JP2004036910A - Quartz burner device - Google Patents

Quartz burner device Download PDF

Info

Publication number
JP2004036910A
JP2004036910A JP2002190378A JP2002190378A JP2004036910A JP 2004036910 A JP2004036910 A JP 2004036910A JP 2002190378 A JP2002190378 A JP 2002190378A JP 2002190378 A JP2002190378 A JP 2002190378A JP 2004036910 A JP2004036910 A JP 2004036910A
Authority
JP
Japan
Prior art keywords
pipe
tube
nozzle
base
oxygen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002190378A
Other languages
Japanese (ja)
Other versions
JP3640071B2 (en
Inventor
Yasuyuki Ikeda
池田 靖之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI SEMICON KK
Original Assignee
ASAHI SEMICON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI SEMICON KK filed Critical ASAHI SEMICON KK
Priority to JP2002190378A priority Critical patent/JP3640071B2/en
Publication of JP2004036910A publication Critical patent/JP2004036910A/en
Application granted granted Critical
Publication of JP3640071B2 publication Critical patent/JP3640071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01815Reactant deposition burners or deposition heating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/043Heating devices specially adapted for re-forming tubes or rods in general, e.g. burners

Abstract

<P>PROBLEM TO BE SOLVED: To provide quartz burner device capable of securing a wide and uniform high temperature zone at a focal position of the flame by properly mixing an oxyhydrogen gas, uniformly performing the heating treatment onto a target material to be manufactured or worked, and improving the strength and working accuracy of a product. <P>SOLUTION: This quartz burner device comprises a cylindrical outer pipe 10 receiving an oxygen gas and a hydrogen gas, and extended in the injecting direction of these gases, a plurality of nozzle pipes 12 of a small diameter mounted in the outer pipe, and a nozzle pipe outer injection part 14 as a spacial part outside of the nozzle pipe, for injecting the supplied hydrogen gas toward the focal position. A local peripheral injection part 18 having an auxiliary pipe 16 concentrically mounted on an outer periphery of a central nozzle pipe 121 in at least the outer pipe 10 is mounted for injecting the hydrogen gas toward the focal position along the central nozzle pipe between the central nozzle pipe 121 and the auxiliary pipe 16. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、石英製の管から火炎を噴き出して種々の処理を行なう石英バーナ装置に関する。
【0002】
【従来の技術】
従来、対象物に熱を加えて加工する場合にバーナが用いられており、供給機から気体燃料や霧状液体燃料等を放出させてその火炎を直接に加工あるいは処理対象物に当てて所望の加工、処理等が行なわれる。これらのバーナは、耐熱金属を筒状に形成した噴射口から混合燃料を放出させて火炎を結ぶように構成されたものが通常である。一方、近時、精密機械器具や半導体生産分野等での種々の薬品・化合物の反応試験用器具、光学器械器具、その他真空分子蒸留装置、薄膜蒸発装置、蒸留装置、精製装置等を高耐熱、高強度の石英ガラス管により構成したものが広く適用されるようになっている。さらに、光通信用の光ファイバ等がMCVD(Modified chemical vapor deposition)法等により製造され、この場合に製造出発管として石英管が用いられ、Sicl4、Gecl4、O2等のガラス原料が気相で加熱した石英管内に供給されて、管内に透明ガラスを堆積させ、最終的に棒状の光ファイバ母材が製造される。このような高純度の石英管による装置、器具等の製作あるいは石英管を用いた加工を行なう際に用いられるバーナとして、従来の金属製バーナを使用する場合、石英ガラスの軟化点あるいは転移点がが高いものであるから、使用時に金属粉が加工対象の石英管に溶融混入し製造あるいは加工対象物としての製品の耐久性や強度を劣化させ、かつ、製品として適合し得ない。この点から、近時、バーナ自体を石英管により構成した石英バーナがしだいに用いられるようになってきている。
【0003】
図12ないし図14は、従来の石英バーナを示しており、外管10の内部であって、その外管の内壁から周状に間隙を空けて同心状に基部管100が設けられ、この基部管100内に酸素ガスが供給される。外管10は、燃料の供給側と放出側を有しており、放出側が開口されて混合ガスが反応して燃焼し、それによる火炎を該開口から噴射させる。基部管100のガス放出側には外管の断面略中心位置にガス放出側に向けて中心部ノズル管101が配置されるとともに、その中心部ノズル管101の周囲に6個の周ノズル管102a〜102fがそれぞれ基部管100の内部と連通してそれらのノズル先端開口をガス放出側に向けて設けられている。したがって、中心部ノズル管101と6個の周ノズル管102a〜102fとから酸素ガスがガス放出側に向けて噴射される。基部管100には例えば酸素ガス供給装置に接続された酸素ガス供給管103が接続されるとともに、外管10には外管と基部管及び複数のノズル管との間隙部分に連通するように例えば水素ガス供給管104が接続されている。
【0004】
【発明が解決しようとする課題】
