JP2004037304A - Ball-and-roller bearing unit for wheel - Google Patents

Ball-and-roller bearing unit for wheel Download PDF

Info

Publication number
JP2004037304A
JP2004037304A JP2002196018A JP2002196018A JP2004037304A JP 2004037304 A JP2004037304 A JP 2004037304A JP 2002196018 A JP2002196018 A JP 2002196018A JP 2002196018 A JP2002196018 A JP 2002196018A JP 2004037304 A JP2004037304 A JP 2004037304A
Authority
JP
Japan
Prior art keywords
hub
holes
wheel
bearing unit
mounting flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002196018A
Other languages
Japanese (ja)
Inventor
Hiroo Ishikawa
石川 寛朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002196018A priority Critical patent/JP2004037304A/en
Publication of JP2004037304A publication Critical patent/JP2004037304A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/185Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with two raceways provided integrally on a part other than a race ring, e.g. a shaft or housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs

Abstract

<P>PROBLEM TO BE SOLVED: To suppress an influence from a disturbance and accurately measure torque for acting on a drive wheel. <P>SOLUTION: A first ring member 27 is fixed to a part near an outer circumference of an attaching flange 15 provided in a hub body 13. A second ring member 28 is fixed to a part near an inner circumference of the attaching flange 15 provided in the hub body 13. A circumferential part of a plurality of first through holes 25 provided in the first ring member 27 in the circumferential direction and a circumferential part of a plurality of second through holes 26 provided in the second ring member 28 in the circumferential direction face each other in the shaft direction. A light emission element 38 and a light reception element 39 constituting an optical sensor 37 are fixed to a part of a suspension apparatus. A light emission part of the light emission element 38 and a light reception part of the light reception element 39 face each other through a part of the first and second ring members 27, 28 for forming the first and second through holes 25, 26. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、自動車の懸架装置に対して車輪を回転自在に支持する為の車輪用転がり軸受ユニットの改良に関する。特に本発明は、駆動輪(FF車の前輪、FR車及びRR車の後輪、4WD車の全輪)を支持する為の車輪用転がり軸受ユニットを改良して、安定した運転制御を行なう為の信号を得られる構造を実現するものである。
【0002】
【従来の技術】
自動車の車輪を構成するホイール1、及び、制動用回転体であって制動装置であるディスクブレーキを構成するロータ2は、例えば図7に示す様な構造により、懸架装置を構成するナックル3に回転自在に支承している。即ち、このナックル3に形成した円形の支持孔4部分に、転がり軸受ユニット5を構成する外輪6を、複数本のボルト7により固定している。一方、この転がり軸受ユニット5を構成するハブ8に上記ホイール1及びロータ2を、複数本のスタッド9とナット10とにより結合固定している。又、上記外輪6の内周面には複列の外輪軌道11a、11bを、外周面には結合フランジ12を、それぞれ形成している。この様な外輪6は、この結合フランジ12を上記ナックル3に、上記各ボルト7で結合する事により、このナックル3に対し固定している。
【0003】
これに対して、上記ハブ8は、ハブ本体13と内輪14とを組み合わせて成る。このうちのハブ本体13の外周面の一部で、上記外輪6の外端開口(軸方向に関して外とは、自動車への組み付け状態で幅方向外側となる部分を言い、図1、5、7の左側。反対に、自動車への組み付け状態で幅方向中央側となる、図1、5、7の右側を内と言う。本明細書全体で同じ。)から突出した部分には、取付フランジ15を形成している。上記ホイール1及びロータ2はこの取付フランジ15の外側面に、上記各スタッド9とナット10とにより、結合固定している。
【0004】
又、上記ハブ本体13の中間部外周面で、上記外輪6の内周面に形成した複列の外輪軌道11a、11bのうちの外側の外輪軌道11aに対向する部分には、内輪軌道16aを形成している。更に、上記ハブ本体13の内端部に形成した小径段部17に、このハブ本体13と共に上記ハブ8を構成する上記内輪14を外嵌固定している。そして、この内輪14の外周面に形成した内輪軌道16bを、上記複列の外輪軌道11a、11bのうちの内側の外輪軌道11bに対向させている。これら各外輪軌道11a、11bと各内輪軌道16a、16bとの間には、それぞれが転動体である玉18、18を複数個ずつ、それぞれ保持器19、19により保持した状態で転動自在に設けている。尚、図示の例では、上記ハブ本体13の内端部で上記内輪14の内端面よりも内方に突出した部分を径方向外方に塑性変形させる事により形成したかしめ部20により、上記内輪14の内端面を抑え付け、この内輪14と上記ハブ本体13との分離防止を図っている。この構成により、背面組み合わせである複列アンギュラ型の玉軸受を構成し、上記外輪6の内側に上記ハブ8を、回転自在に、且つ、ラジアル荷重及びスラスト荷重を支承自在に支持している。
【0005】
尚、上記外輪6の両端部内周面と、上記ハブ8の中間部外周面及び内端部外周面との間には、それぞれシールリング21a、21bを設けて、上記各玉18、18を設けた空間と外部空間とを遮断している。更に、上記ハブ8に結合固定した車輪を回転駆動する為、上記ハブ本体13の中心部に、スプライン孔22を形成している。そして、このスプライン孔22に、等速ジョイント23のスプライン軸24を挿入している。
【0006】
上述の様な転がり軸受ユニット5の使用時には、図7に示す様に、上記外輪6をナックル3に固定すると共に、上記ハブ8の取付フランジ15に、図示しないタイヤを組み合わせたホイール1及びロータ2を固定する。又、このうちのロータ2と、上記ナックル3に固定した、図示しないサポート及びキャリパとを組み合わせて、制動用のディスクブレーキを構成する。制動時には、上記ロータ2を挟んで設けた1対のパッドのライニングを、上記キャリパ内の油圧シリンダ内に嵌装した油圧ピストンの働きにより、上記ロータ2の両側面に押し付ける。
【0007】
この様にして行なう制動時に於ける車両の安定性を確保する為には、車両が走行している限り、車輪が回転し続ける(ロックしない)事が重要である。この為に従来から、車輪の回転速度と車両の減速度とを比較して制動時にこの車輪がロックする事を防止する、アンチロックブレーキ装置(ABS)が、広く使用されている。ABSを構成する為に従来から、車輪支持用の転がり軸受ユニットのうちの回転輪にエンコーダを、静止輪若しくはナックル等の懸架装置側に速度センサを、それぞれ設けて、上記車輪の回転速度を検出自在としている。又、車体の一部に加速度センサを設けて、制動時にこの車体の減速度を検出自在としている。制動時には、この加速度センサの検出信号と上記速度センサの検出信号とを比較して、上記油圧シリンダ内に導入する油圧を調節し、上記車輪のロックを防止する。
【0008】
この様なABSの作動状態をより一層向上させ、制動距離の短縮及び制動時の姿勢安定の為の制御をより高精度に行なう事を目的として、制動時に車輪に加わるトルクを測定する事が、特開平9−315282号公報に記載されている様に、従来から知られている。この公報に記載された従来技術の場合には、駆動輪に加わるトルクを測定する事を意図したもので、この駆動輪を回転駆動する為の駆動軸にトルクセンサを設置するとしている。
【0009】
【発明が解決しようとする課題】
制動時に車輪に加わるトルクを測定する従来構造は、トルクセンサを懸架装置や駆動軸等、車輪用転がり軸受ユニットとは別の部分に組み付けている。この為、必ずしも制動時に車輪に加わるトルクを正確に測定できない可能性がある。即ち、制動時に車輪に加わるトルクは、車輪用転がり軸受ユニットを構成するハブに直接伝達される。これに対し、例えば上記公報に記載された従来技術の場合には、トルクセンサを、ハブとデファレンシャルギヤの出力部とを結ぶ駆動軸の途中に設けている。この為、上記トルクセンサの測定値に外乱が入り込んで、トルクを正確に測定できない可能性がある。
これに対して、車輪に加わるトルクは、発進時や変速時の姿勢安定の為の制御にも使用できる為、このトルクを正確に測定できる構造の実現が望まれている。本発明の車輪用転がり軸受ユニットは、この様な事情に鑑みて発明したものである。
【0010】
【課題を解決するための手段】
本発明の車輪用転がり軸受ユニットは、前述の図7に示した従来構造と同様に、外輪と、ハブと、転動体とを備える。
このうちの外輪は、内周面に複列の外輪軌道を有し、使用時に懸架装置に支持固定された状態で回転しない。
又、上記ハブは、外周面の外端寄り部分に車輪及び制動用回転体を支持する為の取付フランジを、同じく中間部乃至内端部に複列の内輪軌道を、中心部に駆動用のスプライン軸を係合させる為のスプライン孔を、それぞれ有し、使用時に車輪と共に回転する。
又、上記転動体は、上記各外輪軌道と上記各内輪軌道との間に、それぞれ複数個ずつ転動自在に設けられている。
【0011】
特に、本発明の車輪用転がり軸受ユニットに於いては、上記ハブの互いに離隔した2個所の部分に直接又は別の部材を介して設けられた第一、第二の透孔が互いに対向している。そして、上記ハブが回転する事に基づいて、このハブの中心軸を中心とする上記第一、第二の両透孔同士の位相差が変化する事に応じて変化する、光センサの受光部で受ける光の強度から、上記ハブに加わるトルクを測定自在としている。
更に、好ましくは、請求項2に記載した様に、上記第一の透孔と第二の透孔とのうちの少なくとも一方の透孔を、ハブに設けた取付フランジの一部に直接形成する。
【0012】
【作用】
上述の様に構成する本発明の車輪用転がり軸受ユニットによれば、ABSの制御が必要となる様な急制動時或は滑り易い路面での制動時、又は、トラクションコントロールシステム(TCS)の制御が必要となる様な急加速時或は滑り易い路面での加速時に、駆動輪に作用するトルクを正確に測定できる。
即ち、制動時には、ディスクブレーキ或はドラムブレーキ等の制動装置の作動に基づく制動トルクにより回転速度が低下する上記駆動輪と、エンジンのクランクシャフトと共に回転する駆動軸との間で、回転速度がずれる傾向になる。そして、この回転速度がずれる傾向に応じて上記ハブに、所定方向のトルクが加わる。
又、加速時には、上記エンジンからの駆動力が加わる駆動軸と、路面との接触部に働く摩擦抵抗により回転上昇が遅れる傾向にある駆動輪との間で、回転速度がずれる傾向になる。そして、この回転速度がずれる傾向に応じて上記ハブに、上記所定方向とは逆方向のトルクが加わる。
【0013】
この結果、上記トルクの大きさ及び方向に応じて、上記ハブが自身の中心軸を中心として捻られる方向に弾性変形する。そして、この様に弾性変形した分だけ、上記ハブの2個所部分に直接又は別の部材を介して設けられた第一、第二の透孔同士の間の、このハブの中心軸を中心とする位相差が変化する。この為、これら第一、第二の両透孔の内側部分で、光センサの発光部から発した光が通過する部分の断面積が変化する。従って、この発光部から出た光のうち、これら第一、第二の両透孔を通過して上記光センサの受光部に達した光の強度の測定値の変化から、上記ハブに加わったトルクの大きさ及び方向を検出できる。この様に、本発明の車輪用転がり軸受ユニットによれば、制動時及び加速時に駆動輪に作用するトルクが直接伝達される部材である、ハブに加わるトルクを測定できる為、上記駆動輪に作用するトルクを、外乱の影響を抑えて正確に測定できる。
更に、好ましい構成によれば、取付フランジの剛性を適度に低くして、この取付フランジの歪み量を大きくできる為、上記駆動輪に作用するトルクの検出精度の向上を図れると共に、部品点数の削減を図れる。
【0014】
【発明の実施の形態】
図1〜3は、請求項1に対応する、本発明の実施の形態の第1例を示している。尚、本発明の特徴は、制動時及び加速時に駆動輪に作用するトルクが直接伝達される部材である、ハブ8に加わるトルクを測定する為に、このハブ8の2個所の部分に第一、第二の透孔25、26を、直接又は別の部材を介して設けた点にある。その他の部分の構造及び作用は、前述の図7に示した従来構造と同様である為、重複する説明を省略若しくは簡略にし、以下、本発明の特徴部分を中心に説明する。
【0015】
本例の場合には、ハブ本体13の外端部外周面に設けた取付フランジ15の2個所の部分に、第一の環状部材27と第二の環状部材28とを固定している。このうちの第一の環状部材27は、金属板等の板材により円輪状に造ったもので、内周寄り部分に、車輪及びロータ2(図7参照)の結合用のスタッド9の杆部29をそれぞれ挿通自在な複数の円孔30、30を形成している。又、上記第一の環状部材27の外周寄り部分の円周方向等間隔の複数個所に第一の透孔25、25を、それぞれこの第一の環状部材27の両側面を軸方向に貫通する状態で形成している。これら各第一の透孔25、25は、円周方向寸法が長く且つ径方向寸法が短い、同一の扇形とすると共に、各部の寸法をこれら各第一の透孔25、25同士で同じとしている。又、これら各第一の透孔25、25の径方向に関する幅W25(図3)を、これら各第一の透孔25、25の円周方向全長に亙って同じとしている。そして、上記第一の環状部材27に設けた複数の円孔30、30に上記各スタッド9の杆部29を挿通させた状態で、この杆部29の基端寄り部分に設けたセレーション部31を上記取付フランジ15に設けた各取付孔32に圧入固定している。又、上記各スタッド9の頭部33の側面と上記取付フランジ15の内側面との間で、上記第一の環状部材27の内周寄り部分を挟持している。この構成により、この第一の環状部材27は、上記ハブ本体13に対し結合固定される。又、この状態で、この第一の環状部材27の外周寄り部分で、複数の第一の透孔25、25を形成した部分は、上記取付フランジ15の外周側側面の外接円よりも外径側に存在する。又、上記各第一の透孔25、25は、上記ハブ本体13の中心軸を中心とする同一の円周上に、等間隔に配置される。
【0016】
これに対して、前記第二の環状部材28は、円輪部34と、この円輪部34の内周縁から軸方向外側に連続する状態で設けた嵌合筒部35とを備える。このうちの円輪部34の外周寄り部分に、上記第一の環状部材27に設けた第一の透孔25、25と同数の第二の透孔26、26を、それぞれこの第一の環状部材27の両側面を軸方向に貫通する状態で、上記複数の第一の透孔25、25と等ピッチで形成している。又、これら各第二の透孔26、26は、上記各第一の透孔25、25と同じ形状及び寸法を有する。又、これら複数の第二の透孔26、26のピッチ円直径d26は、これら複数の第一の透孔25、25のピッチ円直径d25と同じとしている(d26=d25)。
【0017】
一方、上記取付フランジ15の内側面の基端寄り部分外周面に、上記ハブ本体13の中心軸をその中心とする円筒面部36を設けている。そして、この円筒面部36に、上記第二の環状部材28を構成する嵌合筒部35を、締り嵌め等により外嵌固定している。又、この嵌合筒部35の軸方向外端縁を、上記取付フランジ15の内側面の基端寄り部分に当接させている。この状態で、上記第二の環状部材28を構成する円輪部34の外側面と、上記各スタッド9に設けた頭部33の端面との間には、隙間が形成される。又、本例の場合には、上記各第一の透孔25、25の位相と各第二の透孔26、26の位相とをずらせると共に、これら各第一の透孔25、25と各第二の透孔26、26との円周方向一部同士を、上記ハブ本体13の軸方向に関して重畳させている。又、本例の場合には、この様に重畳する部分の断面積が、ハブ8にトルクが加わらない状態で、上記各第一、第二の透孔25、26の断面積の1/2ずつとなる様に規制している。
