれるサージ電流を一時的に減少させるため、それぞれが10オームの抵抗を有する抵抗器135が変調器駆動回路83内に設けられている。
【0042】
第一および第二キャパシタ137a、137bは、それぞれ、100nFのキャパシタンスを有する。第一キャパシタ137aは、変調器87を構成するp−i−n
ダイオードのカソードに接続されているが、第二キャパシタ137bは、変調器87を構成するp−i−nダイオードのアノードに接続されている。変調器87のカソードは、ダイオード139aおよび抵抗器141を介し、変調器のカソードにおける電圧が約4.3Vを下回らないようにする5Vの電源にも接続されており、変調器87のアノードは、ダイオード139bを介し、変調器のアノードにおける電圧が約0.7Vを超えないようにするグランドにも接続されている。1キロオームの抵抗を有するブリード抵抗器143は、照射時に、変調器87によって生成された光電流用のDCパスを提供するため、変調器87のアノードとカソード間に接続される。
【0043】
ダウンリンクデータ信号がハイの状態になるよう駆動されている場合、第一ドライバーチップ131のCMOSバッファ133の出力は、ハイで駆動され、第二ドライバーチップ131のCMOSバッファ133の出力は、ローで駆動される。これにより、変調器87のカソードにおける電圧は、9.3Vであり、変調器87のアノードの電圧は、−4.3Vとなるので、変調器のアノードとカソード間の電位差が約13.6Vとなる。ダウンリンクデータ信号がローの状態になるよう駆動されている場合、第一ドライバチップ131のCMOSバッファ133の出力は、ローで駆動され、第二ドライバチップ131のCMOSバッファ133の出力は、ハイで駆動される。これにより、変調器87のカソードにおける電圧は、4.3Vであり、変調器87のアノードの電圧は、0.7Vとなるので、変調器のアノードとカソード間の電位差が約3.6Vとなる。したがって、当該ダウンリンクデータに基づき、変調器87の両端に10Vの電圧振幅(voltage
swing)が印加される。
【0044】
−検出回路−
検出器89からの電気信号は、対応するリモート端末9から入力する光ビームの変調部分、対応するリモート端末9から入力する光ビームの未変調部分、ならびに、バックグラウンド光、の3つの主な成分から構成される。これら3つの成分の各振幅は、通信経路の変化に起因して、最大約100kHzの割合で変化する。
【0045】
図10は、マイクロハブ11における検出回路85の主要部を示している。図示したように、フォトダイオード89からの電気信号は、前記入力光ビームの未変調部分および前記バックグラウンド光に関する電気信号の成分のほとんどを除去するとともに、通信経路の変化に起因するいずれの低周波数の変動を低減させるDC打ち消しユニット(DC cancellation unit)151、に入力する。残りの電気信号は、DC打ち消しユニット151によって出力され、アンプ153に入力する。アンプ153により出力された増幅信号は、アップリンクデータ信号およびリモート端末9からのいずれのOAM信号を再生する、クロック再生ユニット155に入力する。また、DC打ち消しユニット151は、以後、DC−RSSI信号と呼ばれる受信DC信号強度の合計を表す信号を、クロック再生ユニット155に出力し、アンプ153は、以後、AC−RSSI信号と呼ばれるデータ送信周波数の信号強度を表す信号を、クロック再生ユニット155に出力する。クロック再生ユニット155は、DC−RSSI信号およびAC−RSSI信号を、通信管理ユニット13に送る。
【0046】
図11は、検出回路85のDC打ち消しユニット151およびアンプ153の詳細を示している。図示したように、フォトダイオード89のカソードは、本実施形態において3.3nFのキャパシタンスを有するキャパシタC1を介し、グランド、および、第一電流ミラー161の入力ブランチ(input branch)、に接続される。第一電流ミラー161は、おのおのが470オームの抵抗を有するエミッター抵抗器R1およびR2を伴う従来のダブルp−n−pトランジスタによって形成されている。
【0047】
第一電流ミラー161の入力ブランチは、本実施形態では470オームの抵抗を有する第三抵抗器R3の一端に接続されている。本実施形態では100キロオームの抵抗を有する第四抵抗器R4、および、本実施形態では10nFのキャパシタンスを有する第二キャパシタンスC2は、第三抵抗器R3の他端とグランドとの間に並列に接続されている。第三抵抗器R3の他端は、本実施形態では、従来のダブルn−p−nトランジスタ167および一のn−p−nトランジスタ169により構成されるウイルソンミラーである第二電流ミラー165の入力ブランチ、にも接続されている。第二電流ミラー165の出力ブランチは、47マイクロHのインダクタンスを有するインダクタLを介して、フォトダイオード89のアノードに接続される。当該フォトダイオード89のアノードは、プリアンプ171の入力にも接続されている。
【0048】
フォトダイオード上に光が入射すると、電流Icがフォトダイオードのカソードを通じて流れ、フォトダイオードのアノードを通じて対応する電流Iaが流れる。カソード電流Icは、キャパシタC1を介し、グランドへ流れる高周波数部分Ih、および、第一電流ミラー161に入力する低周波数部分Ilから構成される。高周波数部分Ihと低周波数部分Il間の3dBの遮断周波数(3dB cutt−offfrequency)は、100kHZである。したがって、毎秒100Mビットを超えるデータトラフィック成分は、第一電流ミラー161よりもキャパシタC1を通じて流れる。
【0049】