この図12ないし図14に示す従来の石英バーナでは、ガスの噴き出し開口部分の断面積が水素ガス(ガス放出側開口全体)に比べて酸素ガス(中心部ノズル管101先端開口、あるいは周ノズル管102の各先端開口)の方が非常に小さく、したがって、高速に噴き出される酸素ガスの流れの内部に巻き込まれ、あるいは引き込まれるように周囲の水素ガスが混合して火炎となって所要の焦点位置に向けて噴出されるが、この際、個々の周ノズル管102a〜102fから噴き出される酸素ガスは焦点位置に到達する前にノズル先端から噴き出されて管の流路拘束を解かれた時点ですぐに拡散するから、図14に示すように、各周ノズル管102a〜102fを結ぶ環状の輪郭nに沿うような酸素ガスの障壁が形成され、酸素ガスと水素ガスの混合が十分に行なわれずに、結局、焦点位置では、処理対象物が平面的なものの場合には図15(a)に示すように中心部高温域Tchと、周縁高温域Tphとの間に低温域Tf部分がドーナツ状に形成され、また、管体あるいは球体等の連続曲面や球面を有する対象物の場合には、図15(b)に示すように、両側の高温域Tphとの中間部に縦縞状に低温域Tfを形成させることとなっていた。この場合、供給側のガス量の調整では製造や加工の仕様条件に応じてそれぞれ個々に異なるから極めて困難である。このために、処理対象物の加熱部分に温度ムラが生じ製品強度や加工精度に大きな影響を与えるばかりでなく、火炎の高温域をターゲット材の所望の部分に当てる作業を試行錯誤的に繰り返しながら行なわざるを得ず、製造や加工時間がかかって作業コストが高くなる要因となっていた。さらに、火炎温度を上げるためにガス供給量を多くする操作を行なう場合が多く、徒にガスの消費量が多くなって製造あるいは加工コスト増を招く場合が多かった。
【0005】
本発明は、上記従来の課題に鑑みてなされたものであり、その目的は、酸水素ガスの良好な混合を行なって火炎の焦点位置での均一な高温域を広く確保し、製造あるいは処理のターゲット材に対してムラなく加熱処理を行ない、製品強度並びに加工精度を向上させ得る石英バーナ装置を提供することである。また、本発明の他の目的は、火炎の焦点位置での高温域を広く確保して製品の製造あるいは加工時間を短縮させ総じて製造あるいは加工効率を向上させ得る石英バーナ装置を提供することである。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明の石英バーナ装置は、酸素ガス及び水素ガスを供給されてそれらのガスの噴出方向に向けて延びた筒状の外管10と、外管内に配置され外管の断面略中心部分及びそれらの周囲に配置され所要の焦点位置でガスが収束するように酸素ガスを噴き出す小径の複数のノズル管12と、それらのノズル管に仕切られる、外管内であってノズル管外の空間部分であり水素ガスが供給されて焦点位置方向に向けて該水素ガスを噴き出すノズル管外噴き出し部14と、を有し、少なくとも外管10内の中心部ノズル管121の外周に同心状に副管16を設け中心部ノズル管121と副管16との間から中心部ノズル管に沿って焦点位置方向に向けて水素ガスを噴き出させる局部周噴き出し部18を備えて構成される。
【0007】
好ましくは、外管10の内壁との間に空隙を空けて配置され複数のノズル管122〜127に共通に連通して酸素ガスが供給される基部管20が設けられ、中心部ノズル管121は、基部管20を貫通して酸素ガス供給側INから供給される酸素ガスを直接に吐出口121aから噴き出すように設けられ、さらに、その中心部ノズル管121の離隔外周に設けられる副管16は基端側が閉鎖された(32)状態で中心部ノズル管との間に局部周噴き出し部18を形成しつつ基部管20を貫通して設けられ、該副管16の基端寄り側に水素ガス供給管30が連通接続されたこととするとよい。
【0008】
その際、酸素ガス供給管26から分岐管281を介してそれぞれ中心部ノズル管121と基部管20に対して分岐接続されてそれぞれに酸素ガスを供給し、さらに、水素ガス供給管30から他の分岐管301、302を介してノズル管外噴き出し部14並びに局部周噴き出し部18に分岐接続してそれぞれに水素ガスを供給するようにしてもよい。
【0009】
さらに、外管10の内壁との間に空隙を空けさらに基端側を外管から突設させて配置され、複数のノズル管501〜507に共通に連通して酸素ガスが供給される基部管20が設けられ、さらに、基部管の外周に空隙を空けて基部管に対して二重管状に配置されかつ、すべてのノズル管外周側の副管52との空隙部分である局部周噴き出し部18に連通する基部外管54が設けられ、該基部外管54の基端寄り側とノズル管外噴き出し部14に連通する外管10側とに水素ガス供給管30が分岐管303、304を介して分岐接続されたこととしてもよい。
【0010】
また、その際、副管16の先端が各ノズル管121、122〜127、501〜507の長手中間位置長さに設定された構成としても良い。
【0011】
【発明の実施の形態】
次に、添付図面を参照しつつ本発明に係る石英バーナ装置の好適な実施形態を説明する。本実施形態の石英バーナ装置10は、石油プラント・化学工場・化学繊維工場、精密機械器具や半導体生産分野等での種々の薬品・化合物の反応試験用器具、光学器械器具、その他真空分子蒸留装置、薄膜蒸発装置、蒸留装置、精製装置等に用いられる高耐熱、高強度の石英ガラス製品製造あるいは、光ファイバ製造工程、その他、石英管を用いた加工処理等においてそれらの石英管製品製造、石英管使用の加工、その他の加熱処理加工等に用いられる石英管から構成されたバーナ装置である。
【0012】
図1ないし図6は、本発明の第1の実施形態を示しており、図1、図6において、本実施形態の石英バーナ装置は、外管10と、その内部に配置され酸素ガスを噴き出す複数の小径のノズル管12と、外管内部にありノズル管12で仕切られた部分以外の空間部分に形成されて水素ガスを噴き出すノズル管外噴き出し部14と、少なくとも中心部ノズル管の外周に同心状に設けられた副管16を介して複数のノズル管のうちの中心部ノズル管121から噴き出されるガスの流れの周囲から水素ガスを噴き出す局部周噴き出し部18と、を備えている。
【0013】
外管10、ノズル管12、後述する基部管、あるいはガス供給管は石英ガラスを素材としてこれを加熱し、軟化して曲げ、溶着接続、切断加工等により一体的に成形される。外管10は、酸素ガス及び水素ガスを供給されてそれらのガスの噴出方向に向けて延びた筒体からなり、円筒部111と、円筒部に接続されたテーパ部112と、テーパ部112に接続されてガスの放出開口113aを先端に有する放出筒部113と、を石英ガラス管により一体加工して内部を中空として全体として筒状に形成されている。外管10は、燃焼用ガスの供給側INと放出側OUTとを有しており、テーパ部112は円筒部111からガスの放出側に向けて断面径をしだいに小さくするようにテーパ筒状に設けられている。テーパ部112と放出筒部113とは拡大部114を介して接続されている。放出筒部113は、テーパ部112から出て放出筒部に至り、その始端側から噴き出されるガスを混合均一化するとともに放出後のガスの行程に直線性を与えるように直筒状に形成され、放出開口113aからガスを反応させて生じた火炎を噴き出させる。
【0014】
図1、図2において、外管10の内壁との間に空隙を空けて円筒状の基部管20が外管10のガス供給側INに一部を突出させ、かつガス放出側端部を外管の長手中間位置に位置させて二重管状に配置されている。基部管内には酸素ガスO2 が供給され該基部管に共通に連通する複数のノズル管121〜127を介してそれらのノズル吐出口から酸素ガスを噴き出させる。実施形態において、図2に示すように、基部管20の基端寄り外周位置において外管10の基端側が周状に溶着接続されて閉鎖終端22されており、この基部管20外周壁と外管10の内壁との空隙部分に後述する水素ガスが供給される。
【0015】
図1、2において、基部管20のガス放出側端部は閉鎖壁24により閉鎖され、さらに、この閉鎖壁24から図5に示すように、断面中心部の周囲の放射対象位置に6個の囲周ノズル管122〜127がガス放出側(図1、2上横方向)に向けて突設接続されている。これらの6個の直管から成る囲周ノズル管122〜127は、外管あるいは基部管の中心に対して略60度間隔で離して設定され外管10に対して十分に小さな直径の小径ノズル管から構成されている。囲周ノズル管122〜127のそれぞれの中空内部は基部管20の中空内部と共通に連通しており、基部管20に供給された酸素ガスはそれぞれの囲周ノズル管122〜127に分流して流入しそれぞれの吐出口122a〜127aから略均等量の酸素ガスを噴き出させる。本実施形態の石英バーナ装置は、酸水素ガスを混合反応させて生成される火炎を所要の焦点位置を結ぶように放出開口からの所要の離隔位置で火炎の流れが交差するように噴き出されるようになっている。すなわち、焦点位置でガスが収束するように酸素ガスを噴き出すように、各囲周ノズル管122〜127は図示しない焦点位置に向けて吐出口側を傾斜させてそれぞれ基部管の中心に先端を近接させるように配置させた状態で基部管20から延長されている。図2に示すように、それぞれのノズル管の吐出口先端はテーパ部112と拡大部114との接続位置部分で一致した長さで設定されている。
【0016】