【0018】
又、図示しない懸架装置の一部に、光センサ37を支持している。この光センサ37は、LED等から成る発光素子38と、フォトダイオード等から成る受光素子39とを備える。この様な光センサ37は、この発光素子38で発した光を、この受光素子39で受けた後、この受けた光を電圧信号に変換する事により、この受けた光の強度を検出自在とするものである。そして、図示しない懸架装置の一部で、上記第一の環状部材27の外周寄り部分で上記取付フランジ15の外周面の外接円よりも外径側に外れた部分の外側面に対向する位置に、上記発光素子38を固定している。又、上記懸架装置の一部で、上記第二の環状部材28に設けた円輪部34の外周寄り部分の内側面に対向する位置に、上記受光素子39を固定している。そして、上記発光素子38の発光部と、この受光素子39の受光部とを、上記第一の環状部材27と上記第二の環状部材28との外周寄り部分で、上記各第一、第二の透孔25、26を形成した部分を介して対向させている。尚、上記光センサ37からハーネス40を介して取り出した検出信号は、ABS、TCS等を制御する為の、図示しない制御器に送る様にしている。
【0019】
又、本例の場合、上記取付フランジ15の外側面の内径側半部(前記複数本のスタッド9を固定した部分よりも径方向内側の部分)に、軸方向に凹入する円輪状の凹部41を形成している。これにより、上記取付フランジ15に結合固定するブレーキディスクやブレーキドラム等の制動用回転部材の側面が、上記取付フランジ15の外側面のうち、上記凹部41に対応する内径側半部に当接しない様にしている。この様な凹部41を形成する理由は、上記制動用回転部材の側面が上記取付フランジ15の外側面全体に当接しない様にする為である。即ち、上記制動用回転部材の側面が上記取付フランジ15の外側面全体に当接すると、この当接部に作用する摩擦力に基づいて、上記取付フランジ15が、負荷されるトルクの大きさに応じて(このトルクの大きさに比例して)弾性変形できなくなる。この為、本例の場合には、上記凹部41を形成する事により、上記制動用回転部材の側面が上記取付フランジ15の外側面全体に当接するのを防止して、この取付フランジ15が、負荷されるトルクに見合った分だけ弾性変形できる様にしている。
【0020】
上述の様に構成する本例の車輪用転がり軸受ユニットによれば、ABSの制御が必要となる様な急制動時或は滑り易い路面での制動時、又は、TCSの制御が必要となる様な急加速時或は滑り易い路面での加速時に、駆動輪に作用するトルクを正確に測定できる。即ち、この様にして駆動輪に作用するトルクは、ハブ8に直接加わる。この結果、このトルクの大きさ及び方向に応じて、このハブ8が自身の中心軸を中心として捻られる方向に弾性変形する。そして、この様に弾性変形した分だけ、上記ハブ8の2個所部分に固定した第一、第二の環状部材27、28にそれぞれ設けた各第一、第二の透孔25、26同士の間の、このハブ8の中心軸を中心とする位相差が変化する。この為、これら第一、第二の各透孔25、26の内側部分の円周方向一部で、このハブ8の軸方向に重畳する部分の断面積が変化する。例えば、このハブ8の一部で上記第一の環状部材27を支持した部分が、同じく上記第二の環状部材28を支持した部分に対し、図2の時計方向に捩じられる方向に、上記ハブ8にトルクが加わった場合には、上記断面積が大きくなる。逆に、このハブ8の一部で上記第一の環状部材27を支持した部分が、同じく上記第二の環状部材28を支持した部分に対し、図2の反時計方向に捩じられる方向に、上記ハブ8にトルクが加わった場合には、上記断面積が小さくなる。この様な断面積の変化に応じて、前記光センサ37の受光部で検出する光の強度の測定値が、図4に(A)で示すものから、例えば、同図に(B)又は(C)で示すものに変化する。この為、上記受光部で検出した光の強度の最大値の変化を求めれば、上記ハブ8に加わったトルクの大きさ及び方向を検出できる。この様に、本発明の車輪用転がり軸受ユニットによれば、制動時及び加速時に駆動輪に作用するトルクが直接伝達される部材である、ハブ8に加わるトルクを測定できる為、上記駆動輪に作用するトルクを、外乱の影響を抑えて正確に測定できる。又、上記受光部が光を検出する事に伴って変化する信号の同波数により、上記ハブ8の回転速度を知る事もできる。
【0021】
又、駆動輪から地面に対し直交する方向に加わる力(接地力)をFとし、この駆動輪と地面との当接部の動摩擦係数をμとし、この駆動輪の中心から接地点までの距離をRとした場合に、この駆動輪に作用するトルクTは、次式で求められる。
T=F×μ×R
従って、上述の様にして求めた、この駆動輪に作用するトルクTと、予め求めておいたF及びRとをこの式に代入する事により、上記動摩擦係数μを求める事ができ、安定した自動車の運転制御を行ない易くなる。
【0022】
次に、図5は、やはり請求項1に対応する、本発明の実施の形態の第2例を示している。本例の場合には、1対の内輪軌道16a、16bのうち、軸方向外側の内輪軌道16aを、ハブ本体13aの小径段部17aに外嵌した別体の内輪42の外周面に形成している。又、図示の例では、複数個の玉18、18を設置した空間の外端開口を塞ぐシールリング21cとして、内端開口を塞ぐシールリング21bと同様の組み合わせシールリングを使用している。
【0023】
特に、本例の場合には、ハブ本体13aの2個所部分に固定した第一、第二の環状部材27a、28aに設けた複数の第一、第二の透孔43、44の円周方向一部同士を、径方向に対向させている。この為に、本例の場合には、上記第一の環状部材27aを、円輪部45と、この円輪部45の外周縁から軸方向内側に連続する状態で設けた円筒部46とから構成している。このうちの円輪部45の円周方向複数個所にそれぞれがスタッド9の杆部29を挿通自在な円孔30を形成している。又、上記円筒部46の軸方向内端寄り部分で、円周方向等間隔の複数個所位置に第一の透孔43を、それぞれこの円筒部46の内、外両周面を径方向に貫通する状態で形成している。これら各第一の透孔43は、それぞれ円周方向寸法が長く且つ軸方向寸法が短い同一の矩形状としている。この様な第一の環状部材27aは、上記円輪部45に設けた円孔30にスタッド9の杆部29を挿通させ、更に、この杆部29に設けたセレーション部31を取付フランジ15に設けた取付孔32に圧入固定する事で、この取付フランジ15に対し固定している。
【0024】
一方、上記第二の環状部材28aは、円輪部47と、この円輪部47の内外両周縁から軸方向に関して互いに逆方向に連続する状態で設けた内径側円筒部48及び外径側円筒部49とから構成している。このうちの外径側円筒部49の外径D49は、上記第一の環状部材27aを構成する円筒部46の内径d46よりも小さくしている(D49<d46)。そして、上記外径側円筒部49に前記複数の第一の透孔43と同数の第二の透孔44を、この外径側円筒部49の内、外両周面を径方向に貫通する状態で、上記複数の第一の透孔43と等ピッチで形成している。上記各第二の透孔44は、これら各第一の透孔43と同じ形状及び寸法を有する。そして、前記ハブ本体13aの外周面で、上記取付フランジ15の基端部から軸方向内側に外れた部分に上記内径側円筒部48を、締り嵌め等により外嵌固定している。又、この状態で、上記各第一の透孔43と上記各第二の透孔44との円周方向一部同士を径方向に関して重畳させると共に、この重畳させた部分の断面積が、(上記ハブ本体13aにトルクが加わらない状態で)これら各透孔43、44の断面積のそれぞれ1/2ずつとなる様に規制している。
【0025】
又、図示しない懸架装置の一部で、上記第二の環状部材28aに設けた外径側円筒部49の内周面に対向する位置に、光センサ37を構成する発光素子38を固定すると共に、同じく上記第一の環状部材27aに設けた外径側円筒部46の外周面に対向する位置に、上記光センサ37を構成する受光素子39を固定している。そして、上記発光素子38の発光部と、上記受光素子39の受光部とを、上記第二の環状部材28aの円筒部49のうち、各第二の透孔44を形成した軸方向一部と、上記第一の環状部材27aの外径側円筒部46のうち、各第一の透孔43を形成した軸方向一部とを介して対向させている。
この様に構成する本例の場合も、上記各第一、第二の環状部材27a、28aに設けた第一、第二の透孔43、44を利用して、駆動輪に作用するトルクを正確に測定できる。その他の構成及び作用は、上述の図1〜4に示した第1例の場合と同様である為、重複する説明は省略する。
【0026】
次に、図6は、請求項1及び請求項2に対応する、本発明の実施の形態の第3例を示している。本例の場合には、上述した各例の場合と異なり、ハブ本体13に設けた円輪状の取付フランジ15aに複数の第一の透孔50、50を、直接形成している。即ち、この取付フランジ15aの一部で、角度がαずつずれた部分に、それぞれ1対ずつの第一の透孔50、50を軸方向に貫通する状態で形成している。これら各第一の透孔50、50は、円周方向寸法が短く、且つ、径方向寸法が長い扇形である。又、上記取付フランジ15aの一部で角度がαずつずれた部分にそれぞれ設けた1対の第一の透孔50、50同士は、角度βだけずらせている。そして、上記取付フランジ15aの一部で、これら1対の第一の透孔50、50を1組とした複数の第一の透孔組51、51の間部分に、各スタッド9の杆部29を挿通自在な取付孔32、32を形成している。
【0027】
又、上記ハブ本体13の外端寄り部分外周面に外嵌固定した第二の環状部材28に設けた各第二の透孔26(図1、2参照)の内側部分の円周方向一部と、上記各第一の透孔50、50の内側部分の円周方向一部とを、軸方向に対向させている。そして、光センサ37を構成する発光素子38(図1参照)の発光部を、上記取付フランジ15aの一部で上記各第一の透孔50、50を形成した部分の外側面に対向させると共に、上記光センサ37を構成する受光素子39(図1参照)の受光部を、上記第二の環状部材28の一部で、上記各第二の透孔26を形成した部分の内側面に対向させている。
【0028】
この様に構成する本例の場合には、上記取付フランジ15aに複数の第一の透孔50、50を、直接形成している為、上記ハブ本体15aと別体の第一の環状部材27(図1、2参照)を省略できる。この為、部品点数の削減を図れて、コストを低減し易くなる。又、上記取付フランジ15aの一部に複数の第一の透孔50、50を形成している為、この取付フランジ15aの剛性を低くする事ができる。この為、この取付フランジ15aの歪み量を大きくして、駆動輪に作用するトルクの検出精度の向上を図れる。その他の構成及び作用は、前述の図1〜4に示した第1例の場合と同様である為、同等部分には同一符号を付して重複する説明は省略する。
【0029】
尚、上述した各例の場合には、各第一、第二の透孔25、26、43、44、50を互いに同じ形状及び寸法を有するものとした場合に就いて説明した。但し、本発明は、この様な構造に限定するものではなく、各透孔の形状及び寸法を互いに異ならせる事もできる。又、上記第一、第二の透孔25、26、43、44、50は、それぞれ1個ずつ設ける事もできる。但し、上述した各例の様に、これら第一、第二の透孔25、26、43、44、50を、それぞれ複数個ずつ設けた場合には、駆動輪に作用するトルクを頻繁に測定して、その測定精度を高くできる。
【0030】
【発明の効果】
本発明の車輪用転がり軸受ユニットは、以上に述べた様に構成され作用するので、ABSやTCS等、車両の姿勢安定、制動距離の短縮、良好な運動性能確保等の為の各種装置の制御に利用する為の信号を正確に得る事ができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の第1例を示す半部断面図。
【図2】図1のA矢視図。
【図3】第1例を構成する第一の環状部材のみを取り出して図2と同方向から見た図。
【図4】光センサで検出した光の強度の周期的変化を、(A)はハブにトルクが加わらない状態で、(B)(C)はハブにトルクが互いに逆方向に加わった状態で、それぞれ測定した結果を示す図。
【図5】本発明の実施の形態の第2例を示す半部断面図。
【図6】同第3例を示す、一部を省略して図1の左方から見た状態で示す図。
【図7】本発明の対象となる車輪用転がり軸受ユニットを組み付けた懸架装置部分の半部断面図。
【符号の説明】
1  ホイール
2  ロータ
3  ナックル
4  支持孔
5  車輪用転がり軸受ユニット
6  外輪
7  ボルト
8  ハブ
9  スタッド
10  ナット
11a、11b 外輪軌道
12  結合フランジ
13、13a ハブ本体
14  内輪
15、15a 取付フランジ
16a、16b 内輪軌道
17、17a 小径段部
18  玉
19  保持器
20  かしめ部
21a〜21c シールリング
22  スプライン孔
23  等速ジョイント
24  スプライン軸
25  第一の透孔
26  第二の透孔
27、27a 第一の環状部材
28、28a 第一の環状部材
29  杆部
30  円孔
31  セレーション部
32  取付孔
33  頭部
34  円輪部
35  嵌合筒部
36  円筒面部
37  光センサ
38  発光素子
39  受光素子
40  ハーネス
41  凹部
42  内輪
43  第一の透孔
44  第二の透孔
45  円輪部
46  円筒部
47  円輪部
48  内径側円筒部
49  外径側円筒部
50  第一の透孔
51  第一の透孔組
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a rolling bearing unit for a wheel for rotatably supporting a wheel with respect to a suspension system of an automobile. In particular, the present invention is to improve a rolling bearing unit for wheels for supporting driving wheels (front wheels of FF vehicles, rear wheels of FR and RR vehicles, and all wheels of 4WD vehicles) so as to perform stable operation control. Is realized.
[0002]
[Prior art]
A wheel 1 that forms a wheel of an automobile and a rotor 2 that forms a rotating body for braking and forms a disc brake that is a braking device are rotated by a knuckle 3 that forms a suspension device, for example, by a structure as shown in FIG. It is freely supported. That is, the outer ring 6 constituting the rolling bearing unit 5 is fixed to the circular support hole 4 formed in the knuckle 3 by a plurality of bolts 7. On the other hand, the wheel 1 and the rotor 2 are fixedly connected to a hub 8 constituting the rolling bearing unit 5 by a plurality of studs 9 and nuts 10. Double rows of outer raceways 11a and 11b are formed on the inner peripheral surface of the outer race 6, and a coupling flange 12 is formed on the outer peripheral surface. The outer ring 6 is fixed to the knuckle 3 by connecting the connecting flange 12 to the knuckle 3 with the bolts 7.
[0003]
On the other hand, the hub 8 is formed by combining the hub body 13 and the inner ring 14. Of these, a part of the outer peripheral surface of the hub body 13 is an outer end opening of the outer race 6 (the term "outer in the axial direction" means a part which is outward in the width direction when assembled to an automobile; FIGS. 1, 5, and 7). On the contrary, the right side of FIGS. 1, 5, and 7, which is the center in the width direction when assembled to an automobile, is referred to as "inside. The same applies to the entire specification." Is formed. The wheel 1 and the rotor 2 are connected and fixed to the outer surface of the mounting flange 15 by the studs 9 and the nuts 10.
[0004]
