JP2004039056A - Circuit integrated suspension, flexible circuit board, and those manufacturing methods - Google Patents

Circuit integrated suspension, flexible circuit board, and those manufacturing methods Download PDF

Info

Publication number
JP2004039056A
JP2004039056A JP2002192542A JP2002192542A JP2004039056A JP 2004039056 A JP2004039056 A JP 2004039056A JP 2002192542 A JP2002192542 A JP 2002192542A JP 2002192542 A JP2002192542 A JP 2002192542A JP 2004039056 A JP2004039056 A JP 2004039056A
Authority
JP
Japan
Prior art keywords
insulating material
circuit
sheet
integrated suspension
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002192542A
Other languages
Japanese (ja)
Inventor
Yoshio Nasu
奈須 嘉夫
Satoru Nakao
中尾 知
Masakatsu Nagata
永田 雅克
Masahiro Okamoto
岡本 誠裕
Shoji Iwasaki
岩崎 庄治
Munekimi Mizutani
水谷 宗幹
Shoji Ito
伊藤 彰二
Anan Ponpanpaanii
ポンパンパーニー・アナン
Hiromi Ishikawa
石川 博美
Yoshio Uematsu
上松 義雄
Arashi Shi
史 嵐
Tatsushi Yoshida
吉田 達仕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
International Business Machines Corp
Original Assignee
Fujikura Ltd
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, International Business Machines Corp filed Critical Fujikura Ltd
Priority to JP2002192542A priority Critical patent/JP2004039056A/en
Publication of JP2004039056A publication Critical patent/JP2004039056A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent peeling or separation of a polyimide insulating material caused by the pie-doughy irregularities during the wet etching of the polyimide insulating material in a circuit integrated suspension and a flexible circuit board. <P>SOLUTION: The vicinity of a pie-doughy irregular part formed when a polyimide insulating material is patterned by wet etching is covered with thermosetting resin, photosetting resin or a precursor thereof. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明の一つは、回路一体型サスペンションに関するものであり、特にサブトラクティブ( Subtractive)法によって形成される回路一体型サスペンションおよびその製造方法に関するものである。またもう一つはフレキシブル回路基板及びその製造方法に関するものである。
【0002】
【従来の技術】
磁気ヘッド用の回路一体型サスペンションは、磁気記録装置において磁気ヘッドをハードディスク又は他のデータ記憶装置の高速回転するディスク表面から、数ナノメーターだけ離れた位置に位置決めするために設けられたディスク駆動装置内のバネ構造体である。
磁気ヘッド用の回路一体型サスペンションには、ディスク表面の指定された位置に最適な圧力で磁気ヘッドを押しつける能力が要求される。磁気ヘッドは、回路一体型サスペンションの下向きの力と、磁気ヘッドが高速回転するディスクに接近したときに発生する空気流による僅かな揚力との均衡によって、回転ディスク表面の凹凸上を一定の間隙を保って浮動する。通常回路一体型サスペンションは、第1層のバネ材となる金属薄板と第2層の電気絶縁材料及び第3層の回路導電材料とを積層した、3層シートを基材として構成されている。第1層のバネ材となる金属薄板にはステンレス鋼薄板が、第2層の電気絶縁材料としてはポリイミド樹脂が、そして第3層の回路導電材料としては銅が多用されている。
【0003】
このような3層シートから回路一体型サスペンションを形成するには、いわゆるサブトラクティブ( Subtractive)法が採用されている。すなわち、上記3層積層シートの各層に対して薬液を使用した湿式エッチングにより所定のパターンを形成し、さらに腐食防止のため回路導電材料を金メッキなどで被覆して、回路一体型サスペンションを得ている。この時第2層のポリイミド樹脂層は、水酸化カリウム(KOH)を主成分とする薬液による湿式エッチングによって、所望のパターンに形成するのが一般的である。ところがKOHを主成分とする薬液によるエッチングによってパターニングされたポリイミドシートの側面には、パイ生地状の凹凸が発生する。
【0004】
このパイ生地状の凹凸は、0.5〜3μm程度の間隔で出現し、深さは0.1〜2μm程度である。回路一体型サスペンションの製造工程では、多層シートは様々な加工プロセスを経る。その際回路一体型サスペンションの各部位には、様々な方向の力学的負荷が与えられる。また、回路一体型サスペンションがドライブに組み込まれて稼働を始めると、信号を読み書きする際にディスク表面を高速で移動するので、その都度回路一体型サスペンションが振動し、サスペンションを構成する部品の各部材には力学的負荷が加わる。
【0005】
このようにポリイミド層に力学的負荷が加わった場合、ポリイミド層パターンの側面のパイ生地状の凹凸を起点として、ポリイミド層の剥がれや欠け落ちなどの不良が発生し易くなる。ポリイミド層の剥がれや欠け落ちなどの不良が発生
すると、パターンサイズ不良となるために製品不良率が増加する。また、磁気記憶装置の作動中にポリイミド層の剥がれや欠け落ちなどが発生すると、ポリイミド層本体から分離したポリイミド小片は塵となり、ディスクやスライダーの位置制御あるいは記録信号の読み書き動作を妨げ、磁気記憶装置全体の機能を低下させる原因となる。
【0006】
また、近年電子機器の小型化に伴って配線部材の小型化軽量化が進み、合成樹脂シートの表面に導電性の金属材料からなる電子回路を形成した、いわゆるフレキシブル回路基板が多用されている。このフレキシブル回路基板における絶縁性の合成樹脂シートには、通常ポリイミド樹脂シートが使用されており、一枚の大きなポリイミド樹脂シートの表面に多数個の回路を形成し、所定の形状にエッチング分離して多数個のフレキシブル回路基板を得ている。このとき先の回路一体型サスペンションの場合と同様に、ポリイミド樹脂シートを湿式エッチングにより分離する際に、エッチングされたポリイミド樹脂シートの端面にパイ生地状の凹凸が生じ、このパイ生地状の凹凸を起点としてポリイミド層の剥がれや欠け落ちが発生して形状不良となり、フレキシブル回路基板の製品歩留まりを低下させる難点があった。
【0007】
【発明が解決しようとする課題】
本発明は、ステンレス薄板とポリイミド絶縁層及び銅箔からなる3層シートを使用して、サブトラクティブ( Subtractive)法によって回路一体型サスペンションを製造するにあたり、ポリイミドからなる電気絶縁材料を水酸化カリウム(KOH)を用いて湿式エッチングする際にエッチング面に生じるパイ生地状の凹凸部を起点とするポリイミド層の剥がれや欠け落ちを防止することを目的とする。
【0008】
また、本発明のもう一つの目的は、ポリイミドシート上に電子回路を形成したフレキシブル回路基板を得るにあたり、ポリイミドシートをKOHを用いて湿式エッチングする際に、エッチング面に生じるパイ生地状の凹凸部を起点とするポリイミド層の剥がれや欠け落ちを防止することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明の回路一体型サスペンションは、少なくともバネ材となる金属薄板と電気絶縁材料及び回路導電材料を具備した回路一体型サスペンションにおいて、電気絶縁材料の端部近傍を熱硬化性樹脂もしくは感光性樹脂又はそれらの前駆体からなる被覆材料で被覆した回路一体型サスペンションとした。本発明では前記電気絶縁材料としてポリイミド樹脂を用いることが好ましい。また、前記バネ材としてはステンレス鋼薄板を用いることが好ましく、さらに前記導電材としては銅を用いることが好ましい。
【0010】
電気絶縁材料としてポリイミド樹脂を用いれば、電気絶縁性能が高く、強度、特に繰り返し応力に対する曲げ強度に優れた絶縁層とすることができる。また、バネ材としてステンレス鋼薄板を用いれば、塵の発生原因となるサビが発生することが無く、しかも適度なバネ係数を有し耐久性に優れたたバネが得られるからである。さらに前記導電材料として銅を用いれば、回路抵抗の少ない電気回路が簡単な方法で安価に得られるからである。
【0011】