図2において、基部管20のガス供給基端側には図示しない酸素ガス供給装置に連通接続された酸素ガス供給管26が分岐管28を介して接続され、基部管内に酸素ガスを供給するようになっている。1つの分岐管281は酸素ガス供給管26の本管から迂回して迂回管として基部管20の外管10からのガス供給側突出部分に連通接続され、酸素ガスを供給して囲周ノズル管122〜127から酸素ガスを噴き出させる。他の分岐管は本管から直管状に接続され基部管20を貫通して中心部ノズル管121の一部を構成している。
【0017】
本発明において、1つの特徴的なことは、少なくとも外管10内の中心部ノズル管121の外周に同心状に副管16を設け中心部ノズル管と副管との間から中心部ノズル管に沿って焦点位置方向に向けて水素ガスH2 を噴き出させる局部周噴き出し部18を設けたことである。図2の実施形態において、酸素ガス供給管26に接続されその分岐部分から段付き部29を介して酸素ガス供給管より小径で他のノズル管と略同じ管径の直管から成る中心部ノズル管121が外管10の断面中心部を軸方向に通って配置されている。この中心部ノズル管121は酸素ガス供給管26に連通接続されて基部管20内を貫通しさらにその吐出口121aを他のノズル管の吐出口122a〜127aとほぼ同じ位置まで延設されている。したがって、この中心部ノズル管121内を通流する酸素ガスはその管により空間を仕切られており、迂回管281を介して送られる酸素ガスとは別の経路で送給される。
【0018】
この中心部ノズル管121の外周に同心状に二重管を形成するように副管16が設けられており、この中心部ノズル管121と副管16との空隙部分に水素ガスが供給される。この中心部ノズル管121と副管16の間の空隙部分が局部周噴き出し部18を形成する。局部周噴き出し部18は、中心部ノズル管121と副管16との間の空隙から中心部ノズル管121に沿って焦点位置方向に向けて水素ガスを噴き出させるものであり、本実施形態において、局部周噴き出し部18は、水素ガス供給管30の分岐管301に連通され酸素ガス供給管26の本管とは別系統で中心部ノズル管121外周壁と副管16内周壁との間の空隙に直接に連通して独立水素ガス通流経路を形成させて構成されている。すなわち、酸素ガス供給管26の本管と基部管20との連通を遮断して中心部ノズル管121の基部を袋状に取り囲む壁により画成されて袋部32が設けられ、この袋部32が水素ガス供給管30の分岐管301に外部から連通接続されている。袋部32は酸素ガス供給側を閉鎖するとともに分岐管301並びに中心部ノズル管121と副管16間に形成される局部周噴き出し部18とのみ連通しており、これによって分岐管301から供給される水素ガスは中心部ノズル管121に沿って流れさらに焦点位置方向に向けて噴き出される。この際、中心部ノズル管内から噴き出される酸素ガスと十分に混合されて反応し、生じた火炎を焦点位置方向に向けて噴き出させる。
【0019】
図1、2、6に示すように、副管16の先端は中心部ノズル管121の長手中間位置長さに設定され、中心部ノズル管121の吐出口121aよりも短い長さでその先端が位置するように設定されている。例えば副管の先端長さを中心部ノズル管と同一あるいは略同じ長さに設定した場合には、酸素ガスを囲周するように流れる水素ガスが酸素ガスと略同じ流速で吐出口から吐出される結果、吐出されて以降の行程で両方のガスが混合しないで並行するように流れ、焦点位置を越えて炎を結ぶようになりバーナによる加工作業精度が劣ることとなる。実施形態のように、副管の先端から出る水素ガスの吐出口の位置を中心部ノズル管の吐出口よりも前方位置に設定することによりこれを防止し、加工作業の円滑化並びに加工精度を良好に保持し得る。
【0020】
前述したように、酸素ガス供給管26から分岐管281を介してそれぞれ中心部ノズル管121と基部管20に対して分岐接続されてそれぞれに酸素ガスO2を供給し、さらに、水素ガス供給管30から分岐管301、302を介してノズル管外噴き出し部14並びに局部周噴き出し部18に分岐接続してそれぞれに水素ガスH2 を供給する。すなわち、酸素ガス供給管26は、迂回管281と中心部ノズル管121とのみに連通しており、したがって、酸素ガスは酸素ガス供給管26から迂回管281を経由して副管外でかつ基部管20内の空間に供給され囲周ノズル管122〜127からそれぞれ吐出されるとともに、中心部ノズル管121の吐出口からも直接に噴き出される。このように、副管16の基端寄り側に水素ガス供給管を接続して設けることにより石英バーナ自体の製造、加工を容易に行なえる。すなわち、実施形態において、袋部32を基部管20の基端側に設けて酸素ガス供給管26の本管と基部壁20との連通を遮断するように介在させて設け、これに水素ガス供給管とを接続させるようにしているので、基部管内の酸素ガス雰囲気内で別個の水素ガスの局部周噴き出し部を具体的に構成し得るとともに、石英ガラスを用いたバーナ製作時の加工を基部管の外部作業として円滑かつ簡易に行なわせることができる。
【0021】
次に、本実施形態の作用について説明すると、図1、図2において、図示しない酸素ガス供給機から所要の供給圧力で供給される酸素ガスは、酸素ガス供給管26から分岐管(迂回管)281、基部管20、囲周ノズル管122〜127を経由してそれぞれのノズル管の吐出口122a〜127aから噴き出される。同時に酸素ガス供給管26からの酸素ガスは直状に連通して設けた中心部ノズル管121内に流入し、その中心部ノズル管の吐出口121aからも酸素ガスを噴き出させる。この際、図4に示すように、中心部ノズル管の吐出口121aを中心としてその放射対象位置であって周囲にそれぞれ略60度離隔した位置に囲周ノズル管122〜127の吐出口122a〜127aがそれぞれ外管10内の長手方向のほぼ同じ吐出位置(テーパ部112と放出筒部113との接続部分)で点状に配置されており、したがって、これらの計7個の吐出口から酸素ガスがビーム状に噴き出される。
【0022】
一方、図示しない水素ガス供給機から所要の供給圧力で供給される水素ガスは、水素ガス供給管30から分岐管302を介して外管10の内部の基部管20及びノズル管12により仕切られる空間以外の空隙であるノズル管外噴き出し部14に供給されてテーパ部112により絞られて各ノズル管以外の空隙を流れてそれらの吐出口からでる酸素ガスを取り囲むように噴き出される。さらに、水素ガス供給管30から分岐管301を介して袋部32を流通し、局部周噴き出し部18に至り、副管16の先端からも水素ガスが噴き出される。この際、副管16の先端は中心部ノズル管121の長さの中途位置の長さで設定されて中心部ノズル管121の吐出口よりも前方位置で水素ガスを噴き出すので、副管16からの流路拘束を解かれた水素ガスはそれぞれのノズル管の吐出口よりも前方位置で拡散を始め、各ノズル管の吐出口から酸素ガスが噴き出される際には、特に、中心部ノズル管からの酸素ガスと、囲周ノズル管により形成される環状の酸素ガス帯との間の部分に、より多い水素ガスの流れを生起させる。これによって、放出筒部113の基端部分で酸水素ガスが噴き出される際に、中心部ノズル管の周囲でかつ囲周ノズル管の内側の部分での拡散状の水素ガス供給量を十分に確保し、放出開口113aからガスが放出される際に、該中心部分でのガスの混合が十分に行なわれ、十分な量の水素ガスが酸素ガスに混合されて取り込まれて焦点位置での火炎の温度域は、図7に示すようにムラがないものとなり、その結果、火炎の焦点位置での均一な高温域を広く確保し、製造あるいは処理のターゲット材に対してムラなく加熱処理を行ない、製品強度並びに加工精度を大幅に向上させることができる。製品の製造あるいは加工時間を短縮させ、製造あるいは加工効率を向上させることが可能となる。
【0023】
次に、図8ないし図11に基づいて本発明の第2の実施形態について説明するが、第1実施形態と同一の構成部材には同一符号を付し、その詳細な説明を省略する。この第2実施形態の石英バーナ装置は、外管10の内壁との間に空隙を空けさらに基端側を外管から突設させて配置させて基部管20を設け、この基部管20のガス放出側に中心部ノズル管501と、その周囲の放射対象位置に囲周ノズル管502〜507を連通して接続し、それらのすべてのノズル管501〜507の離隔外周に副管52を配置させてそれらのノズル管と副管との空隙部分を局部周噴き出し部18とし、さらに、外管10の内部側であって、基部管20の外周に空隙を空けて基部管に対して二重管状に基部外管54を設け、この基部管20と基部外管54との間の空隙部分をすべての局部周噴き出し部18に連通させ、さらに、該基部外管54の基端寄り側s位置とノズル管外噴き出し部14に連通する外管側とに水素ガス供給管30を分岐管303、304を介して分岐接続させた構成である。水素ガスは基部外管を介して副管と各ノズル管との間の空隙である局部周噴き出し部18と、外管内であってノズル管外の空間部分であるノズル管外噴き出し部14と、から噴き出される。本実施形態においても、少なくとも外管10内の中心部ノズル管501の外周に同心状に副管52を設け、中心部ノズル管と副管との間から中心部ノズル管に沿って焦点位置方向に向けて水素ガスを噴き出させる局部周噴き出し部18を設けており、基本的には、第1実施形態と同様の作用効果を得られる。