An inner ring raceway 16a is formed on a portion of the outer peripheral surface of the intermediate portion of the hub main body 13 facing the outer raceway 11a on the outer raceway 11a, 11b of the double row formed on the inner circumferential surface of the outer race 6. Has formed. Further, the inner ring 14 constituting the hub 8 together with the hub main body 13 is externally fixed to a small-diameter stepped portion 17 formed at the inner end of the hub main body 13. The inner raceway 16b formed on the outer peripheral surface of the inner race 14 is opposed to the inner outer raceway 11b of the double row outer raceways 11a and 11b. Between each of the outer raceways 11a, 11b and each of the inner raceways 16a, 16b, a plurality of balls 18, 18, each of which is a rolling element, are rolled freely while being held by retainers 19, 19, respectively. Provided. In the illustrated example, the inner ring of the hub body 13 is formed by a caulking portion 20 formed by plastically deforming a portion protruding inward from the inner end surface of the inner ring 14 outward in the radial direction. The inner end surface of the hub 14 is pressed down to prevent the inner ring 14 from separating from the hub body 13. With this configuration, a double-row angular contact type ball bearing as a rear combination is formed, and the hub 8 is supported inside the outer ring 6 so as to be rotatable and capable of supporting a radial load and a thrust load.
[0005]
Note that seal rings 21a and 21b are provided between the inner peripheral surfaces of both ends of the outer race 6 and the outer peripheral surfaces of the intermediate portion and the inner end of the hub 8, respectively, and the balls 18 are provided. And the outside space are shut off. Further, a spline hole 22 is formed at the center of the hub main body 13 to rotationally drive a wheel connected and fixed to the hub 8. The spline shaft 24 of the constant velocity joint 23 is inserted into the spline hole 22.
[0006]
When the above-described rolling bearing unit 5 is used, as shown in FIG. 7, the outer ring 6 is fixed to the knuckle 3, and the wheel 1 and the rotor 2 are combined with a mounting flange 15 of the hub 8 and a tire (not shown). Is fixed. The rotor 2 is combined with a support and a caliper (not shown) fixed to the knuckle 3 to form a disc brake for braking. During braking, the lining of a pair of pads provided across the rotor 2 is pressed against both side surfaces of the rotor 2 by the action of a hydraulic piston fitted in a hydraulic cylinder in the caliper.
[0007]
In order to ensure the stability of the vehicle during braking performed in this manner, it is important that the wheels continue to rotate (do not lock) as long as the vehicle is running. For this reason, an anti-lock brake device (ABS), which compares the rotational speed of a wheel with the deceleration of a vehicle to prevent the wheel from locking during braking, has been widely used. Conventionally, an encoder is provided on a rotating wheel of a rolling bearing unit for supporting a wheel, and a speed sensor is provided on a side of a suspension device such as a stationary wheel or a knuckle to configure an ABS, and the rotational speed of the wheel is detected. It is free. Further, an acceleration sensor is provided in a part of the vehicle body so that the deceleration of the vehicle body can be detected during braking. During braking, the detection signal of the acceleration sensor and the detection signal of the speed sensor are compared to adjust the hydraulic pressure introduced into the hydraulic cylinder, thereby preventing the wheels from locking.
[0008]
For the purpose of further improving the operation state of such an ABS and shortening the braking distance and performing the control for stabilizing the posture at the time of braking with higher accuracy, it is necessary to measure the torque applied to the wheel at the time of braking. As described in JP-A-9-315282, it is conventionally known. In the case of the prior art described in this publication, the purpose is to measure the torque applied to the drive wheels, and a torque sensor is installed on a drive shaft for rotating the drive wheels.
[0009]
[Problems to be solved by the invention]
In a conventional structure for measuring torque applied to wheels during braking, a torque sensor is mounted on a portion other than a wheel rolling bearing unit, such as a suspension device or a drive shaft. For this reason, it may not always be possible to accurately measure the torque applied to the wheels during braking. That is, the torque applied to the wheels at the time of braking is directly transmitted to the hub constituting the wheel rolling bearing unit. In contrast, for example, in the case of the prior art described in the above publication, the torque sensor is provided in the middle of the drive shaft connecting the hub and the output portion of the differential gear. For this reason, disturbance may enter the measured value of the torque sensor, and the torque may not be accurately measured.
On the other hand, the torque applied to the wheels can be used for control for stabilizing the posture at the time of starting or shifting, and therefore, it is desired to realize a structure that can accurately measure the torque. The rolling bearing unit for a wheel of the present invention has been invented in view of such circumstances.
[0010]
[Means for Solving the Problems]
The rolling bearing unit for a wheel according to the present invention includes an outer ring, a hub, and a rolling element, similarly to the conventional structure shown in FIG.
Of these, the outer ring has a double-row outer ring track on the inner peripheral surface, and does not rotate while being supported and fixed to the suspension device during use.
Further, the hub has a mounting flange for supporting the wheel and the rotating body for braking at a portion near the outer end of the outer peripheral surface, a double row inner ring track at the middle portion to the inner end, and a driving portion at the center portion. Each has a spline hole for engaging a spline shaft, and rotates together with the wheel when used.
Further, a plurality of rolling elements are provided between each of the outer raceways and each of the inner raceways so as to be freely rollable.
[0011]
In particular, in the wheel rolling bearing unit of the present invention, the first and second through holes provided directly or via another member at two spaced apart portions of the hub are opposed to each other. I have. Then, based on the rotation of the hub, the light receiving unit of the optical sensor changes in response to a change in the phase difference between the first and second through holes about the center axis of the hub. The torque applied to the hub is freely measurable from the intensity of the light received at the hub.
Still preferably, at least one of the first through hole and the second through hole is directly formed in a part of a mounting flange provided on the hub. .
[0012]
[Action]
According to the rolling bearing unit for a wheel of the present invention configured as described above, at the time of sudden braking or braking on a slippery road where ABS control is required, or control of a traction control system (TCS). The torque acting on the drive wheels can be accurately measured at the time of sudden acceleration or acceleration on a slippery road surface that requires the following.
That is, at the time of braking, the rotation speed is shifted between the drive wheel whose rotation speed is reduced by the braking torque based on the operation of the braking device such as the disc brake or the drum brake, and the drive shaft that rotates together with the crankshaft of the engine. Become a trend. Then, a torque in a predetermined direction is applied to the hub in accordance with the tendency of the rotational speed to shift.
In addition, during acceleration, the rotational speed tends to shift between the drive shaft to which the driving force from the engine is applied and the drive wheels whose rotational increase tends to be delayed due to the frictional resistance acting on the contact portion with the road surface. Then, a torque in a direction opposite to the predetermined direction is applied to the hub according to the tendency of the rotational speed to shift.