第一電流ミラー161は、低周波数部分Ilが第三抵抗器R3を通じて流れるようマッチングさせる、ミラー電流を生じさせる。第二電流ミラー165の入力における電圧は、ウイルソンミラー構造により約1.4Vの制限を受けるので、以後、ブリード電流Ibと呼ばれる、最大約14マイクロアンペアの電流が、第四抵抗器R4を介して、グランドへ流れる。同様に、高周波数ノイズ電流Inが、第二キャパシタC2を介して、グランドへ流れる。したがって、第二電流ミラー165の入力ブランチに流れ込む電流Isは、以下の式によって求められる:
Is =Il −Ib −In (1)
第二電流ミラー165は、電流Isが第二電流ミラー165の出力ブランチを通じて流れるようマッチングさせる、ミラー電流を生じさせる。したがって、プリアンプ171に流れ込む検出電流Idは、以下の式によって求められる:
Id=Ia −Is (2)
これにより、検出電流Idは、基本的に、入力する光ビームの変調成分に相当する。しかし、ブリード電流Ibとほぼ等しい低周波数電流の一部は、検出電流Idの一部をも構成する。これによって、プリアンプ171の入力から第二電流ミラー165の出力への電流の供給が阻止される。プリアンプ171は、マキシムインテグレーテイッドプロダクツ社が販売するMAX3963トランスインピーダンス式のプリアンプである。かかるプリアンプ171は、入力電流信号を、非反転出力ポート(OUT+)および反転出力ポート(OUT−)から出力された対応する差動電圧信号(differential voltage signal)に変換する。プリアンプ171の非反転出力ポート(OUT+)は、第三キャパシタC3を介し、本実施形態ではマキシムインテグレーテイッドプロダクツ社が販売するMAX3694制限増幅器である、制限増幅器173の反転入力(IN−)に静電的に結合される。同様に、プリアンプ171の反転出力ポート(OUT−)は、第四キャパシタC4を介し、制限増幅器173の非反転入力(IN+)に静電的に結合される。第五キャパシタC5は、高周波数ノイズを低減するため、プリアンプ171の非反転および反転出力の間に接続される。
【0050】
制限増幅器173は、本実施形態においては50オームの同軸ケーブルコネクタである第一コネクタ175を通じて、クロック再生ユニット155に出力されるPECL(正のエミッタ結合型論理)差動データ信号を、非反転および反転出力(OUT+、OUT−)を介して出力する。また、制限増幅器173は、入力パワーレベルが第五抵抗器R5および第六抵抗器R6によって定められたしきい値を下回った場合を示す、補完的信号損失出力ポート(loss−of−signal output ports)LOS+、LOS−を介して、信号を出力する。非反転の信号損失出力ポートLOS+により出力されたかかる信号は、本実施形態においてはリボンケーブルコネクタ(ribbon cable connector)である第二コネクタ177を介して、クロック再生ユニット155に出力される。
【0051】
上述したように、入力における電圧であって、第二電流ミラー165に対するものは、ウイルソンミラー構造により約1.4Vの制限を受け、第三抵抗器R3を通じて流れる電流は、カソード電流Icの低周波数部分Ilとマッチする。したがって、第一電流ミラー161の出力における電圧レベルは、以後、DC信号レベルと呼ばれる検出された低周波数信号のレベルを表す。かかる電圧レベルは、第一電流ミラー161と第三抵抗器R3間の配線を、第一ローパスフィルター179を介し、第一ユニテイーゲインバッファ181に接続することによりサンプリングされる。第一ユニテイーゲインバッファ181の出力は、第二ローパスフィルター183を介して、第二コネクタ177に接続される。これにより、DC−RSSI信号が、クロック再生ユニット155に送信される。制限増幅器173は、クロック再生ユニット155への送信のため、第二ユニテイーゲインバッファ185を介し、第二コネクター177にAC−RSSI信号を出力するRSSIポートを備えている。
【0052】
クロック再生ユニット155は、第一コネクタ175を介して、制限増幅器173により出力された差動データ信号を受信し、クロックタイミング中の変化を監視することにより、OAM信号が取り込まれる間にクロック再生およびデータ再生成動作を行う。クロック再生ユニット155によって再生成されたアップリンクデータ信号は、イーサネット(商標)スイッチ13に送信され、LOS信号、DC−RSSI信号およびAC−RSSI信号とともに、OAM信号がネットワーク管理ユニット15に送信される。
【0053】
−第二実施形態−
第一実施形態においては、各リモート端末用に、それぞれのマイクロハブが設けられていた。また、リモート端末に各光リンク用の光源が位置し、各マイクロハブに再帰反射変調器が設けられていた。ここで説明する第二実施形態においては、第一の実施形態におけるマイクロハブ11の少なくともいくつかが、複数のリモート端末1003と通信が可能なローカル配信ハブ1001に置き換えられる。
【0054】
図12に示すように、ローカル配信ハブ1001は、各画素内に垂直キャビテイー表面発光レーザー(VCSEL)を伴う二次元の画素アレイを有するエミッタアレイ1005、を備えている。エミッタアレイ1005は、ウエハを切断することなく一枚の半導体ウエハから製造することが出来るので、VCSELを用いることが好ましい。これにより、従来のダイオードレーザーで行うより、発光エレメント(lasing elements)を高密度にすることが可能となる。エミッタアレイ1005中の各VCSELは、直線的に偏向した発散光ビームを出力し、かかる発散は、基本的にVCSELの発光用開口における回折によって引き起こされる。
【0055】
