JP2004039350A - Conductive connection structure - Google Patents

Conductive connection structure Download PDF

Info

Publication number
JP2004039350A
JP2004039350A JP2002192673A JP2002192673A JP2004039350A JP 2004039350 A JP2004039350 A JP 2004039350A JP 2002192673 A JP2002192673 A JP 2002192673A JP 2002192673 A JP2002192673 A JP 2002192673A JP 2004039350 A JP2004039350 A JP 2004039350A
Authority
JP
Japan
Prior art keywords
fine particles
semiconductor package
semiconductor chip
connection structure
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002192673A
Other languages
Japanese (ja)
Inventor
Masami Okuda
奥田 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002192673A priority Critical patent/JP2004039350A/en
Publication of JP2004039350A publication Critical patent/JP2004039350A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Connecting Device With Holders (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive connection structure that realizes high connection reliability and high density mounting in the conductive connection structure in which a semiconductor chip or a semiconductor package and a wiring board, and a semiconductor chip and a semiconductor package substrate are connected. <P>SOLUTION: This is the conductive connection structure in which the semiconductor chip or the semiconductor package and the wiring board are electrically connected. In the conductive connection structure, two or more conductive particulates are arranged and connected between the electrode of the above semiconductor chip or semiconductor package and the electrode of the above wiring board connected to this. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高い接続信頼性と高密度実装化を実現した導電接続構造体に関する。
【0002】
【従来の技術】
従来、電子回路基板において、半導体チップ又は半導体パッケージと配線基板との接続、半導体チップと半導体パッケージとの接続は、それぞれの電極をハンダ付けすることによって行っていたが、生産効率が悪く、また、高密度化には適さないものであった。
これを解決するためにハンダを球状にした、いわゆるハンダボール等の導電性微粒子用いて接続するBGA(ボールグリッドアレイ)等の技術が開発された。この技術によれば、半導体チップ又は半導体パッケージと配線基板間、半導体チップと半導体パッケージ間に配置された導電性微粒子を高温で溶融し接続することで高生産性、高接続信頼性を両立した電子回路を構成することができる。
【0003】
近年の電子部品においてはより高密度に実装することが求められている。BAGでは、半導体チップ又は半導体パッケージと配線基板間の間隔、半導体チップと半導体パッケージ間の間隔は、導電性微粒子の大きさによって決まることから、より粒子径の小さな導電性微粒子を用いてBGAにより導電接続を行うことにより接続部の低背化をはかる方法が検討されている。
【0004】
従来のBGAでは、1つの電極上に1個の導電性微粒子を配置していた。しかし、電極上に導電性微粒子をただ1個だけ配置した場合、接続部の間隔のばらつきが大きくなり接続信頼性が低下する傾向がある。とりわけ、粒子径の小さな導電性微粒子を用いた場合には、導電性微粒子により導電接続される面積が小さくなることに加え、この間隔のバラツキが相対的に大きくなることから、接続信頼性が低下することがあり、接続部の低背化をはかるうえで大きな問題となっていた。
また、導電性微粒子としてハンダボールを用いた場合には、温度変化により半導体チップ、半導体パッケージ及び配線基板間の線膨張係数の違いによる応力でハンダに亀裂が入ることがあるという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、高い接続信頼性と高密度実装化を実現した導電接続構造体を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明1は、半導体チップ又は半導体パッケージと配線基板とを電気的に接続してなる導電接続構造体であって、前記半導体チップ又は半導体パッケージの電極とこれと接続する前記配線基板の電極との間に2個以上の導電性微粒子が配置され接続されている導電接続構造体である。
本発明2は、半導体チップと半導体パッケージとを電気的に接続してなる導電接続構造体であって、前記半導体チップの電極とこれと接続する前記半導体パッケージの電極との間に2個以上の導電性微粒子を配置され接続されている導電接続構造体である。
以下に本発明を詳述する。
【0007】
本発明1の導電接続構造体は、半導体チップ又は半導体パッケージと配線基板とを電気的に接続してなるものであり、本発明2の導電接続構造体は、半導体チップと半導体パッケージとを電気的に接続してなるものである。
上記接続は、半導体チップ、半導体パッケージ又は配線基板の電極同士を2個以上の導電性微粒子を介して接続することにより行われる。
図1に半導体チップ、半導体パッケージ又は配線基板の電極上に2個以上の導電性微粒子が配置された状態を、図2に本発明の導電接続構造体の1実施態様における接続部の状態を示した。
【0008】
1対の電極間に2個以上の導電性微粒子を配置して接続することにより、ただ1個の導電性微粒子を用いて接続した場合よりも接続信頼性が向上し、粒子径の小さな導電性微粒子を用いて接続部の低背化を図っても、充分な接続信頼性を得ることができる。
【0009】
上記導電性微粒子としては、ハンダボール、銅球、樹脂からなる基材微粒子の表面が1層以上の金属層に覆われたもの等が挙げられる。なかでも、樹脂からなる基材微粒子の表面が1層以上の金属層に覆われたものが好適である。このような導電性微粒子を用いることにより、基材微粒子の有する柔軟性により、半導体チップ又は半導体パッケージと配線基板間、半導体チップと半導体パッケージ間の間隔を一定に保つことができ、かつ、温度変化により半導体チップ、半導体パッケージ及び配線基板間の線膨張係数の違いによる応力がかかった場合でも高い接続信頼性を維持することができる。
【0010】
上記基材微粒子としては、例えば、フェノール樹脂、アミノ樹脂、アクリル樹脂、エチレン−酢酸ビニル樹脂、スチレン−ブタジエンブロック共重合体、ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、ポリイミド樹脂、ウレタン樹脂、エポキシ樹脂等の熱可塑性樹脂;硬化性樹脂、ジビニルベンゼン系共重合体等の架橋樹脂、有機無機ハイブリッド重合体等からなるものが挙げられる。これらのうち、耐熱性の点から架橋樹脂が好ましい。
【0011】
上記金属層としては特に限定されないが、例えば、金、銀、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム、珪素等からなるものが挙げられる。これらの金属は、単独で用いられてもよく、2種以上が併用されてもよい。
【0012】
上記金属層は、1層からなるものであってもよく、多層からなるものであってもよい。上記金属層が多層からなる場合には、層ごとに異なる金属からなるものであってもよい。例えば、基材微粒子上に、ニッケル層を設け、更にその上に銅層やスズ層を設けるといった構成が挙げられる。
【0013】
上記金属層の厚さは特に限定されないが、導電接続や基板接合という用途から、好ましい下限は0.01μm、上限は500μmである。0.01μm未満であると、充分な導電性が得られないことがあり、500μmを超えると、導電性微粒子同士の合着が起こったり、基板間の距離維持や基板等の回路にかかる力を緩和する機能が乏しくなったりすることがある。
【0014】
上記導電性微粒子の粒子径は、半導体チップ、半導体パッケージ又は配線基板の電極の径よりも小さく、上記電極に2個以上配置できる大きさである。
上記導電性微粒子は、粒子径のCV値が5%以下であることが好ましい。5%を超えると、粒子径が不揃いとなるため、大きい導電性微粒子がノズル4を円滑に通過できなかったり、小さい導電性微粒子が電極に届かず接続不良の原因となったりすることがある。より好ましくは2%以下であり、更に好ましくは1%以下である。