[0013]
As a result, according to the magnitude and direction of the torque, the hub is elastically deformed in a direction twisted about its own central axis. The center of the hub is located between the first and second through-holes provided directly or via another member at the two portions of the hub by the amount of the elastic deformation. The phase difference changes. For this reason, the cross-sectional area of the portion through which the light emitted from the light emitting portion of the optical sensor passes changes inside the first and second through holes. Therefore, of the light emitted from the light emitting portion, the light was transmitted through the first and second through holes and reached the light receiving portion of the optical sensor. The magnitude and direction of the torque can be detected. As described above, according to the rolling bearing unit for a wheel of the present invention, the torque applied to the hub, which is a member to which the torque acting on the drive wheel is directly transmitted during braking and acceleration, can be measured. Torque can be accurately measured while suppressing the influence of disturbance.
Furthermore, according to the preferred configuration, the rigidity of the mounting flange can be appropriately reduced, and the amount of distortion of the mounting flange can be increased, so that the accuracy of detecting the torque acting on the drive wheel can be improved and the number of parts can be reduced. Can be achieved.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 3 show a first example of an embodiment of the present invention corresponding to claim 1. The feature of the present invention is that the first part of the hub 8 is used to measure the torque applied to the hub 8 which is a member to which the torque acting on the drive wheel is directly transmitted during braking and acceleration. , And the second through holes 25 and 26 are provided directly or via another member. The structure and operation of the other parts are the same as those of the conventional structure shown in FIG. 7 described above. Therefore, the duplicate description will be omitted or simplified, and the following description will focus on the characteristic parts of the present invention.
[0015]
In the case of this example, the first annular member 27 and the second annular member 28 are fixed to two portions of the mounting flange 15 provided on the outer peripheral surface of the outer end of the hub body 13. The first annular member 27 is made of a plate material such as a metal plate into a ring shape, and has a rod portion 29 of the stud 9 for coupling the wheel and the rotor 2 (see FIG. 7) near the inner periphery. Are formed in a plurality of circular holes 30, 30, respectively. In addition, first through holes 25, 25 are axially penetrated through a plurality of first through holes 25, 25 at a plurality of circumferentially equidistant portions of a portion near the outer periphery of the first annular member 27, respectively. It is formed in a state. These first through-holes 25, 25 have the same sector shape with a long circumferential dimension and a short radial dimension, and the dimensions of each part are the same between the first through-holes 25, 25. I have. The width W 25 (FIG. 3) of each of the first through holes 25, 25 in the radial direction is the same over the entire circumferential length of each of the first through holes 25, 25. In a state where the rod portions 29 of the studs 9 are inserted through the plurality of circular holes 30 provided in the first annular member 27, the serration portions 31 provided near the base end of the rod portions 29 are provided. Are press-fitted and fixed in respective mounting holes 32 provided in the mounting flange 15. Further, a portion of the first annular member 27 near the inner periphery is sandwiched between the side surface of the head 33 of each stud 9 and the inner surface of the mounting flange 15. With this configuration, the first annular member 27 is fixedly connected to the hub body 13. In this state, the portion where the plurality of first through holes 25 and 25 are formed near the outer periphery of the first annular member 27 has an outer diameter smaller than the circumscribed circle of the outer peripheral side surface of the mounting flange 15. Exists on the side. Further, the first through holes 25 are arranged at equal intervals on the same circumference centered on the center axis of the hub body 13.
[0016]
On the other hand, the second annular member 28 includes a circular ring portion 34 and a fitting cylindrical portion 35 provided in a state of continuing from the inner peripheral edge of the circular ring portion 34 to the outside in the axial direction. The same number of second through-holes 26, 26 as the first through-holes 25, 25 provided in the first annular member 27 are formed in the portion near the outer periphery of the annular portion 34, respectively. The plurality of first through holes 25 are formed at an equal pitch so as to penetrate both side surfaces of the member 27 in the axial direction. The second through holes 26 have the same shape and dimensions as the first through holes 25. The pitch circle diameter d 26 of the plurality second hole 26, 26 is the same as the pitch circle diameter d 25 of the plurality of first through holes 25,25 (d 26 = d 25) .
[0017]
On the other hand, a cylindrical surface portion 36 having the center axis of the hub body 13 as its center is provided on the outer peripheral surface of the inner surface of the mounting flange 15 near the base end. The fitting cylindrical portion 35 constituting the second annular member 28 is externally fitted and fixed to the cylindrical surface portion 36 by interference fitting or the like. Further, the axially outer end edge of the fitting cylindrical portion 35 is brought into contact with a portion near the base end of the inner surface of the mounting flange 15. In this state, a gap is formed between the outer surface of the annular portion 34 constituting the second annular member 28 and the end surface of the head 33 provided on each of the studs 9. In the case of this example, the phase of each of the first through holes 25 and 25 is shifted from the phase of each of the second through holes 26 and 26, and the phase of each of the first through holes 25 and 25 is changed. A part of each of the second through holes 26, 26 in the circumferential direction is overlapped with each other in the axial direction of the hub body 13. In the case of the present example, the cross-sectional area of the overlapping portion is 1 / of the cross-sectional area of each of the first and second through holes 25 and 26 in a state where torque is not applied to the hub 8. It is regulated so that it becomes each.
[0018]
The optical sensor 37 is supported by a part of a suspension device (not shown). The optical sensor 37 includes a light emitting element 38 composed of an LED or the like, and a light receiving element 39 composed of a photodiode or the like. The light sensor 37 receives the light emitted from the light emitting element 38 by the light receiving element 39 and converts the received light into a voltage signal so that the intensity of the received light can be detected. Is what you do. Then, in a part of the suspension device (not shown), a portion of the outer peripheral portion of the first annular member 27 which is closer to the outer diameter than the circumscribed circle of the outer peripheral surface of the mounting flange 15 is located at a position facing the outer surface. The light emitting element 38 is fixed. Further, the light receiving element 39 is fixed to a part of the suspension device at a position facing an inner side surface of a portion near the outer periphery of the annular portion 34 provided on the second annular member 28. The light emitting part of the light emitting element 38 and the light receiving part of the light receiving element 39 are separated from each other by the first annular member 27 and the second annular member 28 near the outer periphery. Are opposed to each other through the portions where the through holes 25 and 26 are formed. The detection signal extracted from the optical sensor 37 via the harness 40 is sent to a controller (not shown) for controlling ABS, TCS, and the like.
