JP2004037148A - Sliding testing method - Google Patents

Sliding testing method Download PDF

Info

Publication number
JP2004037148A
JP2004037148A JP2002191948A JP2002191948A JP2004037148A JP 2004037148 A JP2004037148 A JP 2004037148A JP 2002191948 A JP2002191948 A JP 2002191948A JP 2002191948 A JP2002191948 A JP 2002191948A JP 2004037148 A JP2004037148 A JP 2004037148A
Authority
JP
Japan
Prior art keywords
coefficient
lubricating oil
mold
lubricant
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002191948A
Other languages
Japanese (ja)
Inventor
Masahiro Yamamoto
山本 正博
Yoshinobu Komiyama
込山 慶信
Koichi Ohori
大堀 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2002191948A priority Critical patent/JP2004037148A/en
Publication of JP2004037148A publication Critical patent/JP2004037148A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding testing method for minimizing a variation in the coefficient of dynamic friction and that of static one due to a sliding test and effectively evaluating performance in lubricant and lubricating oil. <P>SOLUTION: The lubricant or lubricating oil of 3 to 10 g/m<SP>2</SP>is applied onto the surface of a metallic plate, a die whose side has a semicircular bead restricts the metallic plate by a pressing force of 2 to 5 kN, extraction is made at an extraction speed of 10 to 10 mm/s, and the coefficient of friction on the surface of the metallic plate is measured. As a result, the variation in the coefficient of dynamic friction and that of static one can be restrained, testing accuracy increases, and workability is improved without increasing the number of tests. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、主として自動車ボディシート用アルミニウム合金板材に使用される潤滑剤又は潤滑油について、摩擦特性から潤滑性能を見極め、潤滑剤又は潤滑油の優劣を判定する手段としての摺動試験方法に関するものである。
【0002】
【従来の技術】
自動車ボディシートのプレス成形時の潤滑剤、潤滑油の評価方法としては、実物のプレス金型を使用して成形を行うことが最も確実な方法ではあるが、多くの労力と費用がかかるので、摺動試験によるシミュレートが行われている。摺動試験は金型で押さえ付けられた被試験材を、ある速度で引抜き、その時の引抜力および押付力の変化を測定し、引抜力と押付力の比から摩擦係数を求めるものである。しかし従来の摺動試験方法では、同じ潤滑剤、潤滑油でも複数回の試験で動摩擦係数および静摩擦係数のバラツキが大きく、ある一定の素材に対する潤滑剤または潤滑油の性能を摩擦特性により評価する上で摩擦係数の再現性が得られず、試験片の数を増やす以外に有効な方法がなかった。
【0003】
【発明が解決しようとする課題】
本発明は、摺動試験による動摩擦係数および静摩擦係数のバラツキを最小限に抑え、潤滑剤、潤滑油の性能を有効に評価し得る摺動試験方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決するために本発明の摺動試験方法のうち、請求項1記載の摺動試験方法の発明は、金属板の表面に潤滑剤又は潤滑油を3〜10g/m塗布し、側面が半円状のビードを所有する金型により押付力2〜5kNで前記金属板を拘束し、引抜速度10〜100mm/sで引き抜き、前記金属板の表面の摩擦係数を測定することを特徴とする。
【0005】
請求項2記載の摺動試験方法の発明は、請求項1記載の発明において、前記金型が半円状のビードを2つ所有する金型(Wビード型)であることを特徴とする。
【0006】
以下に本発明で限定する事項について説明する。
潤滑剤又は潤滑油の塗布量が3g/m未満だと摩擦係数のバラツキが大きくなる。10g/mを越えると、摩擦係数が小さくなり、評価がし辛くなる。よって潤滑剤又は潤滑油の塗布量は3〜10g/mに設定した。
【0007】
押付力が2kN未満では金型と被試験材が全面拘束されず不具合が生じる。5kNを越えると摩擦係数のバラツキが大きくなる。よって押付力は2〜5kNに設定した。
【0008】
引抜速度が10mm/s未満では測定距離が短すぎて、摩擦係数の安定領域を選定できず不具合が生じる。100mm/sを越えると摩擦係数のバラツキが大きくなる。よって引抜速度は10〜100mm/sに設定した。
【0009】
側面が半円状のビードを2つ所有する金型(Wビード型)を用いることにより、ビードが1つの金型と比較して、動摩擦係数と静摩擦係数の差が大きくなり、微妙な潤滑性能の違いを把握することができる。図1はビードが1つの金型、図2はWビード型を示している。
【0010】
【実施例】
本発明の試験方法及び従来の試験方法に基づき、摺動装置を用い、潤滑油の摩擦係数を測定した。試験片は長さ600mm、幅30mm、板厚1.0mmのアルミニウム合金材を使用した。ビードの半円の直径は10mmである。まずビードが1つの金型で表1の試験条件で摺動試験を行った。n数は12である。その結果を図3に示す。
【0011】
【表1】