本発明の回路一体型サスペンションの製造方法は、金属薄板、電気絶縁材料シート及び回路導電材料を積層した基材から、サブトラクティブ法によって回路一体型サスペンションを製造する方法において、電気絶縁材料シートを湿式エッチングによって所定の形状にパターニングした後に、エッチングされた電気絶縁材料シートの端面近傍を熱硬化性樹脂や感光性樹脂又はそれらの前駆体で被覆する方法を採用した。
このように電気絶縁材料シートの端面近傍を樹脂で被覆しておけば、エッチング面に生じたパイ生地状の凹凸部を起点とした電気絶縁材料シートの剥がれや欠け落ちを防止することができる。
【0012】
本発明の他の回路一体型サスペンションの製造方法は、電気絶縁材料シートと回路導電材料の2層からなる積層基材を出発材料として使用し、電気絶縁材料シートを湿式エッチングによってパターニングした後に、エッチングされた電気絶縁材料シートの端面近傍を熱硬化性樹脂もしくは感光性樹脂又はそれらの前駆体で被覆し、次いで該基材をバネ用の金属薄板に貼り付ける方法を採用した。
このように出発材料として電気絶縁材料シートと回路導電材料の2層積層シートを使用しても、電気絶縁材料シートの湿式エッチング端面を樹脂で被覆しておくので、エッチング面に生じたパイ生地状の凹凸部を起点とした電気絶縁材料シートの剥がれや欠け落ちを防止することができる。
【0013】
本発明のフレキシブル回路基板は、シート状の電気絶縁材料の表面に回路導電材料を具備したフレキシブル回路基板であって、前記シート状の電気絶縁材料の端部近傍を熱硬化性樹脂もしくは感光性樹脂又はそれらの前駆体で被覆したフレキシブル回路基板とした。
このような構造のフレキシブル回路基板とすることにより、シート状の電気絶縁材料の端面に生じるパイ生地状の凹凸部を起点とした電気絶縁材料シートの剥がれや欠け落ちを防止することができるので、フレキシブル回路基板の製造歩留まりを高めることができる。
【0014】
また、本発明のフレキシブル回路基板の製造方法は、電気絶縁材料シートと回路導電材料の2層を積層した基材を使用し、回路導電材料をエッチングによってパターニングして回路パターンを形成した後、電気絶縁材料シートを湿式エッチングによってパターニングして、エッチングされた電気絶縁材料シートの端面近傍を熱硬化性樹脂もしくは感光性樹脂又はそれらの前駆体で被覆するフレキシブル回路基板の製造方法とした。
このようなフレキシブル回路基板の製造方法とすれば、エッチング面に生じたパイ生地状の凹凸部を起点とした電気絶縁材料シートの剥がれや欠け落ちを防止することができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
図1は本発明の磁気ヘッド用の回路一体型サスペンションの一実施形態を示す平面図である。図1に示すように、この磁気ヘッド用の回路一体型サスペンション10は、フレクシュア部11、ロード・ビーム部12およびマウント・プレート部13を主な構成要素としている。
【0016】
図2は、図1に示す回路一体型サスペンション10の線A−A’に沿った断面図である。図2に示すように、ロード・ビーム部12はバネ材となる金属薄板20、シート状の電気絶縁材料30及び回路導電材料40の3層が積層された構造をなしており、回路導電材料40は複数本(図2では4本)に分割されて配列されており、それぞれ異なった電気信号が送られるようになっている。
【0017】
シート状の電気絶縁材料30の両端部には、湿式エッチングの際に生じたパイ生地状の凹凸部30aが有り、本発明の回路一体型サスペンションではこのパイ生地状の凹凸部30aの近傍を熱硬化性樹脂もしくは感光性樹脂又はそれらの前駆体からなる被覆材料50で被覆してある。このためシート状の電気絶縁材料30はその端部が剥離したり、欠け落ちたりすることはない。従って製品不良率も低く、作動中に誤動作となる塵を発生させる心配もない。
【0018】
バネ材となる金属薄板20としては、SUS304等のステンレス鋼が好んで使用できる。バネ材としてステンレス鋼を用いれば、塵の発生原因となるサビが生じることが無く、しかも使用中の最大負荷を受けても塑性変形しない適度なバネ係数を有し、耐久性に優れたたバネが得られるからである。金属薄板20の厚さは10〜90μmが適当である。
【0019】
シート状の電気絶縁材料30としては、ポリイミド樹脂を使用するのが好ましい。ポリイミド樹脂を用いれば、金属薄板20と回路導電材料40との接合材の役割を果たし、しかも電気絶縁性能が高く、強度、特に繰り返し応力に対する曲げ強度に優れ、回路一体型サスペンション全体に与えるバネ特性の影響が最小の絶縁層とすることができる。絶縁材料の厚さは5〜60μm程度あればよい。
【0020】
回路導電材料40としては、銅(Cu)が好ましい。銅は比抵抗ρがρ=1.55μΩ・cmと低く、高周波信号電流にも対応できるので、回路抵抗の少ない電気回路を簡単な方法で安価に得ることができる。また、ベリリウム含有銅(CuBe)を用いて、降伏強さを約1.24GPa、引っ張り強さを約1.31GPaとステンレス鋼とほぼ同程度のバネ特性にして、しかも比抵抗の低いものを使用しても良い。回路導電材料40の厚さは、10〜90μm程度あればよい。
【0021】
上記のバネ材となる金属薄板20、シート状の電気絶縁材料30及び回路導電材料40の3層を積層し、それぞれの材料を図1に示すような所定の形状にエッチングにより成形して、回路一体型サスペンションとする。
金属薄板20及び回路導電材料40は、共に塩化第2鉄(FeCl3 )溶液をエッチャントとしてエッチングすることができる。エッチングマスクとしては主にドライフィルムレジストを使用する。エッチングは金属薄板20又は回路導電材料40のどちらを先に行っても良いし、あるいは両者を同時にエッチングすることもできる。エッチングに際しては、電気絶縁材料30が工程全体を通して金属薄板20及び回路導電材料40を支持しているので、脆弱及び/又は不連続構造を伴う部品の製造を容易にしている。
【0022】
図1において中央部の配線部分と周辺部の端子部分とは、互いに電気的に絶縁されている。配線部分と端子部分との分離は、エッチング処理によって制御された電気絶縁材料30によって維持される。電気絶縁材料30は、エッチング処理中に金属薄板20及び回路導電材料40のハードストップとしても作用する。電気絶縁材料30の介在によって、金属薄板20及び回路導電材料40を異なった面に配置することができる。金属薄板20にステンレス鋼を使用し回路導電材料40に銅を使用した場合には、ステンレス鋼へのマスキング工程を省くために、回路導電材料40のエッチングを塩化第2銅(CuCl2 )溶液を使用して行うことができる。
【0023】
電気絶縁材料30としてポリイミド樹脂シートを使用した場合には、電気絶縁材料30を水酸化カリウム(KOH)を主体とする水溶液にてエッチングする。エッチングマスクとしてはドライフィルムレジストが使用できる。金属薄板20及び回路導電材料40もエッチングマスクとして作用する。電気絶縁材料30がエッチングされると、個々の回路一体型サスペンション素材に分離される。
【0024】
電気絶縁材料30は、金属薄板20及び回路導電材料40を接合したり、他の場所にある回路導電材料40を支持する機能も兼備えている。従って電気絶縁材料30のエッチング工程では、金属薄板20又は回路導電材料40を支持してハンドリング性を保つために、必要な位置の電気絶縁材料30を最後まで残し、加工終了後に最後の電気絶縁材料30をエッチング除去しても良い。
【0025】
ポリイミド樹脂を水酸化カリウム(KOH)を主体とする水溶液にてエッチングすると、エッチング面にパイ生地状の凹凸が現れる。このパイ生地状の凹凸は、0.5〜3μm間隔で深さは0.1〜2μm程度である。電気絶縁材料30の端面にこのようなパイ生地状の凹凸30aが現れると、ここを起点としてポリイミド樹脂が剥離したり欠け落ちたりする欠陥が発生する。このような欠陥が発生すると、製品の形状不良による製品歩留まりの原因となり、また、欠け落ちた塵が誤動作の原因となって、製品の信頼性を損なうこととなる。
【0026】
そこで本発明では、上記のパイ生地状の凹凸の近傍を樹脂で被覆して封じ込め、ポリイミド樹脂が剥離したり欠け落ちたりするのを防ぐことにした。
被覆材には熱硬化性樹脂もしくは感光性ポリイミドや感光性エポキシ等の感光性樹脂又はこれらの前駆体が利用できる。これらの樹脂や前駆体は使用方法が簡単で硬化後も安定しており、絶縁性にも富んでいるからである。被覆方法の一例を示せば以下の通りである。
【0027】
まず、被覆材に使用する液状の樹脂をスピンコート、カーテンコート、ディップコートなどの方法で、基材全体に5〜40μmの厚さに塗布する。次いで、70〜90℃の窒素雰囲気中で30分程度乾燥させる。次に所望のパターンを描いたフォトマスクを通して紫外線を照射して露光する。露光工程では基材上のパターンとマスク上のパターンとを精度良く位置合わせしなければならない。露光はi線をフィルターで除去し、g線測定で150mJ/cm2 程度の露光量で行う。
次に現像液を使用して現像処理を行う。現像方法は、浸漬法、超音波法、スプレー法などが使用できる。微細パターンの加工をするのには、超音波現像が好ましい。超音波現像は25℃で10分間程度現像する。
最後にパターニングした被覆材を、300℃の窒素雰囲気(酸素濃度20ppm以下)中で1時間程度加熱する。
以上のような手順に従って、厚さ5μm程度の被覆材が形成される。
【0028】
この被覆材の主たる目的は、ポリイミド樹脂が剥離したり欠け落ちたりするのを防ぐことにあるので、被覆する部位は図2に示すように電気絶縁材料30の端面部分だけでも良いが、図8に示すように回路導電材料40を含めて電気絶縁材料30の端部近傍を被覆しても良い。回路導電材料40を含めて被覆すれば、回路導電材料40の腐食を防止することができる。
【0029】
最後に金属部分の必要箇所にメッキを施す。端子接点の特性を改良するためには、ニッケル、錫、銀あるいは金等のメッキが有効である。メッキする場合、電気絶縁材料30は、絶縁体として作用する。メッキ又は他の絶縁膜を用いて回路導電材料40全体を腐食から保護しても良い。
【0030】