[0019]
Further, in the case of this example, a ring-shaped concave portion that is recessed in the axial direction is formed in the half portion on the inner diameter side of the outer surface of the mounting flange 15 (a portion radially inner than the portion where the plurality of studs 9 are fixed). 41 are formed. As a result, the side surface of the braking rotary member such as a brake disk or a brake drum that is connected and fixed to the mounting flange 15 does not abut on the inner diameter side half corresponding to the concave portion 41 on the outer surface of the mounting flange 15. I am doing it. The reason for forming such a concave portion 41 is to prevent the side surface of the rotating member for braking from coming into contact with the entire outer surface of the mounting flange 15. That is, when the side surface of the rotating member for braking abuts on the entire outer surface of the mounting flange 15, the mounting flange 15 is adjusted to the magnitude of the applied torque based on the frictional force acting on the abutting portion. Accordingly, elastic deformation cannot be performed (in proportion to the magnitude of the torque). For this reason, in the case of this example, by forming the concave portion 41, the side surface of the rotating member for braking is prevented from contacting the entire outer surface of the mounting flange 15, and the mounting flange 15 is It is designed to be elastically deformable in proportion to the torque applied.
[0020]
According to the rolling bearing unit for a wheel according to the present embodiment configured as described above, at the time of sudden braking that requires ABS control or at the time of braking on a slippery road surface, or at the time that TCS control is required. It is possible to accurately measure the torque acting on the drive wheels during a rapid acceleration or acceleration on a slippery road surface. That is, the torque acting on the drive wheels in this way is directly applied to the hub 8. As a result, according to the magnitude and direction of the torque, the hub 8 is elastically deformed in a direction twisted about its own central axis. The first and second through holes 25 and 26 provided in the first and second annular members 27 and 28 fixed to the two portions of the hub 8 by an amount corresponding to the elastic deformation in this manner are used. During this time, the phase difference about the center axis of the hub 8 changes. Therefore, the cross-sectional area of a portion of the inner portion of each of the first and second through-holes 25 and 26 in the circumferential direction that changes in the axial direction of the hub 8 changes. For example, a portion of the hub 8 supporting the first annular member 27 is rotated in a clockwise direction in FIG. When a torque is applied to the hub 8, the cross-sectional area increases. Conversely, a portion of the hub 8 that supports the first annular member 27 is twisted counterclockwise in FIG. 2 with respect to a portion that also supports the second annular member 28. When a torque is applied to the hub 8, the sectional area becomes smaller. In accordance with such a change in the cross-sectional area, the measured value of the intensity of light detected by the light receiving portion of the optical sensor 37 is changed from that shown in FIG. 4A to, for example, FIG. C). Therefore, the magnitude and direction of the torque applied to the hub 8 can be detected by determining the change in the maximum value of the light intensity detected by the light receiving unit. As described above, according to the wheel rolling bearing unit of the present invention, the torque applied to the hub 8, which is a member to which the torque acting on the drive wheel is directly transmitted during braking and acceleration, can be measured. The acting torque can be accurately measured while suppressing the influence of disturbance. Further, the rotation speed of the hub 8 can be known from the same wave number of a signal that changes as the light receiving section detects light.
[0021]
The force applied from the drive wheel to the ground in the direction perpendicular to the ground (ground contact force) is F, the coefficient of kinetic friction at the contact portion between the drive wheel and the ground is μ, and the distance from the center of the drive wheel to the ground contact point. Is R, the torque T acting on the drive wheel can be obtained by the following equation.
T = F × μ × R
Therefore, by substituting the torque T acting on the drive wheels and the previously determined F and R into the equation, the dynamic friction coefficient μ can be determined, and the stable It becomes easier to control the driving of the car.
[0022]
Next, FIG. 5 shows a second example of the embodiment of the present invention, which also corresponds to claim 1. In the case of this example, of the pair of inner raceways 16a, 16b, the inner raceway 16a on the axially outer side is formed on the outer peripheral surface of a separate inner race 42 which is fitted to the small-diameter step portion 17a of the hub body 13a. ing. In the illustrated example, a seal ring similar to the seal ring 21b closing the inner end opening is used as the seal ring 21c closing the outer end opening of the space in which the plurality of balls 18 and 18 are installed.
[0023]
In particular, in the case of this example, the circumferential direction of the plurality of first and second through holes 43 and 44 provided in the first and second annular members 27a and 28a fixed to two portions of the hub body 13a. Some of them are opposed to each other in the radial direction. For this reason, in the case of the present example, the first annular member 27a is formed by a circular ring portion 45 and a cylindrical portion 46 provided in a state of continuing from the outer peripheral edge of the circular ring portion 45 inward in the axial direction. Make up. Out of these, circular holes 30 through which the rod portions 29 of the studs 9 can be inserted are formed at a plurality of circumferential positions of the circular ring portion 45. Further, the first through holes 43 are radially penetrated through the inner and outer peripheral surfaces of the cylindrical portion 46 at a plurality of positions at equal intervals in the circumferential direction near the inner end in the axial direction of the cylindrical portion 46, respectively. It is formed in a state where it does. Each of the first through holes 43 has the same rectangular shape having a long circumferential dimension and a short axial dimension. Such a first annular member 27a allows the rod portion 29 of the stud 9 to pass through the circular hole 30 provided in the circular ring portion 45, and furthermore, the serration portion 31 provided in the rod portion 29 to the mounting flange 15. The mounting flange 32 is fixed to the mounting flange 15 by press fitting.
[0024]