【0024】
本実施形態では、中心部ノズル管501は、基部管20を貫通して酸素ガス供給管26に連通するものではなく、中心部ノズル管501の他の囲周ノズル管502〜507を含むすべてのノズル管50は基部管20のガス放出側から連通接続して延長され、基部管20を介してすべての酸素ガスが各ノズル管501〜507から噴き出される。したがって、酸素ガス供給管26は基部管20の基端側に直付けで連通接続され、簡単な接続構成となっている。さらに、本実施形態では、中心部ノズル管を含むすべてのノズル管501〜507の離隔外周位置に空隙を空けて副管52を設置し、かつ、基部外管54をそれらのすべての副管52に連通接続させて、基部外管54と基部管20間の空隙とすべての局部周噴き出し部18が共通に連通するようにしている。そして、基部外管54と副管52と各ノズル管50により仕切られる外管10内部の空間部分がノズル管外噴き出し部14を形成している。各副管52は、第1実施形態と同様に各ノズル管の先端位置よりも短い先端位置をもち、各ノズル管に沿ってその外周離隔位置で直管状に延長されている。
【0025】
この第2実施形態の石英バーナ装置においては、中心部ノズル管501を含むすべてのノズル管の吐出口501a〜507aから酸素ガスが吐出される前にそれらの個々の管の局部外周部分から水素ガスが噴き出されてそれぞれに吐出口に至る前にある程度の拡散状態で噴き出され、これによって、より混合率を向上させて放出開口113aから噴き出されてターゲット材に当る際の火炎の温度分布が均一化され、製造、加工作業を安定して行なえるとともに、処理作業時間を効率化して短時間で処理を行なえ、もって対象物の製造、加工精度を向上させ得る。
【0026】
以上、本発明に係る石英バーナ装置の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載した発明の本質を逸脱しない範囲の変更は本発明に含まれる。例えば、上記実施形態では、外管10、中心部ノズル管を含むノズル管12、50、副管16、52、基部管20、基部外管54、囲周ノズル管122〜127、502〜507は、すべて断面円形の円筒管で構成しているが、断面三角形、四角形、その他の多角形形状の筒管で構成してもよい。
【0027】
【発明の効果】
以上説明したように、本発明の石英バーナ装置によれば、酸素ガス及び水素ガスを供給されてそれらのガスの噴出方向に向けて延びた筒状の外管と、外管内に配置され外管の断面略中心部分及びそれらの周囲に配置され所要の焦点位置でガスが収束するように酸素ガスを噴き出す小径の複数のノズル管と、それらのノズル管に仕切られる、外管内であってノズル管外の空間部分であり水素ガスが供給されて焦点位置方向に向けて該水素ガスを噴き出すノズル管外噴き出し部と、を有し、少なくとも外管内の中心部ノズル管の外周に同心状に副管を設け中心部ノズル管と副管との間から中心部ノズル管に沿って焦点位置方向に向けて水素ガスを噴き出させる局部周噴き出し部を備えた構成であるから、中心部ノズル管の局部外周から水素ガスを供給し、十分な量の水素ガスを混合ガス内に取り込んで、火炎の焦点位置での均一な高温域を広く確保し、製造あるいは処理のターゲット材に対してムラなく加熱処理を行ない、製品強度並びに加工精度を向上させることができる。また、火炎の焦点位置での高温域を広く確保して製品の製造あるいは加工作業を容易化し、かつ作業時間を短縮させ、総じてこの石英バーナ装置を用いた製造、加工、処理の作業効率を大幅に向上させ得る。加えて、ガス供給量の頻繁な調整を不要とし、ガス供給量を一定としてその消費量を少なくし、製造コスト低減に資する。
【0028】
また、外管の内壁との間に空隙を空けて配置され複数のノズル管に共通に連通して酸素ガスが供給される基部管が設けられ、中心部ノズル管は、基部管を貫通して酸素ガス供給側から供給される酸素ガスを直接に吐出口から噴き出すように設けられ、さらに、その中心部ノズル管の離隔外周に設けられる副管は基端側が閉鎖された状態で中心部ノズル管との間に局部周噴き出し部を形成しつつ基部管を貫通して設けられ、該副管の基端寄り側に水素ガス供給管が連通接続された構成とすることにより、酸素ガス供給管からの酸素ガスを中心部ノズル管及び囲周ノズル管から同時に噴き出させるようにしつつ、ノズル管外噴き出し部と局部周噴き出し部から水素ガスを同時に噴き出させる構成を具体的に実現し得る。また、副管の基端寄り側で水素ガス供給管と連通接続させることにより、基部管の胴側部分を縦断方向に貫通させて基部管の長手中間位置等で副管に接続させる構成などに比較してバーナ装置の加工、接続作業が簡単で、装置コストを低廉に維持し得る。
【0029】
また、酸素ガス供給管から分岐管を介してそれぞれ中心部ノズル管と基部管に対して分岐接続されてそれぞれに酸素ガスを供給し、さらに、水素ガス供給管から他の分岐管を介してノズル管外噴き出し部並びに局部周噴き出し部に分岐接続してそれぞれに水素ガスを供給する構成とする個とに寄り、例えば基部管のガス供給側の突設部分を利用してそれぞれの供給管の分帰還を接続させて、具体的に酸水素ガスをそれぞれの経路で装置内に供給させ得る。また、構造も簡単と成り、装置の製造を容易に行なえる。
【0030】
また、外管の内壁との間に空隙を空けさらに基端側を外管から突設させて配置され、複数のノズル管に共通に連通して酸素ガスが供給される基部管が設けられ、さらに、基部管の外周に空隙を空けて基部管に対して二重管状に配置されかつ、すべてのノズル管外周側の副管との空隙部分である局部周噴き出し部に連通する基部外管が設けられ、該基部外管の基端寄り側とノズル管外噴き出し部に連通する外管側とに水素ガス供給管が分岐管を介して分岐接続された構成とすることにより、中心部ノズル管を含むすべてのノズル管の離隔外周位置に副管を設け、それらのノズル管に対応する局部周噴き出し部から水素ガスを噴き出して水素の混合量を十分に確保する結果、より混合率を向上させてターゲット材に当る際の火炎の温度分布を均一化し、より高精度の製造、加工作業を安定して行なえるとともに、処理作業を効率化して短時間で処理を行なえる。また、酸素ガス供給管は基部管の基端側に直付けで連通接続されるから、装置の製造、加工作業が簡単で製造コストを低減し得る。
【0031】
また、副管の先端が各ノズル管の長手中間位置長さに設定された構成とすることにより、各ノズル管の先端から酸素ガスが放出される前にその前方位置で水素ガスがノズル管の外周部分から噴き出されてある程度拡散されるから、十分な水素ガスを混合ガス内に取り込んで放出でき、焦点位置での火炎の温度域を均一でムラのない高温域として広く確保でき、製造あるいは処理の精度を確実に向上させ得る。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る石英バーナ装置の全体斜視図である。
【図2】図1のバーナ装置の縦断面図である。
【図3】図2のA−A線断面図である。
【図4】図2のC−C線断面図である。
【図5】図2のB−B線矢示図である。
【図6】図2の二点鎖線部分の拡大説明図である。
【図7】火炎の焦点部分に配置した平面的なターゲット材に火炎を当てた場合の焦点位置での火炎の温度域分布を説明する断面的説明図である。
【図8】本発明の第2の実施形態に係る石英バーナ装置の概略縦断面説明図である。
【図9】図8の二点鎖線部分の拡大説明図である。
【図10】図8のD−D線断面図である。
【図11】図8のE−E線断面図である。
【図12】従来の石英バーナの縦断面説明図である。
【図13】図12のF−F線断面図である。
【図14】図12のG−G線断面図である。
【図15】(a)は、図12の従来の石英バーナを用いた場合であり、火炎の焦点部分に配置した平面的なターゲット材に火炎を当てた場合の焦点位置での火炎の温度域分布を説明する断面的説明図である。(b)は、図12の従来の石英バーナを用いた場合であり、火炎の焦点部分に配置した筒状のターゲット材の胴側部分に火炎を当てた場合の焦点位置での火炎の温度域分布を説明する断面的説明図である。
【符号の説明】
10 外管
12 ノズル管
14 ノズル管外噴き出し部
16 副管
18 局部周噴き出し部
20 基部管
26 酸素ガス供給管
30 水素ガス供給管
32 袋部
50 ノズル管
52 副管
54 基部外管
121,501 中心部ノズル管
122〜127、502〜507 囲周ノズル管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a quartz burner device that performs various processes by blowing out a flame from a quartz tube.