上記に回路一体型サスペンションの製造方法の一例を示したが、このほかに、先ずシート状の電気絶縁材料30及び回路導電材料40の2層を積層し、それぞれの材料を所定の形状にエッチングして成形した後、バネ材となる金属薄板20と貼り合わせて回路一体型サスペンションとすることもできる。
いずれにしてもシート状の電気絶縁材料30をエッチングして所定の形状に成形した後に、エッチングされた絶縁材料の端面を被覆材50で被覆する終末処理を施す。被覆材50としては、熱硬化性樹脂もしくは感光性樹脂又はそれらの前駆体が使用できる。エッチングされた絶縁材料の端面をこれらの樹脂で被覆すれば、エッチング面に生じたパイ生地状の凹凸を固定することができるので、電気絶縁材料30が剥離したり欠け落ちたりするのを防ぐことができる。
【0031】
また、上記では回路一体型サスペンションの製造方法の一例を示したが、この方法はフレキシブル回路基板にも応用できる。フレキシブル回路基板の場合には、バネ材となる金属薄板は不要である。電気絶縁材料30の表面に回路導電材料40を形成し、エッチングによって所望の導電回路を形成した後、エッチングにより電気絶縁材料を分離する。その際、回路一体型サスペンションの場合と同様に、電気絶縁材料の端面にはパイ生地状の凹凸が生じるので、この部分を樹脂で被覆する。
【0032】
【作用】
本発明は、回路一体型サスペンションやフレキシブル回路基板の製造工程で、ポリイミド樹脂絶縁材料を湿式エッチングによりパターニングする際に生じるパイ生地状の凹凸部を、樹脂で被覆して固定して剥離や欠け落ちを防止するようにしたものである。
【0033】
【実施例】
以下、実施例を用いて本発明をさらに詳細に説明する。
(実施例1)
(第1工程)
回路一体型サスペンション用の基材として、先ず図3に示す3層の積層シート60を準備した。積層シート60は、金属薄板20と電気絶縁材料30及び回路導電材料40の3層のシートを積層して熱圧着したものである。金属薄板20には、厚さが約20μm、降伏強さが1.14GPa、引っ張り強さが1.31GPaのSUS304ステンレス鋼薄板を使用した。電気絶縁材料30には、厚さ約20μmのポリイミド樹脂シートを使用した。そして回路導電材料40には、厚さが約20μmの電解銅箔を使用した。
【0034】
(第2工程)
次に、積層シート60の2面の金属層、すなわちステンレス鋼薄板からなる金属薄板20と電解銅箔からなる回路導電材料40をエッチングして所定形状にパターニングした。パターニングはエッチング除去すべき部分以外のところをドライフィルムレジストのマスクで覆い、塩化第2鉄(FeCl2 )溶液をエッチャントとして使用して、湿式エッチングを行った。図4に示す金属薄板20は、所定部分をエッチング除去して分離帯20aを形成した状態の断面を模式的に示している。
一方、図4に示す回路導電材料40は、所定の位置をドライフィルムレジストのマスク71で覆い、エッチング除去する前の状態の断面を模式的に示している。
【0035】
(第3工程)
次に、積層シート60の2面の金属層を所定の形状にパターニングした後、図5に示すように電気絶縁材料30のエッチング除去すべき領域以外の部分に、ドライフィルムレジストのマスク72を形成し、積層シート全体を水酸化カリウム(KOH)を主成分とする水溶液中に浸漬して湿式エッチングして、回路一体型サスペンション素材に分離した。その結果、図6に断面を示すように、バネ材20の表面に電気絶縁材料30を介して所定パターンの回路導電材料40を具備した回路一体型サスペンション素材を得た。また、この回路一体型サスペンション素材の電気絶縁材料30の端面には、パイ生地状の凹凸30aが生じていた。
【0036】
(第4工程)
次に、ディップコート法により液状のネガ型感光性ポリイミド樹脂(株式会社東レ製 フトニースUR−5440)を回路一体型サスペンション素材全体に厚さ10μmに塗布した。次いで、90℃の窒素雰囲気中で30分間乾燥させた。
次に、所望のパターンを描いたフォトマスクを通して紫外線を照射して露光した。露光はi線をフィルターで除いたg線測定で、150mJ/cm2 の露光量で行った。
【0037】
次に、現像液に(株式会社東レ製 DV−822)を使用し、25℃で6分間超音波現像を行った。
次に、パターニングした感光性樹脂を350℃の窒素雰囲気中で1時間加熱して硬化させた。
最後に、端子接点の接触抵抗を改良するため、端子部分にニッケルメッキを施した。
このようにして厚さ5μmの被覆材50を形成して、図7に示すような断面構造の回路一体型サスペンション12とした。
なお、この回路一体型サスペンション12の平面構造は、図1に示すものと同様である。
【0038】
上記の工程を経て得られた本発明の回路一体型サスペンションは、絶縁材料端面に発生したパイ生地状の凹凸を起点とする絶縁材料の剥がれや欠け落ちもなく、製品不良の発生は皆無であった。
【0039】
(実施例2)
第1工程から第3工程間では実施例1と全く同様にして形成し、第4工程の感光性樹脂からなる被覆材50を、回路導電材料40を含むポリイミドからなる電気絶縁材料30のエッチングした端面近傍に形成した例を、図8に断面図として示す。本実施例では、電気絶縁材料30の端面に生じたパイ生地状の凹凸30aのみならず、回路導電材料40をも感光性樹脂からなる被覆材50で覆っているので、パイ生地状の凹凸を固定すると同時に回路導電材料40を絶縁被覆する作用を兼ね備えたものとなっている。
このようにして得られた回路一体型サスペンション14は、絶縁材料端面に発生したパイ生地状の凹凸を起点とする絶縁材料の剥がれや欠け落ちもなく、製品不良の発生は皆無であった。
【0040】
(実施例3)
図9に示す断面構造を有するフレキシブル回路基板15を作成した。作成工程を順を追って図10に示す。
基材には、図10(a)に示すような厚さ約20μmのポリイミド樹脂シートからなる電気絶縁材料30aと、厚さが約20μmの電解銅箔からなる回路導電材料40aを貼り合わせた2層シート材料を使用した。
先ず、電解銅箔40aの表面の所定の位置をドライフィルムレジストで覆い、塩化第二鉄溶液をエッチャントに使用して、湿式エッチングを施して所定形状の回路導電材料40のパターンを形成した。
次いで、電気絶縁材料30aの表面のフレキシブル回路基板となる輪郭部分を除いてドライフィルムレジストで覆い、水酸化カリウムをを主成分とする水溶液中に浸漬して湿式エッチングを施して、電気絶縁材料30aを所定の形状にパターニングしてフレキシブル回路基板素材を形成した(図10(b)参照)。このフレキシブル回路基板素材のポリイミド樹脂シートの端面には、パイ生地状の凹凸30aが生じていた。
【0041】
次に、実施例1と同様な方法でディップコート法によりフレキシブル回路基板素材全体に液状の感光性樹脂50aを20μmの厚さにコーティングした(図10(c)参照)。
次に、感光性樹脂50aの所定の部分をフォトマスク51で覆った(図10(d)参照)。図10(d)の例では両面同時に施工する例を示しているが、片面ずつ施工しても勿論かまわない。
次いで、紫外線等を照射してフォトマスク51から露出している部分の感光性樹脂50aを硬化させ、露光後ポリイミド樹脂シートの端面のパイ生地状の凹凸部を覆うように感光性樹脂50aからなる被覆材50を残して、他の部分の感光性樹脂50aを現像除去した。図10(d)の上面のみ処理した状態が図10(e)であり、図10(d)の下面を処理すると図10(f)のようになる。
前述の通り、感光性樹脂の露光・現像除去は片面ずつ施工しても良いし、両面同時でも良い。
このような手順で図9に示すようなフレキシブル回路基板15とした。
このようにして得られたフレキシブル回路基板15は、絶縁材料端面に発生したパイ生地状の凹凸を起点とする絶縁材料の剥がれや欠け落ちもなく、製品不良の発生は皆無であった。
【0042】
【発明の効果】
本発明の回路一体型サスペンションによれば、湿式エッチングしたポリイミド絶縁材側面を被覆することにより、絶縁材の剥離や欠け落ちがなくなり、寸法不良による製品歩留まりの低下や、塵の発生による誤動作の問題を解消することが可能となる。また、必要最小限の材料で処理するので、低コストで品質の向上が達成でき、しかもサスペンションの重量や剛性を大きく変化させることなく、品質向上を図ることが可能となる。
【0043】
また、本発明のフレキシブル回路基板によれば、湿式エッチングしたポリイミド絶縁材側面を被覆することにより、絶縁材の剥離や欠け落ちがなくなり、寸法不良による製品歩留まりの低下を回避することができるので、コストダウンに寄与するところが大きい。
【図面の簡単な説明】
【図1】本発明の回路一体型サスペンションの概略平面図である。
【図2】図1に示す回路一体型サスペンションの線A−A’に沿った断面図である。
【図3】本発明の回路一体型サスペンションの製造方法を示す工程断面図である。
【図4】図3に続く工程断面図である。
【図5】図4に続く工程断面図である。
【図6】図5に続く工程断面図である。
【図7】図6に続く工程断面図である。
【図8】実施例2に係わる回路一体型サスペンションの断面構造図である。
【図9】本発明のフレキシブル回路基板の断面構造図である。
【図10】本発明のフレキシブル回路基板の製造方法を示す工程断面図である。
【符号の説明】
10,14・・・・・・回路一体型サスペンション、11・・・・・・フレクシュア部、12・・・・・・ロード・ビーム部、13・・・・・・マウント・プレート部、15・・・・・・フレキシブル回路基板、20・・・・・・金属薄板、30・・・・・・電気絶縁材料、40・・・・・・回路導電材料、50・・・・・・被覆材料、60・・・・・・積層シート、71、72・・・・・・マスク
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a circuit-integrated suspension, and more particularly to a circuit-integrated suspension formed by a subtractive method and a method of manufacturing the same. The other relates to a flexible circuit board and a method for manufacturing the same.