エミッタアレイ1005のVCSELにより発せられた直線偏向発散光ビームは、ビームスプリッター1007を通して送信され、直線偏向発散光ビームを円状偏光(circulary−polarized light)に変換する四分の一波長板(quarter−wave plate)1009上に入射する。次に、かかる円状偏光は、図12においてテレセントリックレンズの後方焦点面に位置するエミッタアレイ1005とともにレンズエレメント1013の前方焦点面に位置する遮光部材1011、により表されているテレセントリックレンズを通過する。図示したように、レンズエレメント1013は、各VCSELにより発光された発散ビームを集め、これらを、対応する低発散光ビーム1015a、1015bに変換する。当業者であれば理解するように、各光ビーム1015が、テレセントリックレンズの射出ひとみ(exit pupil)から出て行く角度は、対応する発散ビームを発するVCSELのエミッタアレイ1005内の空間上の位置によって決定される。ローカル配信ハブ1001内でテレセントリックレンズシステムを用いる利点は、どこから光が発せられようと、エミッタアレイ1005からの光の集光効率は、エミッタアレイ1005内の位置と無関係であること、である。
【0056】
上述のように、エミッタアレイ1005の各画素は、エミッタアレイ1005に対応する視野内のそれぞれ異なる角度に設定される。図12に示すように、ローカル配信ノード1001からの第一光ビーム1015aは、第一リモート端末1003aに入射し、ローカル配信ノード1001からの第二光ビーム1015bは、第二リモート端末1003bに入射する。本実施形態においては、エミッタアレイ1005のVCSELは、選択的にアドレス可能なので、第一および第二リモート端末1003に、それぞれ異なるデータを送信することが可能である。具体的には、データ信号D1(IN)は、第一リモート端末1003aの方向に対応するVCSELの出力を変調するため用いられ、信号D2(IN)は、第二リモート端末1003bの方向に対応するVCSELの出力を変調するため用いられる。
【0057】
各リモート端末1003は、図12において遮光部材1017a、1017bおよび受けた光を検出/変調アレイ1021a、1021bのアレイ上に集光するレンズエレメント1019a、1019bで概略的に示した、テレセントリックレンズを備えている。第一リモート端末1003aの検出/変調アレイ1021aは、信号D1(IN)を再生するため、第一光ビーム1015aを検出し、データ信号D1(OUT)により変調された第一反射光を返送する。同様に、第二リモート端末1003bの検出/変調アレイ1021bは、信号D2(IN)を再生するため、第二光ビーム1015bを検出し、データ信号D2(OUT)により変調された第二反射光を返送する。
【0058】
本実施形態において、検出/変調アレイ1021の各エレメントが、変調器(第一実施形態で説明したように)および検出器のいずれとしても機能するp−i−nダイオード形式のQCSE装置、を備えている。リモート端末1003により反射された光ビーム1015は、ローカル配信ハブ1001に返送され、遮光部材1011、レンズエレメント1013、および、反射ビームの円状偏光をエミッタアレイ1005により発せられた光ビームと直行する直線偏光に変換する四分の一波長板1009、を通過する。次に、反射された光ビームは、その位置が入って来る反射ビームに対応する検出アレイ1023の各検出エレメント上に光ビームを反射する、偏光ビームスプリッター1007上に入射する。したがって、第一リモート端末1003aから反射された光ビームは、データ信号D1(OUT)を再生する第一検出エレメントに導かれ、第二リモート端末1003bから反射された光ビーム1015bは、データ信号D2(OUT)を再生する第二検出エレメントに導かれる。
【0059】
−変更例ならびに他の実施形態−
上述の実施形態においては、プロセス管理ユニットが、リモートセンサから測定信号を受信するか、リモートアクチュエーターに制御信号を送信していた。かかるセンサは、例えば、温度センサ、重量センサ、位置センサ又は電流センサ、であってもよい。また、アクチュエーターは、モーター、ヒーター又は電気リレー等、であってもよい。
【0060】
本発明が適用可能な製造システムの例は、自動生産ライン(例えば、自動車製造用の)を含むものがある。また、本発明は、化学品生産ライン(例えば、薬品の製造用)にも適用可能である。
【0061】
上述の実施形態においては、各リモート端末とプロセス管理ユニット間に双方向通信リンクが確立されていた。リモート端末がセンサのみに接続されている場合には、光学リンクのリモート端末側に再帰反射変調器が位置する、単方向通信リンクを用いることができること、が理解されよう。これに代えて、リモート端末がアクチュエーターのみに接続される場合、光学リンクのプロセス管理ユニット側に再帰反射変調器ビームを用いる単方向通信リンクを用いることができる。
【0062】
第一の実施形態において、変調器は、ほぼ直角八角形のプリズム型のテーブル構造を含んでいたが、他の形状のテーブル構造、例えば、円状の断面を有する円柱、を用いることもできる。しかし、テーブル構造は、円状断面よりも製造が容易なので八角形の断面の方が好ましいが、八角形の断面は、ほぼ円形の断面を有するので、テレセントリックレンズの視野が、効率的にテーブル構造の頂面上に設定される。視野に設定されていないアクテイブエリアの部分は役に立たないだけでなく、変調器の全域にわたる電界の切り換え速度を低下させるキャパシタンスを伴うので、テレセントリックレンズの視野がアクテイブエリア上に効率的に設定されることが重要である。
【0063】
第一の実施形態においては、変調器の直列抵抗を低減させるため、複数の並列帯コンダクタがアクテイブエリアを横切っていた。当業者であれば、当該帯状コンダクタのレイアウト自身が重要なのではなく、他の帯状コンダクタのレイアウトを用いることができること、を理解する。
【0064】