[0002]
[Prior art]
Conventionally, burners have been used when processing is performed by applying heat to an object, and a gaseous fuel or atomized liquid fuel is discharged from a feeder, and the flame is directly applied to the object to be processed or processed. Processing, processing, and the like are performed. These burners are generally configured to discharge a mixed fuel from an injection port formed of a heat-resistant metal in a cylindrical shape and to connect a flame. On the other hand, recently, precision test instruments, reaction test instruments for various chemicals and compounds in the semiconductor production field, optical instrument instruments, vacuum molecular distillation equipment, thin film evaporation equipment, distillation equipment, purification equipment, etc., have high heat resistance, A high-strength quartz glass tube is widely used. Further, optical fibers and the like for optical communication are manufactured by a modified chemical vapor deposition (MCVD) method or the like. In this case, a quartz tube is used as a manufacturing starting tube, and glass materials such as SiCl4, Gecl4, and O2 are heated in a gas phase. The transparent glass is supplied into the quartz tube, and the transparent glass is deposited in the tube. Finally, a rod-shaped optical fiber preform is manufactured. When a conventional metal burner is used as a burner to be used when manufacturing a device or apparatus using such a high-purity quartz tube or performing processing using a quartz tube, the softening point or transition point of the quartz glass is reduced. Therefore, the metal powder is melted and mixed into the quartz tube to be processed at the time of use, thereby deteriorating the durability and strength of the product to be manufactured or processed and cannot be suitable as a product. From this point, recently, a quartz burner in which the burner itself is constituted by a quartz tube has been increasingly used.
[0003]
12 to 14 show a conventional quartz burner in which a base tube 100 is provided concentrically inside an outer tube 10 with a circumferential gap from an inner wall of the outer tube. Oxygen gas is supplied into the tube 100. The outer tube 10 has a fuel supply side and a discharge side. The discharge side is opened, the mixed gas reacts and burns, and the resulting flame is injected from the opening. A central nozzle pipe 101 is disposed on the gas discharge side of the base pipe 100 at a position substantially in the center of the cross section of the outer pipe toward the gas discharge side, and six peripheral nozzle pipes 102a are provided around the central nozzle pipe 101. 102 to 102f communicate with the inside of the base tube 100 and are provided with their nozzle tip openings facing the gas discharge side. Therefore, oxygen gas is injected from the central nozzle pipe 101 and the six peripheral nozzle pipes 102a to 102f toward the gas discharge side. The base tube 100 is connected to, for example, an oxygen gas supply tube 103 connected to an oxygen gas supply device, and the outer tube 10 is connected to the gap between the outer tube, the base tube, and the plurality of nozzle tubes, for example. A hydrogen gas supply pipe 104 is connected.
[0004]
[Problems to be solved by the invention]
In the conventional quartz burner shown in FIGS. 12 to 14, the cross-sectional area of the gas discharge opening portion is larger than that of the hydrogen gas (the entire gas discharge side opening) in the oxygen gas (the end opening of the center nozzle tube 101 or the peripheral nozzle tube). The opening at each tip of the nozzle 102 is much smaller, and therefore, the surrounding hydrogen gas is mixed into the flow of the oxygen gas ejected at a high speed or drawn so as to become a flame and a required focus is formed. At this time, the oxygen gas ejected from each of the peripheral nozzle tubes 102a to 102f is ejected from the nozzle tip before reaching the focal position, and the flow path of the tubes is released. At this point, the oxygen gas is immediately diffused, so that an oxygen gas barrier is formed along the annular contour n connecting the peripheral nozzle tubes 102a to 102f, as shown in FIG. Is not sufficiently performed. In the end, at the focal position, when the object to be processed is a planar object, as shown in FIG. 15 (a), between the central high-temperature region Tch and the peripheral high-temperature region Tph. In the case of an object having a low-temperature region Tf formed in a donut shape and having a continuous curved surface or a spherical surface such as a tube or a sphere, as shown in FIG. The low-temperature region Tf is to be formed in a vertical stripe shape in the portion. In this case, it is extremely difficult to adjust the gas amount on the supply side, because the gas amount differs depending on the specification conditions of manufacturing and processing. For this reason, temperature unevenness occurs in the heated portion of the object to be processed, which not only greatly affects product strength and processing accuracy, but also repeats the operation of applying a high temperature region of the flame to a desired portion of the target material by trial and error. Inevitably, it takes a long time to manufacture and process, which increases the operating cost. Further, in many cases, an operation for increasing the gas supply amount is performed in order to increase the flame temperature, and in many cases, the gas consumption is increased and the production or processing cost is increased.
[0005]
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to perform good mixing of oxyhydrogen gas to secure a wide uniform high-temperature region at a focus position of a flame, and to manufacture or treat the gas. An object of the present invention is to provide a quartz burner device capable of performing heat treatment on a target material without unevenness and improving product strength and processing accuracy. Another object of the present invention is to provide a quartz burner device capable of securing a wide high-temperature region at a focus position of a flame and shortening a product manufacturing or processing time and generally improving the manufacturing or processing efficiency. .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the quartz burner device of the present invention is provided with a cylindrical outer tube 10 which is supplied with oxygen gas and hydrogen gas and extends in a direction in which those gases are ejected, and is disposed in the outer tube. A plurality of small-diameter nozzle tubes 12 which are disposed at substantially the center of the cross-section of the outer tube and around them and eject oxygen gas so that the gas converges at a required focal position, and the inner tube is partitioned by the nozzle tubes. A nozzle portion outside the nozzle tube, which is a space portion outside the nozzle tube, is supplied with hydrogen gas, and blows out the hydrogen gas toward the focal position direction. A subcircular pipe 16 is provided concentrically on the outer periphery, and a local peripheral jetting section 18 for jetting hydrogen gas from between the central nozzle pipe 121 and the subtube 16 toward the focal position along the central nozzle pipe. Be composed.
[0007]
Preferably, a base tube 20 is provided with a gap between the inner tube of the outer tube 10 and an oxygen gas is supplied in common with the plurality of nozzle tubes 122 to 127 and the central nozzle tube 121 is provided with an oxygen gas. The sub-tube 16 is provided so as to directly blow out the oxygen gas supplied from the oxygen gas supply side IN through the base tube 20 from the discharge port 121a, and further provided on the outer periphery of the center nozzle tube 121 at a distance. In a state where the base end side is closed (32), the base pipe 20 is provided through the base pipe 20 while forming a local peripheral jet part 18 between the base pipe and the central nozzle pipe. It is preferable that the supply pipe 30 is connected in communication.
[0008]
At that time, the oxygen gas supply pipe 26 is branched and connected to the central nozzle pipe 121 and the base pipe 20 via the branch pipe 281 to supply oxygen gas to each of them. The hydrogen gas may be supplied to each of the branch pipes 301 and 302 by branching to the nozzle outside discharge section 14 and the local peripheral discharge section 18 respectively.
[0009]
Furthermore, a base tube which is provided with a gap between the inner tube of the outer tube 10 and the base end of the outer tube protruding from the outer tube to supply oxygen gas in common with the plurality of nozzle tubes 501 to 507. In addition, a local peripheral ejection portion 18 which is arranged in a double tubular shape with respect to the base tube with a space provided on the outer periphery of the base tube and which is a space portion with all the sub-tubes 52 on the outer peripheral side of the nozzle tube. A hydrogen gas supply pipe 30 is connected via branch pipes 303 and 304 to a side near the base end of the base outer pipe 54 and to a side of the outer pipe 10 communicating with the nozzle pipe ejection section 14. May be connected in a branched manner.
[0010]
Further, at this time, a configuration may be adopted in which the tip of the sub pipe 16 is set to the longitudinal intermediate position length of each of the nozzle pipes 121, 122 to 127, and 501 to 507.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a preferred embodiment of a quartz burner device according to the present invention will be described with reference to the accompanying drawings. The quartz burner apparatus 10 of the present embodiment is used for a reaction test apparatus of various chemicals and compounds in a petroleum plant, a chemical factory, a chemical fiber factory, a precision instrument, a semiconductor production field, and the like, an optical instrument, and other vacuum molecular distillation apparatuses. Manufacture of high-heat-resistant, high-strength quartz glass products used in thin-film evaporators, distillation devices, refining devices, etc., or the manufacture of such quartz tube products in the optical fiber manufacturing process and other processing using quartz tubes. It is a burner device composed of a quartz tube used for processing using a tube and other heat treatment processing.