Figure 2004037148
【0012】
図3の結果から本発明の潤滑油の塗布量、押付力、引抜速度の方が摩擦係数のバラツキが小さいことがわかる。
【0013】
次に表1の実施例の条件でビードが1つのものとWビード型で2種類の潤滑油で試験を行った。n数は12である。結果を図4に示す。
【0014】
図4の結果からビードが2つの方が潤滑油Aと潤滑油Bで静摩擦係数の差がはっきり現れていることがわかる。
【0015】
【発明の効果】
摺動試験における潤滑剤または潤滑油の性能評価方法について、本発明による条件にて行った場合、動摩擦係数および静摩擦係数についてのバラツキが抑制できるため、試験精度が向上し、試験数も増やすことなく作業性が向上される。
【図面の簡単な説明】
【図1】従来のシングルビード型を示す図である。
【図2】Wビード型を示す図である。
【図3】シングルビード金型で、試験条件を変えた場合の動摩擦係数と静摩擦係数の分布を示す図である。
【図4】シングルビード金型と、Wビード金型での動摩擦係数と静摩擦係数の分布を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sliding test method as a means for judging the lubricating performance from frictional characteristics and judging the superiority of a lubricant or a lubricating oil, mainly for a lubricant or a lubricating oil used for an aluminum alloy sheet for an automobile body sheet. It is.
[0002]
[Prior art]
The most reliable method for evaluating lubricants and lubricants during press molding of automobile body sheets is to use a real press die, but it requires a lot of labor and cost. The simulation by the sliding test is performed. The sliding test is to pull out the test material pressed by the mold at a certain speed, measure the change of the pulling force and the pressing force at that time, and obtain the friction coefficient from the ratio of the pulling force to the pressing force. However, in the conventional sliding test method, even if the same lubricant and lubricating oil are used, the dynamic friction coefficient and the static friction coefficient vary greatly in a plurality of tests, and the performance of the lubricant or the lubricating oil for a certain material is evaluated by friction characteristics. No reproducibility of friction coefficient was obtained, and there was no effective method other than increasing the number of test pieces.
[0003]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a sliding test method capable of minimizing variations in a coefficient of dynamic friction and a coefficient of static friction in a sliding test and effectively evaluating the performance of a lubricant and a lubricating oil.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, among the sliding test methods of the present invention, the invention of the sliding test method according to claim 1 applies a lubricant or lubricating oil to a surface of a metal plate at 3 to 10 g / m 2 , The metal plate is restrained with a pressing force of 2 to 5 kN by a mold having a bead having a semicircular side surface, pulled out at a drawing speed of 10 to 100 mm / s, and the friction coefficient of the surface of the metal plate is measured. And
[0005]
The invention of a sliding test method according to a second aspect is the invention according to the first aspect, wherein the mold is a mold having two semicircular beads (W bead mold).
[0006]
Hereinafter, matters limited by the present invention will be described.
If the amount of the lubricant or lubricating oil applied is less than 3 g / m 2 , the variation in the coefficient of friction increases. If it exceeds 10 g / m 2 , the coefficient of friction becomes small, making evaluation difficult. Therefore, the application amount of the lubricant or the lubricating oil was set to 3 to 10 g / m 2 .