第一実施形態において説明された変調器は、ガリウムヒ素(GaAs)および、アルミニウムガリウムヒ素(AlGaAs)膜を含んでいた。当業者であれば、他の半導体材料を用いることが可能であること、を理解する。例えば、インジウムガリウムヒ素(InGaAs)等の他のIII−V族半導体材料、を用いることも出来る。また、II−VI族半導体材料を用いて、QCSE変調器を構成することも可能である。
【0065】
第一実施形態において、CMOSラインドライバーは、変調器の複数の量子ウエルにわたる電界を切り換えるのに用いられていた。他の方式のプッシュプルドライバーを用いてもよいこと、が理解されよう。例えば、p−チャネルのMOSFETおよびn−チャネルのMOSFETを用いる代わりに、相補型バイポーラートランジスタを用いることもできる。また、当業者であれば、通常、ラインドライバーは、その性能を向上させるため、通常、シュミットトリガ等の他の回路を含んでいること、を理解する。
【0066】
当業者は、マイクロハブおよびユーザー端末に、他の異なる種類の検出器を用いてもよいこと、を理解する。例えば、フォトトランジスタを用いることも可能である。一般に、検出器は、必要とされるビットレートおよび感度、光ビームの波長、ならびに、コスト面、に基づいて選択される。上述の実施形態においては、ブラグミラー上に形成されたQCSE変調器を有する集積半導体装置が、用いられていた。当業者であれば、他の種類の反射器および変調器を用いてもよいこと、を理解する。例えば、反射器として平面鏡を用いてもよく、透過型変調器(液晶等の)を、テレセントリックレンズと鏡との間に設けることも可能である。さらに、当業者であれば、再帰反射器がテレセントリックレンズである必要はないこと、を理解する。これに代え、逆反射鏡(corner−cube reflector)又はキャッツアイ反射器(cat’s−eye reflector)により、再帰反射器を構成することもできる。しかし、再帰反射ビームの発散を調節する能力を考慮すると、テレセントリックレンズを用いることが好ましい。
【0067】
第一の実施形態において、変調器ユニットの視野は、0.5°から2.5°間の半角を有する円錐状であること、が好ましい。これにより、広い開口を有するがユーザー端末と正確な位置決めが必要とされない、テレセントリックレンズを比較的安価に製造することが可能となる。
【0068】
上述の実施形態においては、マイクロハブとユーザー端末間の光学リンクは、データパイプとして機能した。これに代えて、光学リンクを介した通信を行う前に、データを、エラー検出および訂正ビット等を含むプロトコルによって暗号化するようにしてもよい。
【0069】
上述の実施形態においては、150メートルの範囲内で、対応するローカル配信ノードとの通信ができるよう、各リモート端末内に50mWのレーザーダイオードが設けられていた。実際のところ、ユーザー端末とローカル配信ノード間の距離は、数メートル程度と比較的短いので、通常CDプレイヤー又は発光ダイオードに用いられている出力の小さいレーザーダイオード、を用いるようにしてもよい。
【0070】
当業者であれば、”光”という表現には、可視領域とともに、紫外線中の電磁波および電磁スペクトルの赤外線領域、が含まれていることを理解する。上記で説明した実施形態は、785nmの波長を有するレーザービームを用いていたが、他の光ビームを用いるようにしてもよい。具体的には、より目に優しく、しかも、この波長の発信器および検出器が光ファイバー通信用に開発されているので、約1.5ミクロンの波長が代替用の波長としてふさわしい。
【0071】
マイクロハブおよびリモート端末内のレンズは、一つのレンズによって概略的に示されているが、実際には、各レンズが複数のレンズエレメントによって構成されてもよいこと、が理解される。
【0072】
本発明は、上述の例示された実施形態に限定されるものではなく、他の様々な変更ならびに実施形態が可能であることは、当業者にとって明らかである。
【図面の簡単な説明】
【図1】図1は、制御センターと複数の処理装置との間でデータを配信するためのポイント・ツー・マルチポイント信号伝達システムを組み込んだ製造システムの部品を示す回路図である。
【図2】図2は、図1に示す製造システムの一部を構成するリモート端末の概念図である。
【図3】図3は、リモート端末から、図1に示す通信システムの一部を構成する処理マネージメントユニットに対してアップリンクデータを送信するため、微少な信号変調を達成するよう、図2に示したリモート端末により発せられたレーザービームの出力が変化する状態を表したグラフである。
【図4】図4は、リモート端末によってなされる、制御センターからリモート端末へ送信されたダウンリンクの検出、における微少信号変調の効果を概略的に示したアイダイアグラム(eye diagram)である。
【図5】図5は、図1に示す製造システムの制御センターの一部を構成するマイクロハブの概略図である。
【図6】図6は、図5に示した変調器上に入射した光が、その電極に印加されたバイアス電圧に基づいて変化する状態、を概念的に示す信号図である。
【図7】図7は、図5に示すマイクロハブの一部を構成する変調器の概略斜視図である。
【図8A】図8Aは、図7に示す変調器の一部を構成する第一電極のレイアウトを示す平面図である。
【図8B】図8Bは、図7に示す変調器の一部を構成する第二電極のレイアウトを示す平面図である。
【図8C】図8Cは、図7に示す変調器の第一断面を概略的に示している。
【図8D】図8Dは、図7に示す変調器の第二断面を概略的に示している。
【図9】図9は、図5に示すマイクロハブの一部を構成する変調器駆動回路の部品の詳細を示す概略ブロック図である。
【図10】図10は、図5に示すマイクロハブの一部を構成する検出回路の詳細を示す概略ブロック図である。
【図11】図11は、図10に示す検出回路の一部を構成するDC打ち消しユニットおよびアンプの詳細を示す回路図である。