[0012]
FIGS. 1 to 6 show a first embodiment of the present invention. In FIGS. 1 and 6, a quartz burner device according to the present embodiment is provided with an outer tube 10 and an oxygen gas which is disposed inside the outer tube 10. A plurality of small-diameter nozzle pipes 12, a nozzle-outside discharge section 14 formed in a space part inside the outer pipe other than a part partitioned by the nozzle pipe 12 and discharging hydrogen gas, and at least an outer periphery of the central part nozzle pipe. A local peripheral jetting section 18 for jetting hydrogen gas from around the flow of gas jetted from the central nozzle pipe 121 of the plurality of nozzle pipes via the sub pipe 16 provided concentrically.
[0013]
The outer tube 10, the nozzle tube 12, the base tube described later, or the gas supply tube are made of quartz glass, which is heated, softened, bent, welded, connected, cut and formed integrally. The outer tube 10 is formed of a cylindrical body that is supplied with oxygen gas and hydrogen gas and extends in the direction in which the gases are ejected. The outer tube 10 includes a cylindrical portion 111, a tapered portion 112 connected to the cylindrical portion, and a tapered portion 112. A discharge cylinder portion 113 having a gas discharge opening 113a at the tip thereof and connected thereto is integrally processed by a quartz glass tube to form a hollow interior and a cylindrical shape as a whole. The outer tube 10 has a supply side IN and a discharge side OUT for the combustion gas, and the tapered portion 112 has a tapered cylindrical shape such that the cross-sectional diameter gradually decreases from the cylindrical portion 111 toward the gas discharge side. It is provided in. The tapered portion 112 and the discharge cylinder portion 113 are connected via an enlarged portion 114. The discharge cylinder portion 113 is formed in a straight cylindrical shape so as to exit from the tapered portion 112 to reach the discharge cylinder portion, mix and uniformly mix the gas ejected from the start end thereof, and give linearity to the process of the gas after discharge. Then, a flame generated by reacting the gas from the discharge opening 113a is blown out.
[0014]
1 and 2, a cylindrical base tube 20 projects partly to the gas supply side IN of the outer tube 10 with a gap between the inner tube and the inner wall of the outer tube 10 and the outer end of the gas discharge side. It is arranged in a double tubular position at a longitudinal middle position of the tube. Oxygen gas O2 is supplied into the base tube, and oxygen gas is ejected from the nozzle discharge ports through a plurality of nozzle tubes 121 to 127 which are commonly connected to the base tube. In the embodiment, as shown in FIG. 2, at the outer peripheral position near the proximal end of the base tube 20, the proximal end side of the outer tube 10 is circumferentially welded and connected to be closed and terminated 22. Hydrogen gas, which will be described later, is supplied to a gap between the inner wall of the pipe 10 and the inner wall.
[0015]
In FIGS. 1 and 2, the gas discharge side end of the base tube 20 is closed by a closing wall 24. Further, as shown in FIG. Surrounding nozzle tubes 122 to 127 are protrudingly connected to the gas discharge side (the upper horizontal direction in FIGS. 1 and 2). The peripheral nozzle pipes 122 to 127 formed of these six straight pipes are set at a distance of about 60 degrees from the center of the outer pipe or the base pipe, and have a sufficiently small diameter with respect to the outer pipe 10. Consists of tubes. The hollow interior of each of the peripheral nozzle pipes 122 to 127 is in common communication with the hollow interior of the base pipe 20, and the oxygen gas supplied to the base pipe 20 is divided into the peripheral nozzle pipes 122 to 127. A substantially equal amount of oxygen gas is blown out from each of the discharge ports 122a to 127a. In the quartz burner device of the present embodiment, the flame generated by mixing and reacting the oxyhydrogen gas is blown out so that the flame flows intersect at a required separation position from the discharge opening so as to connect a required focal position. It has become. That is, each of the surrounding nozzle pipes 122 to 127 is inclined at the discharge port side toward the focus position (not shown) so that the oxygen gas is blown out so that the gas converges at the focus position, and the tip is close to the center of the base pipe. It extends from the base tube 20 in a state where the base tube 20 is arranged so as to make it extend. As shown in FIG. 2, the tip of the discharge port of each nozzle tube is set to have the same length at the connection position between the tapered portion 112 and the enlarged portion 114.
[0016]
In FIG. 2, an oxygen gas supply pipe 26 connected to an oxygen gas supply device (not shown) is connected to a gas supply base end side of the base pipe 20 via a branch pipe 28 so as to supply oxygen gas into the base pipe. It has become. One branch pipe 281 bypasses the main pipe of the oxygen gas supply pipe 26 and is connected as a bypass pipe to the protruding portion of the base pipe 20 from the outer pipe 10 on the gas supply side, and supplies oxygen gas to the surrounding nozzle pipe. Oxygen gas is ejected from 122 to 127. The other branch pipes are connected in a straight pipe from the main pipe, penetrate the base pipe 20, and constitute a part of the central nozzle pipe 121.
[0017]
In the present invention, one characteristic feature is that a sub-tube 16 is provided concentrically on at least the outer periphery of the central nozzle tube 121 in the outer tube 10 and the central nozzle tube is provided between the central nozzle tube and the sub-tube. A local peripheral jetting portion 18 for jetting out the hydrogen gas H2 along the focal position direction is provided. In the embodiment of FIG. 2, a central nozzle which is connected to the oxygen gas supply pipe 26 and has a straight pipe having a smaller diameter than the oxygen gas supply pipe through a stepped portion 29 and having a diameter substantially equal to that of the other nozzle pipes via a stepped portion 29. A tube 121 is arranged to pass through the center of the cross section of the outer tube 10 in the axial direction. The central nozzle pipe 121 is connected to the oxygen gas supply pipe 26 and penetrates the inside of the base pipe 20, and its discharge port 121a extends to substantially the same position as the discharge ports 122a to 127a of the other nozzle pipes. . Therefore, the oxygen gas flowing through the central nozzle pipe 121 is separated into spaces by the pipe, and is supplied through a different path from the oxygen gas transmitted through the bypass pipe 281.
[0018]
A sub-tube 16 is provided so as to form a double tube concentrically on the outer periphery of the central nozzle tube 121, and hydrogen gas is supplied to a gap between the central nozzle tube 121 and the sub-tube 16. . The gap between the central nozzle pipe 121 and the sub pipe 16 forms the local peripheral ejection section 18. The local peripheral blow-out portion 18 blows out hydrogen gas from the gap between the central nozzle pipe 121 and the sub-pipe 16 toward the focal position along the central nozzle pipe 121. The local peripheral spouting part 18 is connected to the branch pipe 301 of the hydrogen gas supply pipe 30 and is separate from the main pipe of the oxygen gas supply pipe 26 between the outer peripheral wall of the central nozzle pipe 121 and the inner peripheral wall of the sub pipe 16. An independent hydrogen gas flow path is formed by directly communicating with the void. In other words, a bag portion 32 is provided, which is defined by a wall surrounding the base portion of the central nozzle tube 121 in a bag shape by interrupting communication between the main tube of the oxygen gas supply tube 26 and the base tube 20. Are connected to the branch pipe 301 of the hydrogen gas supply pipe 30 from outside. The bag section 32 closes the oxygen gas supply side and communicates only with the branch pipe 301 and the local peripheral jet section 18 formed between the central nozzle pipe 121 and the sub pipe 16, whereby the bag section 32 is supplied from the branch pipe 301. The hydrogen gas flows along the central nozzle pipe 121 and is ejected toward the focal position. At this time, oxygen gas ejected from the central nozzle pipe is sufficiently mixed and reacted, and the generated flame is ejected toward the focal position.