[0007]
If the pressing force is less than 2 kN, the mold and the material to be tested are not entirely constrained, causing a problem. If it exceeds 5 kN, the variation in the coefficient of friction increases. Therefore, the pressing force was set to 2 to 5 kN.
[0008]
If the drawing speed is less than 10 mm / s, the measurement distance is too short, so that a stable region of the friction coefficient cannot be selected, causing a problem. If it exceeds 100 mm / s, the variation in the coefficient of friction increases. Therefore, the drawing speed was set to 10 to 100 mm / s.
[0009]
By using a mold having two semicircular beads (W bead mold), the difference between the coefficient of dynamic friction and the coefficient of static friction is larger than that of a mold with one bead. Can understand the difference. 1 shows a mold having one bead, and FIG. 2 shows a W bead mold.
[0010]
【Example】
Based on the test method of the present invention and the conventional test method, the friction coefficient of the lubricating oil was measured using a sliding device. The test piece used was an aluminum alloy material having a length of 600 mm, a width of 30 mm and a thickness of 1.0 mm. The diameter of the semicircle of the bead is 10 mm. First, a sliding test was performed with one bead under the test conditions shown in Table 1. The number n is 12. The result is shown in FIG.
[0011]
[Table 1]
Figure 2004037148
[0012]
From the results shown in FIG. 3, it can be seen that the variation of the friction coefficient is smaller in the application amount, the pressing force, and the pulling speed of the lubricating oil of the present invention.
[0013]
Next, a test was performed using two types of lubricating oils of one bead type and W bead type under the conditions of the examples in Table 1. The number n is 12. FIG. 4 shows the results.
[0014]
It can be seen from the results of FIG. 4 that the difference in the static friction coefficient between the lubricating oil A and the lubricating oil B clearly appears when the two beads are used.
[0015]
【The invention's effect】
About the performance evaluation method of the lubricant or the lubricating oil in the sliding test, when performed under the conditions according to the present invention, variations in the dynamic friction coefficient and the static friction coefficient can be suppressed, so that the test accuracy is improved and the number of tests is not increased. Workability is improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a conventional single bead type.
FIG. 2 is a view showing a W-bead type.
FIG. 3 is a diagram showing distributions of a dynamic friction coefficient and a static friction coefficient when a test condition is changed in a single bead mold.
FIG. 4 is a diagram showing distributions of a dynamic friction coefficient and a static friction coefficient in a single bead mold and a W bead mold.