なお、上記CV値は、下記式により求められる。
CV値(%)=(σ/Dn)×100
式中、σは粒子径の標準偏差を表し、Dnは数平均粒子径を表す。
通常の微粒子はCV値が大きいため、本発明で用いる導電性微粒子は分級等により粒子径を揃える必要がある。特に平均粒子径が200μm以下の微粒子は精度良く分級するのが困難であるため、篩や気流分級、湿式分級等を組み合わせることが好ましい。
【0015】
上記接続の方法としては特に限定されず、例えば、上記半導体チップ、半導体パッケージ又は配線基板のいずれか一方の電極上に粘着剤を塗布し、その上に粒子径の小さな導電性微粒子を散布し、粘着剤により電極に接着していない導電性微粒子を除去した後、導電性微粒子を配置していない半導体チップ、半導体パッケージ又は配線基板を対向させ、リフロー装置を用いて接続する方法等が挙げられる。
【0016】
本発明の導電接続構造体は、ただ1個の導電性微粒子を用いて接続する場合に比較して高い接続信頼性を有し、また、粒子径の小さな導電性微粒子を用いた場合であっても高い接続信頼性を実現することができる。従って、粒子径の小さな導電性微粒子を用いることにより、接続部の低背化をはかることができ、高密度実装化を実現することができる。また、導電性微粒子として樹脂からなる基材微粒子の表面が1層以上の金属層に覆われたものを用いる場合には、半導体チップ又は半導体パッケージと配線基板間、半導体チップと半導体パッケージ間の間隔を一定に保つことができ、かつ、温度変化により半導体チップ、半導体パッケージ及び配線基板間の線膨張係数の違いによる応力がかかった場合でも高い接続信頼性を維持することができる。
【0017】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0018】
(実施例1)
直径400μmの電極が10ヶある半導体パッケージの各電極部に、スチレンとジビニルベンゼンの共重合体からなる基材微粒子の表面にニッケルメッキ層、銅メッキ層及び最外層にハンダメッキ層を設けた直径100μmの導電性微粒子を10〜13個ずつ配置した。
【0019】
得られた各電極上に導電性微粒子が実装された半導体パッケージをリフロー装置を用いて電極上にハンダ付けし、配線基板に載せ、再度リフローすることにより半導体パッケージと配線基板とを導電接続した。なお、配線基板には半導体パッケージ搭載前に予めハンダペーストをスクリーン印刷で塗布しておいた。
このようにして作製した導電接続構造体10枚について、半導体パッケージと配線基板との間隔を測定した結果、平均103μm、標準偏差0.8μmであった。
【発明の効果】
本発明によれば、高い接続信頼性と高密度実装化を実現した導電接続構造体を提供できる。
【図面の簡単な説明】
【図1】1つの電極上に2個以上の導電性微粒子が配置された状態を示す模式図である。
【図2】本発明の導電接続構造体の1実施態様における接続部の状態を示す模式図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive connection structure realizing high connection reliability and high-density mounting.
[0002]
[Prior art]
Conventionally, in an electronic circuit board, the connection between a semiconductor chip or a semiconductor package and a wiring board, and the connection between a semiconductor chip and a semiconductor package have been performed by soldering respective electrodes, but the production efficiency is poor, It was not suitable for high density.
In order to solve this problem, techniques such as a ball grid array (BGA) in which solder is made spherical, and connection is made using conductive fine particles such as so-called solder balls, have been developed. According to this technology, high productivity and high connection reliability are achieved by melting and connecting, at a high temperature, conductive fine particles arranged between a semiconductor chip or a semiconductor package and a wiring board, and between a semiconductor chip and a semiconductor package. A circuit can be configured.
[0003]
In recent years, electronic components have been required to be mounted at a higher density. In BAG, the distance between a semiconductor chip or a semiconductor package and a wiring board and the distance between a semiconductor chip and a semiconductor package are determined by the size of conductive fine particles. A method for reducing the height of a connection part by performing connection has been studied.
[0004]
In a conventional BGA, one conductive fine particle is arranged on one electrode. However, when only one conductive fine particle is arranged on the electrode, the variation in the interval between the connection parts increases, and the connection reliability tends to decrease. In particular, when conductive fine particles having a small particle diameter are used, the area that is conductively connected by the conductive fine particles is reduced, and the variation in the interval is relatively large, so that the connection reliability is reduced. This has been a major problem in reducing the height of the connection.
Further, when solder balls are used as the conductive fine particles, there is a problem that the solder may be cracked by stress due to a difference in linear expansion coefficient between the semiconductor chip, the semiconductor package, and the wiring board due to a temperature change.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and has as its object to provide a conductive connection structure that achieves high connection reliability and high-density mounting.
[0006]
[Means for Solving the Problems]
The present invention 1 is a conductive connection structure formed by electrically connecting a semiconductor chip or a semiconductor package and a wiring board, wherein the conductive connection structure includes electrodes of the semiconductor chip or the semiconductor package and electrodes of the wiring board connected thereto. This is a conductive connection structure in which two or more conductive fine particles are arranged and connected therebetween.