[0019]
As shown in FIGS. 1, 2, and 6, the tip of the sub-tube 16 is set to a longitudinal intermediate position length of the central nozzle pipe 121, and the tip is shorter than the discharge port 121 a of the central nozzle pipe 121. It is set to be located. For example, when the length of the distal end of the sub pipe is set to be the same as or substantially the same as the length of the central nozzle pipe, hydrogen gas flowing around the oxygen gas is discharged from the discharge port at substantially the same flow rate as the oxygen gas. As a result, in the process after the discharge, both gases flow in parallel without being mixed, and the flame is formed beyond the focal position, resulting in inferior working accuracy of the burner. As in the embodiment, this is prevented by setting the position of the discharge port of the hydrogen gas exiting from the tip of the sub pipe at a position forward of the discharge port of the central nozzle pipe, thereby facilitating the processing operation and improving the processing accuracy. Can be held well.
[0020]
As described above, the oxygen gas supply pipe 26 is branched and connected to the central nozzle pipe 121 and the base pipe 20 via the branch pipe 281 to supply oxygen gas O2 to each of them. Then, the hydrogen gas H2 is supplied to the nozzle outside discharge portion 14 and the local peripheral discharge portion 18 via branch pipes 301 and 302, respectively. That is, the oxygen gas supply pipe 26 communicates only with the bypass pipe 281 and the central nozzle pipe 121, and therefore, the oxygen gas flows from the oxygen gas supply pipe 26 via the bypass pipe 281 to the outside of the sub pipe and to the base pipe. It is supplied to the space in the pipe 20 and is discharged from the surrounding nozzle pipes 122 to 127, respectively, and is also directly discharged from the discharge port of the central nozzle pipe 121. In this way, by connecting and providing the hydrogen gas supply pipe on the side near the base end of the sub pipe 16, the manufacture and processing of the quartz burner itself can be easily performed. That is, in the embodiment, the bag portion 32 is provided on the base end side of the base tube 20 so as to be interposed so as to cut off the communication between the main tube of the oxygen gas supply tube 26 and the base wall 20, and the hydrogen gas supply Since the tube is connected to the tube, it is possible to specifically configure a local peripheral jet of hydrogen gas separately in the oxygen gas atmosphere in the base tube, and to perform processing at the time of manufacturing a burner using quartz glass. Can be performed smoothly and easily as an external work.
[0021]
Next, the operation of the present embodiment will be described. In FIGS. 1 and 2, the oxygen gas supplied at a required supply pressure from an oxygen gas supply device (not shown) is supplied from the oxygen gas supply pipe 26 to a branch pipe (a bypass pipe). 281, the base pipe 20, and the surrounding nozzle pipes 122 to 127 are ejected from the discharge ports 122a to 127a of the respective nozzle pipes. At the same time, the oxygen gas from the oxygen gas supply pipe 26 flows into the central nozzle pipe 121 provided so as to communicate in a straight line, and the oxygen gas is ejected from the discharge port 121a of the central nozzle pipe. At this time, as shown in FIG. 4, the discharge ports 122 a to 122 e of the peripheral nozzle pipes 122 to 127 are located at the radiation target positions around the discharge port 121 a of the central nozzle pipe and approximately 60 degrees apart from each other. 127a are arranged in a dot-like manner at substantially the same discharge position in the longitudinal direction in the outer tube 10 (the connection portion between the tapered portion 112 and the discharge cylinder portion 113). Therefore, oxygen is discharged from these seven discharge ports in total. The gas is blown out in a beam.
[0022]
On the other hand, a hydrogen gas supplied at a required supply pressure from a hydrogen gas supply device (not shown) is separated from the hydrogen gas supply pipe 30 via the branch pipe 302 by the base pipe 20 and the nozzle pipe 12 inside the outer pipe 10. The gas is supplied to the nozzle outside ejection portion 14 which is a space other than the nozzle tube, is narrowed down by the tapered portion 112, flows through the space other than the nozzle tubes, and is blown out so as to surround the oxygen gas coming out of the discharge ports. Further, the hydrogen gas flows from the hydrogen gas supply pipe 30 through the bag section 32 via the branch pipe 301, reaches the local peripheral blowing section 18, and hydrogen gas is also blown from the tip of the sub pipe 16. At this time, the front end of the sub-tube 16 is set at an intermediate length of the length of the central nozzle tube 121, and hydrogen gas is ejected at a position forward of the discharge port of the central nozzle tube 121. The hydrogen gas released from the restriction of the flow path begins to diffuse at a position ahead of the discharge port of each nozzle pipe, and when oxygen gas is blown out from the discharge port of each nozzle pipe, particularly, the central nozzle pipe A greater flow of hydrogen gas is created in the area between the oxygen gas from the chamber and the annular oxygen gas zone formed by the surrounding nozzle tube. With this, when the oxyhydrogen gas is blown out at the base end portion of the discharge cylinder portion 113, the supply amount of the diffused hydrogen gas around the central nozzle pipe and inside the surrounding nozzle pipe can be sufficiently increased. When the gas is discharged from the discharge opening 113a, the gas is sufficiently mixed in the central portion, and a sufficient amount of hydrogen gas is mixed with the oxygen gas and taken in, and the flame at the focal position is taken. As shown in FIG. 7, there is no unevenness in the temperature range. As a result, a uniform high-temperature area at the focus position of the flame is widely secured, and the heat treatment is performed evenly on the target material for manufacturing or processing. In addition, product strength and processing accuracy can be greatly improved. It is possible to shorten the time for manufacturing or processing a product and improve the efficiency of manufacturing or processing.
[0023]
Next, a second embodiment of the present invention will be described with reference to FIGS. 8 to 11. The same components as those in the first embodiment will be denoted by the same reference numerals, and detailed description thereof will be omitted. In the quartz burner device of the second embodiment, a space is provided between the inner tube of the outer tube 10 and the base end is provided so as to protrude from the outer tube, and the base tube 20 is provided. The central nozzle pipe 501 is connected to the discharge side, and the surrounding nozzle pipes 502 to 507 are connected and connected to the radiation target positions around the central nozzle pipe 501, and the auxiliary pipe 52 is arranged on the outer periphery of the separation of all the nozzle pipes 501 to 507. The gap between the nozzle tube and the sub-tube is referred to as a local peripheral ejection portion 18, and further, a gap is formed on the inner side of the outer tube 10 and on the outer periphery of the base tube 20 to form a double tube with respect to the base tube. Is provided with a base outer tube 54, and a gap between the base tube 20 and the base outer tube 54 is communicated with all the local peripheral ejection portions 18. Further, the base outer tube 54 has a s position near the base end of the base outer tube 54. Hydrogen gas is connected to the outer pipe side communicating with the nozzle The supply pipe 30 is a structure in which branch-connected via the branch pipe 303. Hydrogen gas passes through a base outer tube, a local peripheral jet portion 18 which is a space between the sub-tube and each nozzle tube, a nozzle outer jet portion 14 which is a space portion inside the outer tube and outside the nozzle tube, It is blown out from. Also in the present embodiment, the sub pipe 52 is provided concentrically at least on the outer periphery of the central nozzle pipe 501 in the outer pipe 10, and the focal position direction is set between the central nozzle pipe and the sub pipe along the central nozzle pipe. Is provided, and the same function and effect as those of the first embodiment can be basically obtained.
[0024]
In the present embodiment, the central nozzle pipe 501 does not penetrate through the base pipe 20 and communicates with the oxygen gas supply pipe 26, but includes all other peripheral nozzle pipes 502 to 507 of the central nozzle pipe 501. The nozzle tube 50 is connected and extended from the gas discharge side of the base tube 20, and all oxygen gas is blown out from each of the nozzle tubes 501 to 507 via the base tube 20. Therefore, the oxygen gas supply pipe 26 is directly connected and connected to the base end side of the base pipe 20, and has a simple connection configuration. Further, in the present embodiment, the auxiliary pipes 52 are installed with a gap at the separated outer peripheral position of all the nozzle pipes 501 to 507 including the central nozzle pipe, and the base outer pipe 54 is connected to all the auxiliary pipes 52. And the gap between the base outer tube 54 and the base tube 20 and all the local peripheral ejection portions 18 are commonly connected. The space inside the outer tube 10 partitioned by the base outer tube 54, the sub-tube 52, and each nozzle tube 50 forms the nozzle-tube outside ejection portion 14. Each sub-tube 52 has a tip position shorter than the tip position of each nozzle tube similarly to the first embodiment, and extends along each nozzle tube in a straight tube at a position separated from the outer periphery thereof.