【図12】図12は、図1に示す製造システムとは別の製造システム用の配信ハブおよび複数のリモート端末を概略的に示す図である。
Claims (28)
- 出発材料を処理して製品を出力するよう動作可能な生産システムと、
i)入ってきた光ビームを受信し、ii)前記データ信号に基づき前記入射光ビームを変調し、さらに、iii)前記入射光ビームを逆反射することにより、前記データ信号を伝達する変調済み光ビームを送信するよう動作可能な再帰反射変調器を備え、関連づけられた第一信号装置を有するセンサーであって、前記生産システムのパラメーターを表すデータ信号を生成するよう動作可能なセンサーと、
i)光ビームを生成するよう動作可能な光源、ii)前記生成光ビームを前記第一信号装置に送信するよう動作可能な送信器、iii)前記第一信号装置から前記変調光ビームを受信するよう動作可能な受信器、および、iv)前記変調光ビームから前記データ信号を取り込むよう動作可能なプロセッサを備え、関連づけられた第二信号装置を有するシステム管理装置とを備え、
前記システム管理装置は、前記取り込んだデータ信号を用いて前記生産システムを制御するために動作可能である製造システム。 - 請求項1にかかる製造システムにおいて、さらに、前記第一信号装置に関連づけられたアクチュエーター、を備えており、
前記システム管理装置は、前記生産システムのパラメーターを変化させる制御信号を生成するよう動作可能であり、
前記第二信号装置は、前記制御信号に基づいて前記光源によって生成された前記光ビームを変調するよう動作可能な変調器を備えており、
前記第一信号装置は、前記第二信号装置からの前記入射光ビームから前記制御信号を再生するよう動作可能な検出器を備えており、さらに
前記アクチュエーターは、前記再生制御信号に基づいて前記生産システムのパラメーターを変更するよう動作可能であることを特徴とするもの。 - 出発材料を処理して製品を出力するよう動作可能な生産システムと、
i)入ってきた光ビームを受信し、ii)制御信号に基づき前記入射光ビームを変調し、さらに、iii)前記入射光ビームを逆反射することにより、前記制御信号を伝達する変調済み光ビームを送信するよう動作可能な再帰反射変調器を備え、関連付けられた第一信号装置を有するシステム管理装置であって、前記生産システムのパラメータを変化させる制御信号を生成するよう動作可能なシステム管理装置と、
i)光ビームを生成するよう動作可能な光源、ii)前記生成光ビームを前記第一信号装置に送信するよう動作可能な送信器、iii)前記第一信号装置から前記変調光ビームを受信するよう動作可能な受信器、および、iv)前記変調光ビームから前記制御信号を取り込むよう動作可能なプロセッサを備え、関連付けられた第二信号装置を有するアクチュエータであって、前記生産システムのパラメーターを変更するよう動作可能なアクチュエーターとを備え、
前記アクチュエーターは、前記取り込んだ制御信号に基づいて前記生産システムの前記パラメーターを変更するよう動作可能である製造システム。 - 請求項3にかかる製造システムにおいて、さらに、
前記生産システムのパラメーターを表すデータ信号を生成するよう動作可能であり、前記第一信号装置と関連づけられられたセンサを備え、
前記第二信号装置は、前記データ信号に基づいて、前記光源により生成された前記光ビームを変調するよう動作可能な変調器を備え、
前記第一信号装置は、前記第二信号装置からの前記入射した光ビームから前記データ信号を再生するよう動作可能な検出器を備え、さらに、
前記システム管理装置は、当該システム管理装置を用いて、前記生産装置を制御するよう動作可能であることことを特徴とするもの。 - 請求項2または請求項4にかかる製造システムにおいて、
前記第一信号装置の前記検出器は、
前記第二信号装置からの少なくとも一部の前記光ビームを、電流信号であって前記データを伝達する高周波数成分を有した対応する電流信号に変換するよう動作可能な光・電気変換器、
前記高周波数成分から低周波数成分を分離するよう動作可能な分離装置、
前記電流信号の前記分離低周波数成分を用い、オフセット電流信号を生成する信号生成装置、
検出電流信号を生成するため、前記電流信号から前記オフセット電流信号を減じるよう動作可能な減算器、
増幅された信号を生成するため、前記検出電流信号を増幅するよう動作可能なアンプ、および
前記データを再生するため、前記増幅信号を処理するよう動作可能なプロセッサーを備えたことを特徴とするもの。 - 請求項5にかかる製造システムにおいて、
前記光・電気変換器は、フォトダイオード、を備えたことを特徴とするもの。 - 請求項5または請求項6にかかる製造システムにおいて、
前記信号生成装置は、前記電流信号の前記低周波数成分に対応するミラー電流を生成するよう動作可能なカレントミラーを備えたことを特徴とするもの。 - 請求項7にかかる製造システムにおいて、
前記ミラー電流は負荷に印加され、前記検出器は、さらに、前記低周波数成分を表す電圧信号を生成するため、前記負荷の両端の電位差を監視するよう動作可能な監視装置を備えたことを特徴とするもの。 - 請求項7または8にかかる製造システムにおいて、
前記ミラー電流は、第一電流ミラー(first current mirror)であり、前記減算器は、前記第一電流ミラーの出力ブランチが第二電流ミラーの入力ブランチと接続するよう配置された第二電流ミラー(second current mirror)を備えており、前記光・電気変換器は、前記第二電流ミラーの出力ブランチに接続され、これにより、前記オフセット電流は、前記第二電流ミラーの出力ブランチを通じて流れることを特徴とするもの。 - 請求項9にかかる製造システムにおいて、