[0002]
[Prior art]
A circuit-integrated suspension for a magnetic head is a disk drive provided in a magnetic recording device for positioning the magnetic head a few nanometers away from a high-speed rotating disk surface of a hard disk or other data storage device. It is a spring structure inside.
A circuit-integrated suspension for a magnetic head is required to have the ability to press the magnetic head at a specified position on the disk surface with an optimum pressure. The magnetic head balances the downward force of the circuit-integrated suspension and the slight lift caused by the airflow generated when the magnetic head approaches the high-speed rotating disk. Keep floating. Normally, the circuit-integrated suspension is configured using a three-layer sheet formed by laminating a first-layer metal sheet serving as a spring material, a second-layer electrical insulating material, and a third-layer circuit conductive material. A stainless steel thin plate is frequently used as a metal thin plate serving as a first layer spring material, a polyimide resin is often used as an electrical insulating material of a second layer, and copper is frequently used as a circuit conductive material of a third layer.
[0003]
In order to form a circuit-integrated suspension from such a three-layer sheet, a so-called subtractive method is employed. That is, a predetermined pattern is formed on each layer of the three-layer laminated sheet by wet etching using a chemical solution, and a circuit conductive material is coated with gold plating or the like to prevent corrosion, thereby obtaining a circuit-integrated suspension. . At this time, the second polyimide resin layer is generally formed into a desired pattern by wet etching using a chemical solution containing potassium hydroxide (KOH) as a main component. However, pie crust-like irregularities occur on the side surfaces of the polyimide sheet patterned by etching with a chemical solution containing KOH as a main component.
[0004]
The pie dough-like irregularities appear at intervals of about 0.5 to 3 μm, and have a depth of about 0.1 to 2 μm. In the manufacturing process of the circuit integrated suspension, the multilayer sheet undergoes various processing processes. At this time, mechanical loads in various directions are applied to each part of the circuit-integrated suspension. When the circuit-integrated suspension is installed in the drive and starts operation, the disk-integrated suspension vibrates each time the disk surface moves when reading and writing signals. Is subjected to a mechanical load.
[0005]
When a mechanical load is applied to the polyimide layer in this way, defects such as peeling or chipping of the polyimide layer are likely to occur starting from the pie dough-like irregularities on the side surfaces of the polyimide layer pattern. Defects such as peeling and chipping of the polyimide layer occur
Then, the pattern size becomes defective, so that the product defect rate increases. If the polyimide layer is peeled or chipped off during the operation of the magnetic storage device, the small polyimide pieces separated from the polyimide layer main body become dust, which hinders the position control of the disk or slider or the read / write operation of the recording signal and the magnetic storage. This may cause a decrease in the function of the entire apparatus.
[0006]
In recent years, as electronic devices have been miniaturized, wiring members have been reduced in size and weight, and so-called flexible circuit boards, in which electronic circuits made of a conductive metal material are formed on the surface of a synthetic resin sheet, are frequently used. Usually, a polyimide resin sheet is used as an insulating synthetic resin sheet in the flexible circuit board, and a large number of circuits are formed on the surface of one large polyimide resin sheet, and are separated by etching into a predetermined shape. Many flexible circuit boards have been obtained. At this time, similarly to the case of the circuit integrated suspension described above, when the polyimide resin sheet is separated by wet etching, pie dough-like irregularities are generated on the end face of the etched polyimide resin sheet, and this pie dough-like irregularity is generated. As a starting point, peeling or chipping of the polyimide layer occurs, resulting in a defective shape, and there is a problem that the product yield of the flexible circuit board is reduced.
[0007]
[Problems to be solved by the invention]
The present invention relates to manufacturing a circuit-integrated suspension by a subtractive method using a stainless steel thin plate, a polyimide insulating layer, and a three-layer sheet made of copper foil. An object of the present invention is to prevent peeling or chipping of a polyimide layer originating from a pie dough-shaped uneven portion generated on an etching surface when performing wet etching using (KOH).
[0008]
Another object of the present invention is to obtain a flexible circuit board having an electronic circuit formed on a polyimide sheet, and when the polyimide sheet is wet-etched using KOH, a pie dough-like uneven portion formed on an etched surface. The purpose of the present invention is to prevent peeling or chipping of the polyimide layer from the starting point.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a circuit-integrated suspension according to the present invention provides a circuit-integrated suspension including at least a thin metal plate serving as a spring material, an electrically insulating material, and a circuit conductive material. A circuit-integrated suspension coated with a coating material composed of a curable resin, a photosensitive resin, or a precursor thereof was used. In the present invention, it is preferable to use a polyimide resin as the electric insulating material. Preferably, a thin stainless steel plate is used as the spring material, and copper is used as the conductive material.
[0010]
When a polyimide resin is used as the electric insulating material, an insulating layer having high electric insulating performance and excellent strength, particularly excellent bending strength against repeated stress, can be obtained. Also, if a stainless steel thin plate is used as the spring material, rust which causes dust is not generated, and a spring having an appropriate spring coefficient and excellent durability can be obtained. Further, if copper is used as the conductive material, an electric circuit having a small circuit resistance can be obtained at a low cost by a simple method.
[0011]
The method for manufacturing a circuit-integrated suspension of the present invention is a method of manufacturing a circuit-integrated suspension by a subtractive method from a base material on which a metal thin plate, an electrically insulating material sheet, and a circuit conductive material are laminated. After patterning into a predetermined shape by etching, a method of covering the vicinity of the end surface of the etched electrically insulating material sheet with a thermosetting resin, a photosensitive resin, or a precursor thereof is adopted.
By covering the vicinity of the end surface of the electric insulating material sheet with the resin as described above, it is possible to prevent the electric insulating material sheet from peeling or chipping from the pie-shaped irregularities formed on the etched surface.
[0012]
Another method of manufacturing a circuit-integrated suspension according to the present invention uses a laminated base material composed of two layers of an electrically insulating material sheet and a circuit conductive material as a starting material, patterns the electrically insulating material sheet by wet etching, and then performs etching. A method in which the vicinity of the end face of the thus-formed electric insulating material sheet is coated with a thermosetting resin or a photosensitive resin or a precursor thereof, and then the base material is attached to a metal thin plate for a spring is adopted.
Even if a two-layer laminated sheet of an electric insulating material sheet and a circuit conductive material is used as a starting material, the wet-etched end face of the electric insulating material sheet is covered with resin, so that the pie crust formed on the etched surface can be obtained. It is possible to prevent peeling or chipping of the electrically insulating material sheet starting from the uneven portion.
[0013]
The flexible circuit board according to the present invention is a flexible circuit board comprising a sheet-like electrically insulating material and a circuit conductive material provided on a surface thereof, and a thermosetting resin or a photosensitive resin near an end of the sheet-like electrical insulating material. Alternatively, a flexible circuit board coated with a precursor thereof was obtained.