The present invention 2 is a conductive connection structure formed by electrically connecting a semiconductor chip and a semiconductor package, wherein two or more electrodes are provided between the electrodes of the semiconductor chip and the electrodes of the semiconductor package connected thereto. This is a conductive connection structure in which conductive fine particles are arranged and connected.
Hereinafter, the present invention will be described in detail.
[0007]
The conductive connection structure according to the first aspect of the present invention electrically connects a semiconductor chip or a semiconductor package to a wiring substrate, and the conductive connection structure according to the second aspect of the present invention electrically connects a semiconductor chip and a semiconductor package. It is connected to.
The above connection is performed by connecting electrodes of a semiconductor chip, a semiconductor package, or a wiring board via two or more conductive fine particles.
FIG. 1 shows a state in which two or more conductive fine particles are arranged on electrodes of a semiconductor chip, a semiconductor package or a wiring board, and FIG. 2 shows a state of a connection portion in one embodiment of the conductive connection structure of the present invention. Was.
[0008]
By arranging and connecting two or more conductive fine particles between a pair of electrodes, connection reliability is improved as compared with a case where only one conductive fine particle is used for connection, and a conductive material having a small particle diameter is used. Even if the height of the connection portion is reduced by using fine particles, sufficient connection reliability can be obtained.
[0009]
Examples of the conductive fine particles include solder balls, copper spheres, and fine particles of resin whose surface is covered with one or more metal layers. Among them, those in which the surface of the base particles made of resin are covered with one or more metal layers are preferable. By using such conductive fine particles, the spacing between the semiconductor chip or the semiconductor package and the wiring board, the distance between the semiconductor chip and the semiconductor package can be kept constant, and the temperature change Accordingly, high connection reliability can be maintained even when stress is applied due to a difference in linear expansion coefficient between the semiconductor chip, the semiconductor package, and the wiring board.
[0010]
As the base fine particles, for example, phenol resin, amino resin, acrylic resin, ethylene-vinyl acetate resin, styrene-butadiene block copolymer, polyester resin, urea resin, melamine resin, alkyd resin, polyimide resin, urethane resin, Thermoplastic resins such as epoxy resins; curable resins; cross-linked resins such as divinylbenzene copolymers; and organic-inorganic hybrid polymers. Among these, a crosslinked resin is preferred from the viewpoint of heat resistance.
[0011]
The metal layer is not particularly limited, but includes, for example, gold, silver, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, silicon, and the like. And those consisting of These metals may be used alone or in combination of two or more.
[0012]
The metal layer may be composed of one layer, or may be composed of multiple layers. When the metal layer has a multilayer structure, the metal layer may be made of a different metal. For example, there is a configuration in which a nickel layer is provided on fine particles of a base material, and a copper layer or a tin layer is further provided thereon.
[0013]
Although the thickness of the metal layer is not particularly limited, a preferable lower limit is 0.01 μm and an upper limit is 500 μm from the application such as conductive connection and substrate bonding. If the thickness is less than 0.01 μm, sufficient conductivity may not be obtained. If the thickness is more than 500 μm, coalescence of the conductive fine particles may occur, the distance between the substrates may be maintained, and the force applied to the circuit such as the substrate may be reduced. The ability to mitigate may be poor.
[0014]
The particle diameter of the conductive fine particles is smaller than the diameter of an electrode of a semiconductor chip, a semiconductor package, or a wiring board, and is a size that can be arranged on the electrode.