On the other hand, the second annular member 28a includes an annular portion 47, and an inner cylindrical portion 48 and an outer cylindrical portion 48 which are provided in a state of being continuous from both inner and outer peripheral edges of the annular portion 47 in opposite directions with respect to the axial direction. And a section 49. Outer diameter D 49 of the outer diameter side cylindrical part 49 of this is smaller than the inner diameter d 46 of the cylindrical portion 46 constituting the first annular member 27a (D 49 <d 46) . Then, the same number of the second through holes 44 as the plurality of first through holes 43 pass through the outer diameter side cylindrical portion 49 radially through both the outer and inner peripheral surfaces of the outer diameter side cylindrical portion 49. In this state, the plurality of first through holes 43 are formed at an equal pitch. Each of the second through holes 44 has the same shape and size as those of the first through holes 43. The inner cylindrical portion 48 is externally fixed to the portion of the outer peripheral surface of the hub body 13a which is deviated inward in the axial direction from the base end of the mounting flange 15 by interference fitting or the like. In this state, the first through holes 43 and the second through holes 44 are partially overlapped in the radial direction with respect to the radial direction, and the cross-sectional area of the overlapped portion is ( (The torque is not applied to the hub body 13a).
[0025]
Further, a light emitting element 38 constituting the optical sensor 37 is fixed to a part of a suspension device (not shown) at a position facing the inner peripheral surface of the outer diameter side cylindrical portion 49 provided on the second annular member 28a. Similarly, a light receiving element 39 constituting the optical sensor 37 is fixed at a position facing the outer peripheral surface of the outer cylindrical portion 46 provided on the first annular member 27a. The light-emitting portion of the light-emitting element 38 and the light-receiving portion of the light-receiving element 39 are combined with a part of the cylindrical portion 49 of the second annular member 28a in the axial direction where each second through-hole 44 is formed. Of the outer cylindrical portion 46 of the first annular member 27a, the first annular member 27a is opposed to a portion in the axial direction where each first through hole 43 is formed.
Also in the case of the present embodiment having such a configuration, the torque acting on the drive wheels can be reduced by using the first and second through holes 43 and 44 provided in the first and second annular members 27a and 28a. Can be measured accurately. Other configurations and operations are the same as those of the first example shown in FIGS.
[0026]
Next, FIG. 6 shows a third example of the embodiment of the present invention corresponding to claim 1 and claim 2. In the case of the present example, unlike the above-described examples, the plurality of first through holes 50 are directly formed in the annular mounting flange 15 a provided on the hub body 13. That is, a part of the mounting flange 15a is formed so as to penetrate the pair of first through-holes 50, 50 in the axial direction at portions where the angle is shifted by α. Each of the first through holes 50 has a fan shape having a short circumferential dimension and a long radial dimension. A pair of first through holes 50 provided in a part of the mounting flange 15a whose angle is shifted by α are shifted by an angle β. A rod portion of each stud 9 is provided in a part of the mounting flange 15a between a plurality of first through hole sets 51, 51 each of which includes the pair of first through holes 50, 50. Mounting holes 32, 32 through which the holes 29 can be inserted are formed.
[0027]
In addition, a part of the inner portion of each second through hole 26 (see FIGS. 1 and 2) provided in the second annular member 28 externally fitted and fixed to the outer peripheral portion near the outer end of the hub body 13 in the circumferential direction. A part of the inside of each of the first through holes 50, 50 in the circumferential direction is opposed to each other in the axial direction. Then, the light emitting portion of the light emitting element 38 (see FIG. 1) constituting the optical sensor 37 is opposed to the outer surface of the portion where the first through holes 50, 50 are formed by a part of the mounting flange 15a. The light receiving portion of the light receiving element 39 (see FIG. 1) constituting the optical sensor 37 is opposed to the inner surface of the portion where the second through holes 26 are formed by a part of the second annular member 28. Let me.
[0028]
In the case of this example having such a configuration, since the plurality of first through holes 50, 50 are directly formed in the mounting flange 15a, the first annular member 27 separate from the hub main body 15a. (See FIGS. 1 and 2) can be omitted. Therefore, the number of parts can be reduced, and the cost can be easily reduced. Further, since the plurality of first through holes 50 are formed in a part of the mounting flange 15a, the rigidity of the mounting flange 15a can be reduced. Therefore, the amount of distortion of the mounting flange 15a can be increased, and the accuracy of detecting the torque acting on the drive wheels can be improved. Other configurations and operations are the same as those of the first example shown in FIGS. 1 to 4 described above, and therefore, the same parts are denoted by the same reference numerals and overlapping description will be omitted.
[0029]
In addition, in the case of each example mentioned above, the case where the first and second through holes 25, 26, 43, 44, and 50 have the same shape and size as each other has been described. However, the present invention is not limited to such a structure, and the shapes and dimensions of the through holes may be different from each other. Also, the first and second through holes 25, 26, 43, 44, 50 may be provided one by one. However, when a plurality of the first and second through holes 25, 26, 43, 44, and 50 are provided, as in the above-described examples, the torque acting on the drive wheels is frequently measured. Thus, the measurement accuracy can be increased.
[0030]
【The invention's effect】
Since the rolling bearing unit for a wheel according to the present invention is configured and operates as described above, control of various devices such as ABS and TCS for stabilizing the posture of the vehicle, shortening the braking distance, securing good kinetic performance, and the like. It is possible to accurately obtain a signal to be used for
[Brief description of the drawings]
FIG. 1 is a half sectional view showing a first example of an embodiment of the present invention.
FIG. 2 is a view taken in the direction of arrow A in FIG. 1;
FIG. 3 is a diagram illustrating only the first annular member constituting the first example taken out and viewed from the same direction as FIG. 2;
FIGS. 4A and 4B show periodic changes in the intensity of light detected by the optical sensor. FIG. 4A shows a state in which torque is not applied to the hub, and FIGS. 4B and 4C show states in which torque is applied to the hub in opposite directions. FIG.
FIG. 5 is a half sectional view showing a second example of the embodiment of the present invention.
FIG. 6 is a view showing the third example, partially omitted, and viewed from the left side of FIG. 1;
FIG. 7 is a half sectional view of a suspension unit to which a rolling bearing unit for a wheel according to the present invention is attached.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Wheel 2 Rotor 3 Knuckle 4 Support hole 5 Wheel rolling bearing unit 6 Outer ring 7 Bolt 8 Hub 9 Stud 10 Nut 11a, 11b Outer ring track 12 Coupling flange 13, 13a Hub main body 14 Inner ring 15, 15a Mounting flange 16a, 16b Inner ring track 17, 17a Small diameter step portion 18 Ball 19 Cage 20 Caulking portion 21a to 21c Seal ring 22 Spline hole 23 Constant velocity joint 24 Spline shaft 25 First through hole 26 Second through hole 27, 27a First annular member 28 , 28a first annular member 29 rod portion 30 circular hole 31 serration portion 32 mounting hole 33 head 34 circular ring portion 35 fitting cylindrical portion 36 cylindrical surface portion 37 optical sensor 38 light emitting element 39 light receiving element 40 harness 41 recess 42 inner ring 43 First through hole 44 Second through hole 45 Circle portion 46 Cylindrical portion 47 circular ring portion 48 inner diameter-side cylindrical portion 49 the outer diameter side cylindrical portion 50 first through hole 51 first hole pairs