With the flexible circuit board having such a structure, peeling and chipping of the electric insulating material sheet starting from the pie dough-shaped uneven portion generated on the end face of the sheet-shaped electric insulating material can be prevented, The production yield of the flexible circuit board can be increased.
[0014]
Further, the method of manufacturing a flexible circuit board of the present invention uses a substrate in which two layers of an electrically insulating material sheet and a circuit conductive material are laminated, and forms a circuit pattern by patterning the circuit conductive material by etching. The insulating material sheet is patterned by wet etching, and a method of manufacturing a flexible circuit board is provided in which the vicinity of the end surface of the etched electric insulating material sheet is coated with a thermosetting resin, a photosensitive resin, or a precursor thereof.
According to such a method for manufacturing a flexible circuit board, peeling and chipping of the electrically insulating material sheet starting from a pie-shaped uneven portion formed on the etched surface can be prevented.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a plan view showing an embodiment of a circuit-integrated suspension for a magnetic head according to the present invention. As shown in FIG. 1, the circuit-integrated suspension 10 for a magnetic head mainly includes a flexure portion 11, a load beam portion 12, and a mount plate portion 13.
[0016]
FIG. 2 is a cross-sectional view of the circuit-integrated suspension 10 shown in FIG. 1 along the line AA ′. As shown in FIG. 2, the load beam section 12 has a structure in which three layers of a thin metal plate 20 serving as a spring material, a sheet-like electric insulating material 30 and a circuit conductive material 40 are laminated. Are divided into a plurality of pieces (four pieces in FIG. 2) and arranged so that different electric signals are respectively transmitted.
[0017]
At both ends of the sheet-shaped electrically insulating material 30, there are pie-shaped irregularities 30a generated during wet etching. In the circuit-integrated suspension of the present invention, the vicinity of the pie-shaped irregularities 30a is heated. It is covered with a coating material 50 made of a curable resin or a photosensitive resin or a precursor thereof. Therefore, the end of the sheet-shaped electric insulating material 30 does not peel off or chip off. Therefore, the product defect rate is low, and there is no fear of generating dust which causes malfunction during operation.
[0018]
As the thin metal plate 20 serving as a spring material, stainless steel such as SUS304 can be preferably used. If stainless steel is used as the spring material, there is no rust that causes dust, and it has a moderate spring coefficient that does not plastically deform even under the maximum load during use, and it has excellent durability. Is obtained. The thickness of the metal sheet 20 is suitably from 10 to 90 μm.
[0019]
As the sheet-like electric insulating material 30, a polyimide resin is preferably used. If a polyimide resin is used, it plays a role of a bonding material between the metal thin plate 20 and the circuit conductive material 40, and has high electric insulation performance, excellent strength, particularly excellent bending strength against repeated stress, and spring characteristics to be applied to the entire circuit-integrated suspension. Can be an insulating layer with the minimum effect. The thickness of the insulating material may be about 5 to 60 μm.
[0020]
The circuit conductive material 40 is preferably copper (Cu). Copper has a low specific resistance ρ of 1.55 μΩ · cm and can cope with a high-frequency signal current, so that an electric circuit with a small circuit resistance can be obtained at a low cost by a simple method. Also, using beryllium-containing copper (CuBe), a spring strength of about 1.24 GPa and a tensile strength of about 1.31 GPa, which is almost the same as that of stainless steel, and a material having low specific resistance is used. You may. The thickness of the circuit conductive material 40 may be about 10 to 90 μm.
[0021]
The above-described three layers of the metal thin plate 20 serving as the spring material, the sheet-shaped electric insulating material 30 and the circuit conductive material 40 are laminated, and each material is formed by etching into a predetermined shape as shown in FIG. An integrated suspension.
The metal sheet 20 and the circuit conductive material 40 are both ferric chloride (FeCl 2). 3 3.) The solution can be etched as an etchant. A dry film resist is mainly used as an etching mask. Either the metal sheet 20 or the circuit conductive material 40 may be etched first, or both may be etched simultaneously. During etching, the electrically insulating material 30 supports the sheet metal 20 and the circuit conductive material 40 throughout the process, thereby facilitating the manufacture of components with fragile and / or discontinuous structures.
[0022]
In FIG. 1, a central wiring portion and a peripheral terminal portion are electrically insulated from each other. The separation between the wiring portion and the terminal portion is maintained by the electrically insulating material 30 controlled by the etching process. Electrically insulating material 30 also acts as a hard stop for sheet metal 20 and circuit conductive material 40 during the etching process. With the interposition of the electrically insulating material 30, the metal sheet 20 and the circuit conductive material 40 can be arranged on different surfaces. When stainless steel is used for the thin metal plate 20 and copper is used for the circuit conductive material 40, etching of the circuit conductive material 40 is performed using cupric chloride (CuCl 2) in order to omit a masking step for stainless steel. 2 A) using a solution.
[0023]
When a polyimide resin sheet is used as the electric insulating material 30, the electric insulating material 30 is etched with an aqueous solution mainly composed of potassium hydroxide (KOH). A dry film resist can be used as an etching mask. The thin metal plate 20 and the circuit conductive material 40 also function as an etching mask. When the electrically insulating material 30 is etched, it is separated into individual circuit-integrated suspension materials.
[0024]
The electrically insulating material 30 also has a function of joining the metal thin plate 20 and the circuit conductive material 40 and supporting the circuit conductive material 40 in another place. Therefore, in the step of etching the electrically insulating material 30, in order to support the metal thin plate 20 or the circuit conductive material 40 and maintain the handling property, the electrically insulating material 30 at a required position is left to the last, and after the processing is completed, the last electrically insulating material 30 is formed. 30 may be removed by etching.
[0025]
When a polyimide resin is etched with an aqueous solution mainly composed of potassium hydroxide (KOH), pie crust-like irregularities appear on the etched surface. The pie crust-like irregularities have an interval of 0.5 to 3 μm and a depth of about 0.1 to 2 μm. When such pie crust-like irregularities 30a appear on the end surface of the electrical insulating material 30, a defect occurs in which the polyimide resin is peeled off or chipped off from this point. When such a defect occurs, it causes a product yield due to a defective shape of the product, and the chipped dust causes a malfunction to impair the reliability of the product.
[0026]
Therefore, in the present invention, the vicinity of the above-mentioned pie dough-like unevenness is covered with a resin and sealed, thereby preventing the polyimide resin from peeling or chipping.
As the coating material, a thermosetting resin, a photosensitive resin such as a photosensitive polyimide or a photosensitive epoxy, or a precursor thereof can be used. This is because these resins and precursors are easy to use, are stable after curing, and are rich in insulation. An example of the coating method is as follows.
[0027]
First, a liquid resin used for the coating material is applied to the entire substrate in a thickness of 5 to 40 μm by a method such as spin coating, curtain coating, or dip coating. Next, it is dried in a nitrogen atmosphere at 70 to 90 ° C. for about 30 minutes. Next, exposure is performed by irradiating ultraviolet rays through a photomask on which a desired pattern is drawn. In the exposure step, the pattern on the base material and the pattern on the mask must be accurately aligned. Exposure removes i-line with a filter and measures 150 mJ / cm by g-line measurement. 2 The exposure is performed at about the same amount.
Next, development processing is performed using a developer. As a developing method, an immersion method, an ultrasonic method, a spray method, or the like can be used. To process a fine pattern, ultrasonic development is preferable. Ultrasonic development is performed at 25 ° C. for about 10 minutes.
Finally, the patterned coating material is heated in a nitrogen atmosphere at 300 ° C. (oxygen concentration 20 ppm or less) for about one hour.
According to the above procedure, a coating material having a thickness of about 5 μm is formed.
[0028]
Since the main purpose of this covering material is to prevent the polyimide resin from peeling or chipping off, the covering portion may be only the end face portion of the electrically insulating material 30 as shown in FIG. As shown in FIG. 7, the vicinity of the end of the electrically insulating material 30 including the circuit conductive material 40 may be covered. If the circuit conductive material 40 is covered, the corrosion of the circuit conductive material 40 can be prevented.
[0029]
Finally, plating is applied to necessary portions of the metal portion. In order to improve the characteristics of the terminal contact, plating with nickel, tin, silver, gold, or the like is effective. When plating, the electrically insulating material 30 acts as an insulator. The entire circuit conductive material 40 may be protected from corrosion using plating or other insulating films.
[0030]
Although an example of the method of manufacturing the circuit-integrated suspension has been described above, in addition to the above, first, two layers of the sheet-shaped electrically insulating material 30 and the circuit conductive material 40 are laminated, and each material is etched into a predetermined shape. After forming the suspension, it may be bonded to the metal sheet 20 as a spring material to form a circuit-integrated suspension.