The conductive fine particles preferably have a particle size CV value of 5% or less. If it exceeds 5%, the particle diameters become uneven, so that large conductive fine particles may not pass through the nozzle 4 smoothly, or small conductive fine particles may not reach the electrodes, resulting in poor connection. It is more preferably at most 2%, further preferably at most 1%.
The above CV value is obtained by the following equation.
CV value (%) = (σ / Dn) × 100
In the formula, σ represents the standard deviation of the particle diameter, and Dn represents the number average particle diameter.
Since ordinary fine particles have a large CV value, the conductive fine particles used in the present invention need to have a uniform particle diameter by classification or the like. In particular, since it is difficult to classify fine particles having an average particle diameter of 200 μm or less with high accuracy, it is preferable to combine a sieve, airflow classification, wet classification, and the like.
[0015]
The method of the connection is not particularly limited, for example, an adhesive is applied on one of the electrodes of the semiconductor chip, the semiconductor package or the wiring board, and small conductive fine particles having a particle diameter are sprayed thereon, After removing the conductive fine particles which are not adhered to the electrode with an adhesive, a method of facing a semiconductor chip, a semiconductor package or a wiring substrate on which the conductive fine particles are not arranged, and connecting the semiconductor chip, the semiconductor package or the wiring substrate by using a reflow device is exemplified.
[0016]
The conductive connection structure of the present invention has a higher connection reliability than a case where connection is made using only one conductive fine particle, and is a case where conductive fine particles having a small particle diameter are used. Also, high connection reliability can be realized. Therefore, by using the conductive fine particles having a small particle diameter, the height of the connection portion can be reduced, and high-density mounting can be realized. When the conductive fine particles are made of a resin whose base material fine particles are covered with one or more metal layers, the distance between the semiconductor chip or the semiconductor package and the wiring board, or the distance between the semiconductor chip and the semiconductor package is reduced. Can be kept constant, and high connection reliability can be maintained even when stress is applied due to a difference in linear expansion coefficient between the semiconductor chip, the semiconductor package, and the wiring board due to a temperature change.
[0017]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0018]
(Example 1)
A diameter of a semiconductor package having 10 electrodes having a diameter of 400 μm, each having a nickel plating layer, a copper plating layer, and a solder plating layer formed on the outermost layer of fine particles of a base material composed of a copolymer of styrene and divinylbenzene. Ten to thirteen conductive fine particles of 100 μm were arranged.
[0019]
The semiconductor package having the conductive particles mounted on each of the obtained electrodes was soldered on the electrodes using a reflow apparatus, mounted on a wiring board, and reflowed again to electrically connect the semiconductor package and the wiring board. The solder paste was applied to the wiring board by screen printing before mounting the semiconductor package.
As a result of measuring the distance between the semiconductor package and the wiring board for the ten conductive connection structures manufactured as described above, the average was 103 μm and the standard deviation was 0.8 μm.
【The invention's effect】
According to the present invention, it is possible to provide a conductive connection structure that achieves high connection reliability and high-density mounting.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a state in which two or more conductive fine particles are arranged on one electrode.
FIG. 2 is a schematic view showing a state of a connection portion in one embodiment of the conductive connection structure of the present invention.