Claims (2)

内周面に複列の外輪軌道を有し、使用時に懸架装置に支持固定された状態で回転しない外輪と、外周面の外端寄り部分に車輪及び制動用回転体を支持する為の取付フランジを、同じく中間部乃至内端部に複列の内輪軌道を、中心部に駆動用のスプライン軸を係合させる為のスプライン孔を、それぞれ有し、使用時に車輪と共に回転するハブと、上記各外輪軌道と上記各内輪軌道との間にそれぞれ複数個ずつ転動自在に設けられた転動体とを備えた車輪用転がり軸受ユニットに於いて、上記ハブの互いに離隔した2個所の部分に直接又は別の部材を介して設けられた第一、第二の透孔が互いに対向しており、上記ハブが回転する事に基づいて、このハブの中心軸を中心とする上記第一、第二の両透孔同士の位相差が変化する事に応じて変化する、光センサの受光部で受ける光の強度から、上記ハブに加わるトルクを測定自在とした事を特徴とする車輪用転がり軸受ユニット。An outer ring that has a double-row outer ring track on the inner peripheral surface and does not rotate while being supported and fixed to the suspension device during use, and a mounting flange for supporting the wheel and the rotating body for braking at a portion near the outer end of the outer peripheral surface A hub that has a double-row inner raceway at the middle part to the inner end, a spline hole at the center part for engaging a driving spline shaft, and rotates together with the wheel when in use; In a wheel rolling bearing unit provided with a plurality of rolling elements rotatably provided between the outer raceway and the inner raceways, a plurality of rolling elements are provided directly or at two separated portions of the hub. The first and second through holes provided via another member are opposed to each other, and based on the rotation of the hub, the first and second through holes centered on the center axis of the hub. Changes as the phase difference between the two through holes changes From the intensity of light received by the light receiving portion of optical sensor, a wheel rolling bearing unit, characterized in that the freely measured torque applied to the hub. 第一の透孔と第二の透孔とのうちの少なくとも一方の透孔が、ハブに設けた取付フランジの一部に直接形成されている、請求項1に記載した車輪用転がり軸受ユニット。The rolling bearing unit for a wheel according to claim 1, wherein at least one of the first through hole and the second through hole is formed directly in a part of a mounting flange provided on the hub.
JP2002196018A 2002-07-04 2002-07-04 Ball-and-roller bearing unit for wheel Pending JP2004037304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196018A JP2004037304A (en) 2002-07-04 2002-07-04 Ball-and-roller bearing unit for wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196018A JP2004037304A (en) 2002-07-04 2002-07-04 Ball-and-roller bearing unit for wheel