In any case, after the sheet-shaped electric insulating material 30 is etched and formed into a predetermined shape, a terminal treatment of covering the end surface of the etched insulating material with the coating material 50 is performed. As the coating material 50, a thermosetting resin, a photosensitive resin, or a precursor thereof can be used. By coating the end face of the etched insulating material with these resins, the pie crust-like irregularities generated on the etched surface can be fixed, so that the electric insulating material 30 is prevented from peeling or chipping. Can be.
[0031]
In the above description, an example of a method for manufacturing a circuit-integrated suspension has been described, but this method can also be applied to a flexible circuit board. In the case of a flexible circuit board, a metal sheet serving as a spring material is not required. After forming the circuit conductive material 40 on the surface of the electrical insulating material 30 and forming a desired conductive circuit by etching, the electrical insulating material is separated by etching. At this time, as in the case of the circuit-integrated suspension, pie dough-like irregularities occur on the end surface of the electrically insulating material, and this portion is covered with a resin.
[0032]
[Action]
In the present invention, in the manufacturing process of a circuit integrated suspension or a flexible circuit board, a pie dough-shaped uneven portion generated when patterning a polyimide resin insulating material by wet etching is covered with a resin, fixed, and peeled or chipped. Is to be prevented.
[0033]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
(Example 1)
(First step)
First, a three-layer laminated sheet 60 shown in FIG. 3 was prepared as a substrate for a circuit-integrated suspension. The laminated sheet 60 is formed by laminating a three-layer sheet of the metal thin plate 20, the electric insulating material 30, and the circuit conductive material 40, and thermocompression bonding. As the metal sheet 20, a SUS304 stainless steel sheet having a thickness of about 20 μm, a yield strength of 1.14 GPa, and a tensile strength of 1.31 GPa was used. As the electric insulating material 30, a polyimide resin sheet having a thickness of about 20 μm was used. Then, as the circuit conductive material 40, an electrolytic copper foil having a thickness of about 20 μm was used.
[0034]
(2nd process)
Next, the metal layers on the two surfaces of the laminated sheet 60, that is, the metal sheet 20 made of a stainless steel sheet and the circuit conductive material 40 made of an electrolytic copper foil were etched and patterned into a predetermined shape. For patterning, the portion other than the portion to be etched away is covered with a dry film resist mask, and ferric chloride (FeCl 2 2 2.) Wet etching was performed using the solution as an etchant. The metal thin plate 20 shown in FIG. 4 schematically shows a cross section in a state where a predetermined portion is removed by etching to form a separation band 20a.
On the other hand, the circuit conductive material 40 shown in FIG. 4 schematically shows a cross section in a state before a predetermined position is covered with a dry film resist mask 71 and removed by etching.
[0035]
(3rd step)
Next, after patterning the metal layers on the two surfaces of the laminated sheet 60 into a predetermined shape, a mask 72 of a dry film resist is formed on a portion of the electric insulating material 30 other than the region to be removed by etching as shown in FIG. Then, the entire laminated sheet was immersed in an aqueous solution containing potassium hydroxide (KOH) as a main component and wet-etched to separate into a circuit-integrated suspension material. As a result, as shown in a cross section in FIG. 6, a circuit-integrated suspension material having a predetermined pattern of a circuit conductive material 40 on the surface of a spring material 20 via an electrically insulating material 30 was obtained. Also, pie crust-like irregularities 30a were formed on the end surface of the electric insulating material 30 made of the circuit-integrated suspension material.
[0036]
(4th process)
Next, a liquid negative photosensitive polyimide resin (FTNICE UR-5440 manufactured by Toray Industries, Inc.) was applied to the entire circuit-integrated suspension material to a thickness of 10 μm by dip coating. Next, it was dried in a nitrogen atmosphere at 90 ° C. for 30 minutes.
Next, exposure was performed by irradiating ultraviolet rays through a photomask on which a desired pattern was drawn. Exposure was performed by g-line measurement with the i-line removed by a filter. 2 The exposure was performed at
[0037]
Next, using a developer (DV-822 manufactured by Toray Industries, Inc.), ultrasonic development was performed at 25 ° C. for 6 minutes.
Next, the patterned photosensitive resin was heated and cured in a nitrogen atmosphere at 350 ° C. for 1 hour.
Finally, to improve the contact resistance of the terminal contact, the terminal portion was plated with nickel.
In this way, a coating material 50 having a thickness of 5 μm was formed to obtain a circuit-integrated suspension 12 having a sectional structure as shown in FIG.
The planar structure of the circuit-integrated suspension 12 is the same as that shown in FIG.
[0038]
The circuit-integrated suspension of the present invention obtained through the above-described process has no peeling or chipping of the insulating material starting from the pie dough-like irregularities generated on the end surface of the insulating material, and has no product defect. Was.
[0039]
(Example 2)
The first to third steps were formed in exactly the same manner as in Example 1, and the coating material 50 made of the photosensitive resin in the fourth step was etched with the electrically insulating material 30 made of polyimide containing the circuit conductive material 40. FIG. 8 is a cross-sectional view showing an example in which the film is formed near the end face. In this embodiment, not only the pie crust-like irregularities 30a formed on the end surface of the electrically insulating material 30 but also the circuit conductive material 40 are covered with the covering material 50 made of a photosensitive resin. At the same time as fixing, it also has the function of insulatingly covering the circuit conductive material 40.
In the circuit-integrated suspension 14 thus obtained, there was no peeling or chipping of the insulating material starting from the pie dough-like irregularities generated on the end surface of the insulating material, and there was no product failure.
[0040]
(Example 3)
A flexible circuit board 15 having a sectional structure shown in FIG. 9 was produced. FIG. 10 shows the creation process in order.
An electric insulating material 30a made of a polyimide resin sheet having a thickness of about 20 μm as shown in FIG. 10A and a circuit conductive material 40a made of electrolytic copper foil having a thickness of about 20 μm were bonded to the base material. A layer sheet material was used.
First, a predetermined position on the surface of the electrolytic copper foil 40a was covered with a dry film resist, and wet etching was performed using a ferric chloride solution as an etchant to form a pattern of the circuit conductive material 40 having a predetermined shape.
Next, the surface of the electric insulating material 30a is covered with a dry film resist except for the contour portion to be a flexible circuit board, immersed in an aqueous solution containing potassium hydroxide as a main component, and subjected to wet etching to obtain the electric insulating material 30a. Was patterned into a predetermined shape to form a flexible circuit board material (see FIG. 10B). The pie dough-like irregularities 30a were formed on the end surface of the polyimide resin sheet of the flexible circuit board material.
[0041]
Next, a liquid photosensitive resin 50a was coated to a thickness of 20 μm on the entire flexible circuit board material by dip coating in the same manner as in Example 1 (see FIG. 10C).
Next, a predetermined portion of the photosensitive resin 50a was covered with a photomask 51 (see FIG. 10D). Although the example of FIG. 10D shows an example in which both sides are simultaneously constructed, it is needless to say that one side may be constructed.
Then, the photosensitive resin 50a in a portion exposed from the photomask 51 is cured by irradiating ultraviolet rays or the like, and is made of the photosensitive resin 50a so as to cover the pie-shaped irregularities on the end surface of the polyimide resin sheet after exposure. Other portions of the photosensitive resin 50a were removed by development except for the covering material 50. FIG. 10E shows a state where only the upper surface of FIG. 10D is processed, and FIG. 10F shows a state where the lower surface of FIG. 10D is processed.
As described above, the exposure and development and removal of the photosensitive resin may be performed on one side at a time or on both sides simultaneously.
By such a procedure, a flexible circuit board 15 as shown in FIG. 9 was obtained.
In the flexible circuit board 15 thus obtained, the insulating material was not peeled off or chipped off from the pie dough-shaped irregularities generated on the end surface of the insulating material, and there was no product defect.
[0042]
【The invention's effect】
According to the circuit-integrated suspension of the present invention, by covering the side surfaces of the wet-etched polyimide insulating material, the insulating material is prevented from peeling or chipping off, resulting in a reduction in product yield due to dimensional defects and a problem of malfunction due to generation of dust. Can be eliminated. In addition, since the treatment is performed with the minimum necessary material, the quality can be improved at low cost, and the quality can be improved without largely changing the weight and rigidity of the suspension.
[0043]
In addition, according to the flexible circuit board of the present invention, by covering the side surfaces of the wet-etched polyimide insulating material, peeling and chipping of the insulating material are eliminated, and a decrease in product yield due to dimensional defects can be avoided. It greatly contributes to cost reduction.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of a circuit-integrated suspension according to the present invention.
FIG. 2 is a cross-sectional view of the circuit-integrated suspension shown in FIG. 1, taken along line AA ′.
FIG. 3 is a process sectional view illustrating a method for manufacturing a circuit-integrated suspension according to the present invention.