Claims (3)

半導体チップ又は半導体パッケージと配線基板とを電気的に接続してなる導電接続構造体であって、
前記半導体チップ又は半導体パッケージの電極とこれと接続する前記配線基板の電極との間に2個以上の導電性微粒子が配置され接続されている
ことを特徴とする導電接続構造体。
A conductive connection structure formed by electrically connecting a semiconductor chip or a semiconductor package and a wiring board,
A conductive connection structure, wherein two or more conductive fine particles are arranged and connected between the electrode of the semiconductor chip or the semiconductor package and the electrode of the wiring board connected thereto.
半導体チップと半導体パッケージとを電気的に接続してなる導電接続構造体であって、
前記半導体チップの電極とこれと接続する前記半導体パッケージの電極との間に2個以上の導電性微粒子を配置され接続されている
ことを特徴とする導電接続構造体。
A conductive connection structure formed by electrically connecting a semiconductor chip and a semiconductor package,
A conductive connection structure, wherein two or more conductive fine particles are arranged and connected between an electrode of the semiconductor chip and an electrode of the semiconductor package connected thereto.
導電性微粒子は、樹脂からなる基材微粒子の表面が1層以上の金属層に覆われたものであることを特徴とする請求項1又は2記載の導電接続構造体。3. The conductive connection structure according to claim 1, wherein the conductive fine particles are obtained by covering the surface of base resin fine particles made of a resin with one or more metal layers.
JP2002192673A 2002-07-01 2002-07-01 Conductive connection structure Withdrawn JP2004039350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002192673A JP2004039350A (en) 2002-07-01 2002-07-01 Conductive connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002192673A JP2004039350A (en) 2002-07-01 2002-07-01 Conductive connection structure