Publications (1)

Publication Number Publication Date
JP2004037304A true JP2004037304A (en) 2004-02-05

Family

ID=31704242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196018A Pending JP2004037304A (en) 2002-07-04 2002-07-04 Ball-and-roller bearing unit for wheel

Country Status (1)

Country Link
JP (1) JP2004037304A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052816A (en) * 2004-08-16 2006-02-23 Ntn Corp Bearing device for wheel
JP2008512690A (en) * 2004-09-10 2008-04-24 シエフレル・コマンデイトゲゼルシヤフト Method for detecting stress in a bearing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052816A (en) * 2004-08-16 2006-02-23 Ntn Corp Bearing device for wheel
JP4484104B2 (en) * 2004-08-16 2010-06-16 Ntn株式会社 Wheel bearing device
JP2008512690A (en) * 2004-09-10 2008-04-24 シエフレル・コマンデイトゲゼルシヤフト Method for detecting stress in a bearing device

Similar Documents

Publication Publication Date Title
JP2004142577A (en) Rolling bearing unit for wheel
JP2004155261A (en) Wheel supporting device
US8087831B2 (en) Rotary support for wheel with encoder
CN110385940A (en) It is provided with the hub for vehicle wheel component of novel sensor holder
JP2003205833A (en) Rolling bearing unit for supporting wheel
US8397590B2 (en) Bearing for wheel with sensor
JP2003246201A (en) Rolling bearing unit for supporting wheel
JP3969142B2 (en) Rolling bearing unit for wheel support
JP2004037304A (en) Ball-and-roller bearing unit for wheel
JP2004019934A (en) Roller bearing unit for wheels
JP2008024064A (en) Bearing unit
JP2004069332A (en) Unit for wheel actuation
JP2004271180A (en) Rolling bearing unit with torque measuring device, and unit for wheel driving with torque measuring device
JP2689465B2 (en) Bearing unit for wheels
JP2006144966A (en) Rolling bearing device
JP2001199202A (en) Wheel bearing device
JP4134872B2 (en) Rolling bearing device
JP7156072B2 (en) Part locking structure
JP2000356646A (en) Rolling bearing unit with rotation speed detection device
JP4706306B2 (en) Bearing unit with rotation detector
JP2004176730A (en) Roller bearing unit for wheel with encoder
JP2001311442A (en) Brake rotor and wheel bearing device provided with the same
JP3491394B2 (en) Rolling bearing unit with tone wheel
WO2004038245A1 (en) Bearing unit for wheel
JP2007232150A (en) Seal with encoder and bearing unit