Claims (2)

金属板の表面に潤滑剤又は潤滑油を3〜10g/m塗布し、側面が半円状のビードを所有する金型により押付力2〜5kNで前記金属板を拘束し、引抜速度10〜100mm/sで引き抜き、前記金属板の表面の摩擦係数を測定することを特徴とする摺動試験方法。Lubricant or lubricating oil is applied to the surface of the metal plate at 3 to 10 g / m 2, and the metal plate is restrained with a pressing force of 2 to 5 kN by a mold having a bead having a semicircular side surface, and a drawing speed of 10 to 10 g / m 2. A sliding test method comprising drawing at 100 mm / s and measuring the friction coefficient of the surface of the metal plate. 前記金型が半円状のビードを2つ所有する金型(以下、Wビード型と称す)であることを特徴とする請求項1記載の摺動試験方法。The sliding test method according to claim 1, wherein the mold is a mold having two semicircular beads (hereinafter, referred to as a W bead mold).
JP2002191948A 2002-07-01 2002-07-01 Sliding testing method Pending JP2004037148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191948A JP2004037148A (en) 2002-07-01 2002-07-01 Sliding testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191948A JP2004037148A (en) 2002-07-01 2002-07-01 Sliding testing method

Publications (1)

Publication Number Publication Date
JP2004037148A true JP2004037148A (en) 2004-02-05

Family

ID=31701377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191948A Pending JP2004037148A (en) 2002-07-01 2002-07-01 Sliding testing method

Country Status (1)

Country Link
JP (1) JP2004037148A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019740A (en) * 2008-07-11 2010-01-28 Availvs Corp Slip evaluation method for handrail material and test device
RU2572526C1 (en) * 2014-12-18 2016-01-20 Общество с ограниченной ответственностью ХОЗРАСЧЕТНЫЙ ТВОРЧЕСКИЙ ЦЕНТР УФИМСКОГО АВИАЦИОННОГО ИНСТИТУТА Evaluation of lubing materials efficiency
CN109142213A (en) * 2018-11-02 2019-01-04 航宇救生装备有限公司 Rocket sledge sliding rail coefficient of sliding friction measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019740A (en) * 2008-07-11 2010-01-28 Availvs Corp Slip evaluation method for handrail material and test device
RU2572526C1 (en) * 2014-12-18 2016-01-20 Общество с ограниченной ответственностью ХОЗРАСЧЕТНЫЙ ТВОРЧЕСКИЙ ЦЕНТР УФИМСКОГО АВИАЦИОННОГО ИНСТИТУТА Evaluation of lubing materials efficiency
CN109142213A (en) * 2018-11-02 2019-01-04 航宇救生装备有限公司 Rocket sledge sliding rail coefficient of sliding friction measuring device
CN109142213B (en) * 2018-11-02 2021-03-23 航宇救生装备有限公司 Rocket sled slide rail sliding friction coefficient measuring device

Similar Documents

Publication Publication Date Title
Dilmec et al. Effect of geometrical and process parameters on coefficient of friction in deep drawing process at the flange and the radius regions
Duncan et al. A tensile strip test for evaluating friction in sheet metal forming
JP2004037148A (en) Sliding testing method
US8887553B2 (en) Apparatus for determining the inter-fiber frictional coefficient
Xu et al. Study on frictional behavior of AA 6XXX with three lube conditions in sheet metal forming
Kim et al. Measurement of a nearly friction-free stress–strain curve of silicone rubber up to a large strain in compression testing
Trzepieciński et al. Proposal for an Experimental-Numerical Method for Friction Description in Sheet Metal Forming.
Lai et al. An experimental method for characterizing friction properties of sheet metal under high contact pressure
CN106680201B (en) For the equipment of interface bond strength test and the test method of interface bond strength
KR20100076407A (en) Method for detecting friction coefficient of strip
JP2017181036A (en) Deterioration evaluation method for ultra minute amount of grease
Trzepieciński et al. Experimental evaluation of value of friction coefficient in the drawbead region
JP2950525B2 (en) Evaluation method for workability of plastic working oil
KR100924100B1 (en) Tip testing device, measuring method of shear friction factors using the tip testing device and estimating method for lubricant characteristics using the tip testing device
JP4244329B2 (en) Method for measuring plastic deformation hardness of boundary lubrication film
JP3960951B2 (en) Evaluation method of die casting mold release agent or lubricant
KR20160045396A (en) Method for measuring contact stiffness of frictional material
CN207051107U (en) A kind of universal testing machine of more accurate measurement material elongation percentage
JP3014087B2 (en) Indentation hardness tester
JP4259337B2 (en) Performance evaluation method and equipment for lubricant for forging
Trzepieciński et al. Experimental Evaluation of Draw Bead Coefficient of Friction
SU684397A1 (en) Method of determining lubricant effectiveness
RU2327144C1 (en) Method of determination of efficiency of technological lubricant in sheet-metal stamping
Salhotra et al. Influence of some test parameters on friction in acrylic fibres
Sakaue Evaluation of viscoelastic characteristics of polymer by using indentation method