FIG. 4 is a process sectional view following FIG. 3;
FIG. 5 is a process sectional view following FIG. 4;
FIG. 6 is a process sectional view following FIG. 5;
FIG. 7 is a process sectional view following FIG. 6;
FIG. 8 is a sectional structural view of a circuit-integrated suspension according to a second embodiment.
FIG. 9 is a sectional structural view of a flexible circuit board according to the present invention.
FIG. 10 is a process sectional view illustrating the method for manufacturing the flexible circuit board of the present invention.
[Explanation of symbols]
10, 14 ... Circuit integrated suspension, 11 ... Flexure section, 12 ... Load beam section, 13 ... Mount plate section, 15 ... ············································································································································································································································································ the-eventc , 60 ... Laminated sheet, 71, 72 ... Mask

Claims (8)

少なくともバネ材となる金属薄板とシート状の電気絶縁材料及び回路導電材料を具備した磁気ヘッド用の回路一体型サスペンションにおいて、前記シート状の電気絶縁材料の端部近傍を熱硬化性樹脂もしくは感光性樹脂又はそれらの前駆体からなる被覆材料で被覆してなることを特徴とする回路一体型サスペンション。In a circuit-integrated suspension for a magnetic head including at least a thin metal plate serving as a spring material and a sheet-shaped electric insulating material and a circuit conductive material, a thermosetting resin or a photosensitive resin is used near an end of the sheet-shaped electric insulating material. A circuit-integrated suspension characterized by being coated with a coating material comprising a resin or a precursor thereof. 前記電気絶縁材料がポリイミド樹脂であることを特徴とする請求項1に記載の回路一体型サスペンション。The suspension according to claim 1, wherein the electrically insulating material is a polyimide resin. 前記バネ材となる金属薄板がステンレス鋼からなり、前記回路導電材料が銅であることを特徴とする請求項1に記載の回路一体型サスペンション。2. The circuit integrated suspension according to claim 1, wherein the thin metal plate serving as the spring material is made of stainless steel, and the circuit conductive material is copper. 金属薄板、電気絶縁材料シート及び回路導電材料の3層を積層した基材から、サブトラクティブ法によって回路一体型サスペンションを製造する方法であって、電気絶縁材料シートを湿式エッチングによってパターニングした後に、エッチングされた電気絶縁材料シートの端面近傍を熱硬化性樹脂もしくは感光性樹脂又はそれらの前駆体で被覆することを特徴とする回路一体型サスペンションの製造方法。A method for manufacturing a circuit-integrated suspension by a subtractive method from a base material in which three layers of a metal thin plate, an electrically insulating material sheet, and a circuit conductive material are laminated, wherein the electrically insulating material sheet is patterned by wet etching and then etched. A method of manufacturing a circuit-integrated suspension, comprising: coating a vicinity of an end surface of a completed electric insulating material sheet with a thermosetting resin, a photosensitive resin, or a precursor thereof. 電気絶縁材料シートと回路導電材料の2層を積層した基材を使用し、電気絶縁材料シートを湿式エッチングによってパターニングした後に、エッチングされた電気絶縁材料シートの端面近傍を熱硬化性樹脂もしくは感光性樹脂又はそれらの前駆体で被覆し、次いで該基材をバネ用の金属薄板に貼り付けることを特徴とする回路一体型サスペンションの製造方法。After using an electric insulating material sheet and a substrate in which two layers of a circuit conductive material are laminated, the electric insulating material sheet is patterned by wet etching, and then the vicinity of the end surface of the etched electric insulating material sheet is thermosetting resin or photosensitive resin. A method for producing a circuit-integrated suspension, comprising coating with a resin or a precursor thereof, and then attaching the substrate to a metal thin plate for a spring. 前記電気絶縁材料シートがポリイミド樹脂であり、該電気絶縁材料シートを水酸化カリウムを主成分とする薬液で湿式エッチングすることを特徴とする請求項4又は請求項5に記載の回路一体型サスペンションの製造方法。The circuit-integrated suspension according to claim 4, wherein the electric insulating material sheet is a polyimide resin, and the electric insulating material sheet is wet-etched with a chemical solution containing potassium hydroxide as a main component. Production method. シート状の電気絶縁材料の表面に回路導電材料を具備したフレキシブル回路基板であって、前記電気絶縁材料の端部近傍を熱硬化性樹脂もしくは感光性樹脂又はそれらの前駆体で被覆してなることを特徴とするフレキシブル回路基板。A flexible circuit board provided with a circuit conductive material on a surface of a sheet-shaped electric insulating material, wherein the vicinity of an end of the electric insulating material is covered with a thermosetting resin or a photosensitive resin or a precursor thereof. A flexible circuit board. 電気絶縁材料シートと回路導電材料の2層を積層した基材を使用し、回路導電材料をエッチングによってパターニングして回路パターンを形成した後、電気絶縁材料シートを湿式エッチングによってパターニングして、エッチングされた電気絶縁材料シートの端面近傍を熱硬化性樹脂もしくは感光性樹脂又はそれらの前駆体で被覆することを特徴とするフレキシブル回路基板の製造方法。After using a substrate in which two layers of an electrically insulating material sheet and a circuit conductive material are laminated, the circuit conductive material is patterned by etching to form a circuit pattern, and then the electrical insulating material sheet is patterned by wet etching and etched. A method for manufacturing a flexible circuit board, comprising: coating the vicinity of an end surface of an electrically insulating material sheet with a thermosetting resin, a photosensitive resin, or a precursor thereof.
JP2002192542A 2002-07-01 2002-07-01 Circuit integrated suspension, flexible circuit board, and those manufacturing methods Withdrawn JP2004039056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002192542A JP2004039056A (en) 2002-07-01 2002-07-01 Circuit integrated suspension, flexible circuit board, and those manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002192542A JP2004039056A (en) 2002-07-01 2002-07-01 Circuit integrated suspension, flexible circuit board, and those manufacturing methods

Publications (1)

Publication Number Publication Date
JP2004039056A true JP2004039056A (en) 2004-02-05

Family

ID=31701780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002192542A Withdrawn JP2004039056A (en) 2002-07-01 2002-07-01 Circuit integrated suspension, flexible circuit board, and those manufacturing methods

Country Status (1)

Country Link
JP (1) JP2004039056A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7142395B2 (en) * 2004-05-14 2006-11-28 Hutchinson Technology Incorporated Method for making noble metal conductive leads for suspension assemblies
JP2007059586A (en) * 2005-08-24 2007-03-08 Fujikura Ltd Wiring circuit board and manufacturing method thereof
JP2007109725A (en) * 2005-10-11 2007-04-26 Nitto Denko Corp Wiring circuit board assembly sheet and its production process
JP2007201085A (en) * 2006-01-25 2007-08-09 Nitto Denko Corp Wiring circuit board assembly sheet
JP2007287799A (en) * 2006-04-13 2007-11-01 Nitto Denko Corp Wiring circuit board aggregate sheet
US8169746B1 (en) 2008-04-08 2012-05-01 Hutchinson Technology Incorporated Integrated lead suspension with multiple trace configurations
US8675314B1 (en) 2013-08-21 2014-03-18 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with offset motors
US8681456B1 (en) 2012-09-14 2014-03-25 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions
US8717712B1 (en) 2013-07-15 2014-05-06 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
US8792214B1 (en) 2013-07-23 2014-07-29 Hutchinson Technology Incorporated Electrical contacts to motors in dual stage actuated suspensions
US8861141B2 (en) 2012-08-31 2014-10-14 Hutchinson Technology Incorporated Damped dual stage actuation disk drive suspensions
US8891206B2 (en) 2012-12-17 2014-11-18 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffener
US8896970B1 (en) 2013-12-31 2014-11-25 Hutchinson Technology Incorporated Balanced co-located gimbal-based dual stage actuation disk drive suspensions
US8896969B1 (en) 2013-05-23 2014-11-25 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
US8896968B2 (en) 2012-10-10 2014-11-25 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with dampers
US8941951B2 (en) 2012-11-28 2015-01-27 Hutchinson Technology Incorporated Head suspension flexure with integrated strain sensor and sputtered traces
US9001469B2 (en) 2012-03-16 2015-04-07 Hutchinson Technology Incorporated Mid-loadbeam dual stage actuated (DSA) disk drive head suspension
US9245555B2 (en) 2010-05-24 2016-01-26 Hutchinson Technology Incorporated Low resistance ground joints for dual stage actuation disk drive suspensions
US9558771B2 (en) 2014-12-16 2017-01-31 Hutchinson Technology Incorporated Piezoelectric disk drive suspension motors having plated stiffeners
US9564154B2 (en) 2014-12-22 2017-02-07 Hutchinson Technology Incorporated Multilayer disk drive motors having out-of-plane bending
JP2017059293A (en) * 2016-12-12 2017-03-23 大日本印刷株式会社 Substrate for suspension, suspension, suspension with head, and hard disk drive
US9646638B1 (en) 2016-05-12 2017-05-09 Hutchinson Technology Incorporated Co-located gimbal-based DSA disk drive suspension with traces routed around slider pad