前記信号生成装置は、さらに、前記第二電流ミラーの前記入力ブランチに流入する電流を低減させるため、第一電流ミラーにより生成された前記ミラー電流の一部を分離するスプリッターを備え、前記ミラー電流の前記一部は、前記電流が前記アンプを通じて一方向に流れるよう設定されていることを特徴とするもの。 - 先行するいずれかの請求項にかかる製造システムにおいて、
前記再帰反射変調器は、テレセントリックレンズおよび反射器、を備えたことを特徴とするもの。 - 請求項11にかかる製造システムにおいて、
前記反射器は、実質的に前記テレセントリックレンズの後方焦点面内に位置することを特徴とするもの。 - 先行するいずれかの請求項にかかる製造システムにおいて、
前記再帰反射変調器は、量子閉じ込めシュタルク効果装置(quantum confined stark effect device)を備えたことを特徴とするもの。 - 請求項13にかかる製造システムにおいて、
前記量子閉じ込めシュタルク効果装置は、
印加された電界に基づいて変化する光吸収スペクトルを有する複数の量子ウエルを含むマルチレイヤー半導体構造であって、入射光線を送信するよう動作可能な面を有するもの、および
前記マルチレイヤー半導体構造全体に電界を印加するよう動作可能な第一および第二電極、を備えており、
前記第一および第二電極のいずれか一つは、前記面の近傍に設けられ、前記面の覆って伸張する複数の帯状コンダクタを備えることを特徴とするもの。 - 請求項14にかかる製造システムにおいて、
前記マルチレイヤー半導体構造は、p型導電半導体層とn型導電半導体層間に挟まれた組込み(intrinsic)半導体層を備えており、前記複数の量子ウエルは、前記組込み半導体層内に形成され、前記一の電極が、前記p型導電半導体層の近傍に設けられることを特徴とするもの。 - 請求項14または請求項15にかかる製造システムにおいて、
前記マルチレイヤー半導体構造は、ガリウムヒ素を有することを特徴とするもの。 - 先行するいずれかの請求項にかかる製造システムにおいて、
前記マルチレイヤー半導体構造は、その頂面に面を有するとともに基板から突出する突出部を有しており、前記一の電極が前記突出部の前記頂面を覆って伸張し、前記第一および第二電極の他方は、前記突出部のベース周囲に設けられることを特徴とするもの。 - 請求項17にかかる製造システムにおいて、
前記突出部は、八角形の断面を有することを特徴とするもの。 - 請求項14から請求項18のいずれかの製造システムにおいて、
前記複数の帯状コンダクタは、互いに平行であることを特徴とするもの。 - 先行するいずれかの請求項にかかる製造システムにおいて、
前記第一信号装置は、さらに、複数のプッシュプルドライバーを有するとともに、前記再帰反射変調器に駆動信号を供給する変調器駆動回路であって、
前記複数のプッシュプルドライバーの入力は、一緒に接続され、前記複数のプッシュプルドライバーの出力は、各抵抗器を介して共通端末に接続され、前記変調器駆動回路の出力インピーダンスは、各プッシュプルドライバーの出力インピーダンスより小さいことを特徴とするもの。 - 請求項20にかかる製造システムにおいて、
前記複数のプッシュプルドライバーは、CMOSドライバーであることを特徴とするもの。 - 先行するいずれかの請求項にかかる製造システムにおいて、
前記再帰反射変調器は、変調エレメントのアレイを備えたことを特徴とするもの。 - 先行するいずれかの請求項にかかる製造システムにおいて、
前記第二信号装置の前記光源は、発光器のアレイを備えたことを特徴とするもの。 - 請求項23にかかる製造システムにおいて、
前記発光器のアレイは、少なくとも一の垂直キャビテイー表面発光レーザー(vertical cavity surface emitting laser)を備えたことを特徴とするもの。 - 請求項23または請求項24にかかる製造システムにおいて、
前記第二信号装置は、さらに、テレセントリックレンズを備えたことを特徴とするもの。 - 請求項25にかかる製造システムにおいて、
前記発光器のアレイは、実質的に前記テレセントリックレンズの後方焦点面内に位置することを特徴とするもの。 - 製品を出力するため、出発材料を処理するよう動作可能な生産システムを用いて製品を製造する方法であって、
センサを用いて前記生産システムのパラメーターを検出するとともに、当該検出パラメーターを表わすデータ信号を生成するステップ、
システム管理装置に関連づけられた第一信号装置において光ビームを生成するステップ、
前記センサに関連づけられた第二信号装置において前記生成された光ビームを受信するステップ、
前記データ信号に基づいて前記受信光ビームを変調し、前記受信光ビームを前記第一信号装置へ逆反射するステップ、
前記第一信号装置において前記反射光ビームを検出するとともに前記データ信号を再生するステップ、および
前記再生データ信号を用いて前記生産システムを制御するステップ、
を備えたことを特徴とするもの。 - 製品を出力するため、出発材料を処理するよう動作可能な生産システムを用いて製品を製造する方法であって、
前記生産システムのパラメーターを変更するため、システム管理装置を用いて制御信号を生成するステップ、
アクチュエーターと関連づけられた第一信号装置において光ビームを生成するステップ、
前記システム管理装置と関連づけられた第二信号装置において前記生成光ビームを受信するステップ、
前記制御信号に基づいて前記受信光ビームを変調し、前記受信光ビームを前記第一信号装置へ逆反射するステップ、
前記第一信号装置において前記反射光ビームを検出するとともに前記制御信号を再生するステップ、および
制された信号に基づき、前記生産システムの前記パラメーターを変更するステップ、
を備えたことを特徴とするもの。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0129164A GB0129164D0 (en) | 2001-12-05 | 2001-12-05 | Communication system |