Publications (1)

Publication Number Publication Date
JP2004039350A true JP2004039350A (en) 2004-02-05

Family

ID=31701858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002192673A Withdrawn JP2004039350A (en) 2002-07-01 2002-07-01 Conductive connection structure

Country Status (1)

Country Link
JP (1) JP2004039350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029855A (en) * 2012-07-02 2014-02-13 Sekisui Chem Co Ltd Conductivity particle, and solder joint material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029855A (en) * 2012-07-02 2014-02-13 Sekisui Chem Co Ltd Conductivity particle, and solder joint material

Similar Documents

Publication Publication Date Title
US7078822B2 (en) Microelectronic device interconnects
US7119432B2 (en) Method and apparatus for establishing improved thermal communication between a die and a heatspreader in a semiconductor package
US8304897B2 (en) Thermal interface material design for enhanced thermal performance and improved package structural integrity
US5790377A (en) Integral copper column with solder bump flip chip
US6553660B2 (en) Electronic device and a method of manufacturing the same
US20020171152A1 (en) Flip-chip-type semiconductor device and manufacturing method thereof
US20040196634A1 (en) Metal ball attachment of heat dissipation devices
JP4401411B2 (en) Mounting body provided with semiconductor chip and manufacturing method thereof
CN101276800B (en) Circuit board and method of manufacturing same
JP2004281538A (en) Electronic device and its manufacturing method, circuit board and electronic apparatus
US10770446B2 (en) Semiconductor packages and methods of manufacturing the same
US20080164300A1 (en) Method of making circuitized substrate with solder balls having roughened surfaces, method of making electrical assembly including said circuitized substrate, and method of making multiple circuitized substrate assembly
US20060246695A1 (en) Flip chip method
JP2758053B2 (en) Use of a single-shaft electrically conducting part
TWI323504B (en) Method for fabricating package substrate, electronic apparatus and computing system
US20130140664A1 (en) Flip chip packaging structure
US20080290528A1 (en) Semiconductor package substrate having electrical connecting pads
TWI406342B (en) Semiconductor package with nsmd type solder mask and method for manufacturing the same
JP2004039350A (en) Conductive connection structure
US20070080453A1 (en) Semiconductor chip having a bump with conductive particles and method of manufacturing the same
JP4029255B2 (en) Adhesive member
TW200531235A (en) Multi-chip package structure
JP2005317270A (en) Conductive fine particulate and conductive connection structure
JP2004158212A (en) Conductive particulate for mounting
JP2005294044A (en) Conductive particulate and connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060125

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060202