US9734852B2 (en) 2015-06-30 2017-08-15 Hutchinson Technology Incorporated Disk drive head suspension structures having improved gold-dielectric joint reliability
US9824704B2 (en) 2015-02-17 2017-11-21 Hutchinson Technology Incorporated Partial curing of a microactuator mounting adhesive in a disk drive suspension

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7388733B2 (en) 2004-05-14 2008-06-17 Hutchinson Technology Incorporated Method for making noble metal conductive leads for suspension assemblies
US7142395B2 (en) * 2004-05-14 2006-11-28 Hutchinson Technology Incorporated Method for making noble metal conductive leads for suspension assemblies
JP2007059586A (en) * 2005-08-24 2007-03-08 Fujikura Ltd Wiring circuit board and manufacturing method thereof
US8282841B2 (en) 2005-08-24 2012-10-09 Fujikura Ltd. Printed circuit board and manufacturing method thereof
JP4640815B2 (en) * 2005-10-11 2011-03-02 日東電工株式会社 Wiring circuit board assembly sheet and manufacturing method thereof
JP2007109725A (en) * 2005-10-11 2007-04-26 Nitto Denko Corp Wiring circuit board assembly sheet and its production process
JP2007201085A (en) * 2006-01-25 2007-08-09 Nitto Denko Corp Wiring circuit board assembly sheet
JP2007287799A (en) * 2006-04-13 2007-11-01 Nitto Denko Corp Wiring circuit board aggregate sheet
US8017871B2 (en) 2006-04-13 2011-09-13 Nitto Denko Corporation Wired circuit board assembly sheet
US8362360B2 (en) 2006-04-13 2013-01-29 Nitto Denko Corporation Wired circuit board assembly sheet
US8487189B2 (en) 2006-04-13 2013-07-16 Nitto Denko Corporation Wired circuit board assembly sheet
US8169746B1 (en) 2008-04-08 2012-05-01 Hutchinson Technology Incorporated Integrated lead suspension with multiple trace configurations
US9812160B2 (en) 2010-05-24 2017-11-07 Hutchinson Technology Incorporated Low resistance ground joints for dual stage actuation disk drive suspensions
US9245555B2 (en) 2010-05-24 2016-01-26 Hutchinson Technology Incorporated Low resistance ground joints for dual stage actuation disk drive suspensions
US9001469B2 (en) 2012-03-16 2015-04-07 Hutchinson Technology Incorporated Mid-loadbeam dual stage actuated (DSA) disk drive head suspension
US8861141B2 (en) 2012-08-31 2014-10-14 Hutchinson Technology Incorporated Damped dual stage actuation disk drive suspensions
US8681456B1 (en) 2012-09-14 2014-03-25 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions
US9001471B2 (en) 2012-09-14 2015-04-07 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions
US9240203B2 (en) 2012-10-10 2016-01-19 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with dampers
US8896968B2 (en) 2012-10-10 2014-11-25 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with dampers
US8941951B2 (en) 2012-11-28 2015-01-27 Hutchinson Technology Incorporated Head suspension flexure with integrated strain sensor and sputtered traces
US9257139B2 (en) 2012-12-17 2016-02-09 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
US8891206B2 (en) 2012-12-17 2014-11-18 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffener
US8896969B1 (en) 2013-05-23 2014-11-25 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
US10629232B2 (en) 2013-05-23 2020-04-21 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
US9613644B2 (en) 2013-05-23 2017-04-04 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
US9997183B2 (en) 2013-05-23 2018-06-12 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
US9007726B2 (en) 2013-07-15 2015-04-14 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
US10002629B2 (en) 2013-07-15 2018-06-19 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
US8717712B1 (en) 2013-07-15 2014-05-06 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
US9524739B2 (en) 2013-07-15 2016-12-20 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
US9870792B2 (en) 2013-07-15 2018-01-16 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
US8792214B1 (en) 2013-07-23 2014-07-29 Hutchinson Technology Incorporated Electrical contacts to motors in dual stage actuated suspensions
US8675314B1 (en) 2013-08-21 2014-03-18 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with offset motors
US9147413B2 (en) 2013-12-31 2015-09-29 Hutchinson Technology Incorporated Balanced co-located gimbal-based dual stage actuation disk drive suspensions
US8896970B1 (en) 2013-12-31 2014-11-25 Hutchinson Technology Incorporated Balanced co-located gimbal-based dual stage actuation disk drive suspensions
US9715890B2 (en) 2014-12-16 2017-07-25 Hutchinson Technology Incorporated Piezoelectric disk drive suspension motors having plated stiffeners
US9558771B2 (en) 2014-12-16 2017-01-31 Hutchinson Technology Incorporated Piezoelectric disk drive suspension motors having plated stiffeners
US10002628B2 (en) 2014-12-16 2018-06-19 Hutchinson Technology Incorporated Piezoelectric motors including a stiffener layer
US10339966B2 (en) 2014-12-22 2019-07-02 Hutchinson Technology Incorporated Multilayer disk drive motors having out-of-plane bending
US9564154B2 (en) 2014-12-22 2017-02-07 Hutchinson Technology Incorporated Multilayer disk drive motors having out-of-plane bending
US9824704B2 (en) 2015-02-17 2017-11-21 Hutchinson Technology Incorporated Partial curing of a microactuator mounting adhesive in a disk drive suspension
US10147449B2 (en) 2015-02-17 2018-12-04 Hutchinson Technology Incorporated Partial curing of a microactuator mounting adhesive in a disk drive suspension
US9734852B2 (en) 2015-06-30 2017-08-15 Hutchinson Technology Incorporated Disk drive head suspension structures having improved gold-dielectric joint reliability
US10748566B2 (en) 2015-06-30 2020-08-18 Hutchinson Technology Incorporated Disk drive head suspension structures having improved gold-dielectric joint reliability
US10290313B2 (en) 2015-06-30 2019-05-14 Hutchinson Technology Incorporated Disk drive head suspension structures having improved gold-dielectric joint reliability
US10109305B2 (en) 2016-05-12 2018-10-23 Hutchinson Technology Incorporated Co-located gimbal-based DSA disk drive suspension with traces routed around slider pad
US9646638B1 (en) 2016-05-12 2017-05-09 Hutchinson Technology Incorporated Co-located gimbal-based DSA disk drive suspension with traces routed around slider pad
JP2017059293A (en) * 2016-12-12 2017-03-23 大日本印刷株式会社 Substrate for suspension, suspension, suspension with head, and hard disk drive

Similar Documents

Publication Publication Date Title
JP2004039056A (en) Circuit integrated suspension, flexible circuit board, and those manufacturing methods
US9955580B2 (en) Method of manufacturing rigid-flexible printed circuit board
JP4799902B2 (en) Wiring circuit board and method for manufacturing wiring circuit board
US7405479B2 (en) Wired circuit board
JP4403090B2 (en) Printed circuit board
JP2005100488A (en) Suspension substrate with circuit and its manufacturing method
JP2006148079A (en) Circuit board utilizing three smooth-sided conductive layers as part thereof, manufacturing method thereof, and electrical assembly and information processing system utilizing the circuit board
JP5234146B2 (en) Suspension substrate manufacturing method
JP2006148078A (en) Circuit board utilizing smooth-sided conductive layers as part thereof, method of fabricating the same, and electrical assembly and information processing system utilizing the same
JP2008060263A (en) Wiring circuit board and its manufacturing method
JP2008198738A (en) Wiring circuit board and manufacturing method thereof
JP2855255B2 (en) Suspension for magnetic head and method of manufacturing the same
JP4588622B2 (en) Method for manufacturing printed circuit board
US7895741B2 (en) Method of producing a wired circuit board
JP2009259315A (en) Suspension board with circuit and production method thereof
JP3895697B2 (en) Flexible printed circuit board
JP2006040414A (en) Wiring circuit board
US10080279B2 (en) Wired circuit board and producing method thereof
JPH09330995A (en) Circuit board, its manufacture, bump type contact head using it, and semiconductor part mounting module
JP4984260B2 (en) Printed wiring board manufacturing method and printed wiring board manufactured by the method
JP5849386B2 (en) Suspension substrate, method for manufacturing suspension substrate, suspension, suspension with element, and hard disk drive
JPH10206462A (en) Manufacture of prove structure
JP6132007B2 (en) Suspension substrate, method for manufacturing suspension substrate, suspension, suspension with element, and hard disk drive
JP2007280468A (en) Method for manufacturing suspension equipped with hard disk wiring line
JP2006005228A (en) Wiring substrate, magnetic disc device, and wiring substrate manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906