GB0214447A GB0214447D0 (en) | 2002-03-05 | 2002-06-21 | Optical free-space signalling system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004040072A true JP2004040072A (ja) | 2004-02-05 |
Family
ID=26246839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002353552A Pending JP2004040072A (ja) | 2001-12-05 | 2002-12-05 | テレメトリーおよび/またはリモートコントロールを組み込んだ製造システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20030101575A1 (ja) |
EP (1) | EP1318490A2 (ja) |
JP (1) | JP2004040072A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017208557A (ja) * | 2011-06-13 | 2017-11-24 | ワイ−チャージ リミテッド | 空間分布レーザ共振器 |
JP2018055584A (ja) * | 2016-09-30 | 2018-04-05 | 株式会社ディスコ | 加工装置 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7515775B1 (en) | 2003-08-15 | 2009-04-07 | Luxtera, Inc. | Distributed amplifier optical modulator |
US7039258B2 (en) * | 2003-08-15 | 2006-05-02 | Luxtera, Inc. | Distributed amplifier optical modulators |
US8687981B2 (en) * | 2007-10-02 | 2014-04-01 | Luxtera, Inc. | Method and system for split voltage domain transmitter circuits |
US8983302B2 (en) * | 2009-11-05 | 2015-03-17 | The Boeing Company | Transceiver for plastic optical fiber networks |
US9105790B2 (en) * | 2009-11-05 | 2015-08-11 | The Boeing Company | Detector for plastic optical fiber networks |
WO2015106110A1 (en) * | 2014-01-10 | 2015-07-16 | Palmer Labs, Llc | Diverged-beam communications system |
US11774944B2 (en) | 2016-05-09 | 2023-10-03 | Strong Force Iot Portfolio 2016, Llc | Methods and systems for the industrial internet of things |
US11507064B2 (en) | 2016-05-09 | 2022-11-22 | Strong Force Iot Portfolio 2016, Llc | Methods and systems for industrial internet of things data collection in downstream oil and gas environment |
US11327475B2 (en) | 2016-05-09 | 2022-05-10 | Strong Force Iot Portfolio 2016, Llc | Methods and systems for intelligent collection and analysis of vehicle data |
US11237546B2 (en) | 2016-06-15 | 2022-02-01 | Strong Force loT Portfolio 2016, LLC | Method and system of modifying a data collection trajectory for vehicles |
JP6856345B2 (ja) * | 2016-10-05 | 2021-04-07 | 株式会社ディスコ | 加工装置 |
US11168914B2 (en) * | 2017-07-14 | 2021-11-09 | Daikin Industries, Ltd. | Operating system, information processing device, control system, and infrared output device |
CN110073301A (zh) | 2017-08-02 | 2019-07-30 | 强力物联网投资组合2016有限公司 | 工业物联网中具有大数据集的数据收集环境下的检测方法和系统 |
US11442445B2 (en) | 2017-08-02 | 2022-09-13 | Strong Force Iot Portfolio 2016, Llc | Data collection systems and methods with alternate routing of input channels |
-
2002
- 2002-12-04 EP EP02258365A patent/EP1318490A2/en not_active Withdrawn
- 2002-12-04 US US10/309,342 patent/US20030101575A1/en not_active Abandoned
- 2002-12-05 JP JP2002353552A patent/JP2004040072A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017208557A (ja) * | 2011-06-13 | 2017-11-24 | ワイ−チャージ リミテッド | 空間分布レーザ共振器 |
JP2018055584A (ja) * | 2016-09-30 | 2018-04-05 | 株式会社ディスコ | 加工装置 |
Also Published As
Publication number | Publication date |
---|---|
US20030101575A1 (en) | 2003-06-05 |
EP1318490A2 (en) | 2003-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004040072A (ja) | テレメトリーおよび/またはリモートコントロールを組み込んだ製造システム | |
US5684308A (en) | CMOS-compatible InP/InGaAs digital photoreceiver | |
US20030147652A1 (en) | Optical free space signalling system | |
US20110305454A1 (en) | Optical transceivers with closed-loop digital diagnostics | |
JP2002511204A (ja) | 信号送受システム | |
US5105293A (en) | Differential optical signal transmission using a single optical fiber | |
Schow et al. | A single-chip CMOS-based parallel optical transceiver capable of 240-Gb/s bidirectional data rates | |
JP2003534671A (ja) | 光学フリースペース信号システム | |
CN207339856U (zh) | 板间自由空间通信光模块 | |
US8379286B2 (en) | Integrated angle of arrival sensing and duplex communication with cats-eye multiple quantum well modulating retroreflector | |
US7218388B1 (en) | VCSEL fault location apparatus and method | |
CA2378722A1 (en) | Signalling system | |
US7333731B2 (en) | Multifunctional optoelectronic thyristor and integrated circuit and optical transceiver employing same | |
US6970651B1 (en) | High-sensitivity tracking in free-space optical communication systems | |
US6567195B1 (en) | Optical network using remote optical powering of optoelectronic switch | |
US20030002124A1 (en) | Optical free space signalling system | |
CN108011671A (zh) | 控制包括半导体光放大器的半导体光学装置的方法 | |
JP5669665B2 (ja) | 光送受信器 | |
JP2003264513A (ja) | 双方向光通信システム | |
Kashima | Time compression multiplex transmission system using a 1.3 mu m semiconductor laser as a transmitter and a receiver | |
TW201806340A (zh) | 光電連接器及通過光電連接器傳輸一個以上的資料鏈的方法 | |
US20040105609A1 (en) | Optoelectronic signal transmission semi-conductor element and method for producing a semi-conductor element of said type | |
Faulwaßer et al. | 10 Gbit/s bidirectional transceiver with monolithic optic for rotary connector replacements | |
Lee et al. | Compact 4× 25 Gb/s optical receiver and transceiver for 100G ethernet interface | |
WO2003075493A2 (en) | Optical free-space signalling system |