[0025]
In the quartz burner apparatus of the second embodiment, before oxygen gas is discharged from the discharge ports 501a to 507a of all the nozzle pipes including the central nozzle pipe 501, hydrogen gas is discharged from the local outer peripheral portions of the individual pipes. Are ejected in a certain diffusion state before reaching the discharge port, thereby improving the mixing ratio, thereby increasing the temperature distribution of the flame when ejected from the discharge opening 113a and hitting the target material. In addition, the manufacturing and processing operations can be stably performed, and the processing time can be improved to perform the processing in a short time, thereby improving the manufacturing and processing accuracy of the object.
[0026]
As described above, the embodiment of the quartz burner device according to the present invention has been described. However, the present invention is not limited to the above-described embodiment, and changes in a range that does not depart from the essence of the invention described in the claims may be made. include. For example, in the above embodiment, the outer pipe 10, the nozzle pipes 12, 50 including the central nozzle pipe, the sub pipes 16, 52, the base pipe 20, the base outer pipe 54, the peripheral nozzle pipes 122 to 127, 502 to 507 are Are all cylindrical tubes having a circular cross section, but may also be formed of cylindrical tubes having a triangular, quadrangular or other polygonal cross section.
[0027]
【The invention's effect】
As described above, according to the quartz burner device of the present invention, an oxygen gas and a hydrogen gas are supplied, and a cylindrical outer tube extending in a direction in which those gases are ejected; and an outer tube disposed in the outer tube. A plurality of small-diameter nozzle pipes arranged around the center of the cross-section and around them and injecting oxygen gas so that the gas converges at a required focal position, and a nozzle pipe in the outer pipe partitioned by the nozzle pipes An outer space portion, which is supplied with hydrogen gas and blows out the hydrogen gas toward the focal position direction, and has a sub-tube that is concentric with at least the outer periphery of the central nozzle tube inside the outer tube. Is provided with a local circumferential jetting portion for jetting hydrogen gas from the center nozzle tube and the sub-tube toward the focal position direction along the central nozzle tube. Hydrogen gas from the outer periphery Supply a sufficient amount of hydrogen gas into the mixed gas to secure a uniform high-temperature range widely at the focal point of the flame, and perform heat treatment evenly on the target material for production or treatment, and product strength In addition, the processing accuracy can be improved. In addition, a wide range of high temperature areas at the focal point of the flame is secured to facilitate product manufacturing or processing work, and shorten the working time. Overall, the efficiency of manufacturing, processing, and processing using this quartz burner device is greatly increased. Can be improved. In addition, frequent adjustment of the gas supply is not required, the gas supply is kept constant, the consumption is reduced, and the production cost is reduced.
[0028]
In addition, a base tube is provided with an air gap between the inner tube of the outer tube and oxygen gas is supplied in common with a plurality of nozzle tubes and the central nozzle tube penetrates the base tube. A sub-tube is provided so that oxygen gas supplied from the oxygen gas supply side is directly blown out from the discharge port. Between the oxygen gas supply pipe and the sub-pipe by providing a hydrogen gas supply pipe connected to the base pipe nearer to the base end side. It is possible to specifically realize a configuration in which hydrogen gas is simultaneously ejected from the nozzle outside ejection portion and the local peripheral ejection portion while the oxygen gas is ejected from the central nozzle tube and the surrounding nozzle tube at the same time. In addition, by connecting and communicating with the hydrogen gas supply pipe on the side closer to the base end of the sub-pipe, the trunk side part of the base pipe is penetrated in the longitudinal direction and connected to the sub-pipe at the longitudinal middle position of the base pipe, etc. In comparison, the processing and connection work of the burner device are simple, and the cost of the device can be kept low.
[0029]
In addition, the oxygen gas supply pipe is branched and connected to the central nozzle pipe and the base pipe via a branch pipe to supply oxygen gas to each, and further, the nozzle is supplied from the hydrogen gas supply pipe via another branch pipe. A configuration in which hydrogen gas is supplied to each of the branch pipes by branching out to the outside pipe discharge section and the local peripheral discharge section, for example, by using a protruding portion on the gas supply side of the base pipe to separate each supply pipe. A return can be connected to supply oxyhydrogen gas specifically into the apparatus through each path. Further, the structure is simple, and the device can be easily manufactured.
[0030]
In addition, a base tube is provided with a gap between the inner tube of the outer tube and a base end side protrudingly provided from the outer tube, the base tube being connected to the plurality of nozzle tubes in common and supplied with oxygen gas, Furthermore, a base outer pipe which is arranged in a double tubular shape with respect to the base pipe with a gap formed on the outer circumference of the base pipe, and which communicates with a local peripheral ejection part which is a gap portion with all the sub pipes on the outer side of the nozzle pipe. A hydrogen gas supply pipe is branched and connected via a branch pipe to a base end side of the base outer pipe and an outer pipe communicating with the nozzle pipe ejection section, so that a central nozzle pipe is provided. Sub-tubes are provided at the separated outer peripheral position of all the nozzle tubes including, and hydrogen gas is blown out from the local circumferential blow-out part corresponding to those nozzle tubes to secure a sufficient mixing amount of hydrogen, thereby improving the mixing ratio. Uniform temperature distribution of flame when hitting target material And, it performed more accurate manufacturing, stably with capable by the processing operations, the processing in a short time to streamline the process work. Further, since the oxygen gas supply pipe is directly connected to and connected to the base end of the base pipe, the manufacturing and processing operations of the apparatus can be simplified and the manufacturing cost can be reduced.
[0031]
In addition, the configuration in which the tip of the sub-tube is set to the longitudinal middle position length of each nozzle tube allows hydrogen gas to flow in front of the nozzle tube before oxygen gas is released from the tip of each nozzle tube. Since it is ejected from the outer peripheral part and diffused to some extent, sufficient hydrogen gas can be taken into the mixed gas and released, and the flame temperature range at the focal point can be widely secured as a uniform and uniform high temperature range. Processing accuracy can be reliably improved.
[Brief description of the drawings]
FIG. 1 is an overall perspective view of a quartz burner device according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of the burner device of FIG.
FIG. 3 is a sectional view taken along line AA of FIG. 2;
FIG. 4 is a sectional view taken along line CC of FIG. 2;
FIG. 5 is a view taken along line BB of FIG. 2;
FIG. 6 is an enlarged explanatory view of a two-dot chain line portion in FIG. 2;
FIG. 7 is a cross-sectional view illustrating a temperature range distribution of a flame at a focal position when a flame is applied to a planar target material disposed at a focal point of the flame.
FIG. 8 is a schematic longitudinal sectional view of a quartz burner device according to a second embodiment of the present invention.
FIG. 9 is an enlarged explanatory view of a two-dot chain line part in FIG. 8;
FIG. 10 is a sectional view taken along line DD of FIG. 8;
FIG. 11 is a sectional view taken along line EE of FIG. 8;
FIG. 12 is an explanatory longitudinal sectional view of a conventional quartz burner.
FIG. 13 is a sectional view taken along line FF of FIG. 12;
FIG. 14 is a sectional view taken along line GG of FIG.
FIG. 15 (a) shows a case where the conventional quartz burner of FIG. 12 is used, and shows a temperature range of a flame at a focal position when a flame is applied to a planar target material disposed at the focal point of the flame. It is sectional explanatory drawing explaining distribution. (B) shows a case in which the conventional quartz burner of FIG. 12 is used, and shows the temperature range of the flame at the focal position when the flame is applied to the barrel-side portion of the cylindrical target material disposed at the focal point of the flame. It is sectional explanatory drawing explaining distribution.
[Explanation of symbols]
10 outer tube
12 nozzle tube
14 Nozzle outside jet
16 Secondary pipe
18 Local circumference spout
20 Base tube
26 Oxygen gas supply pipe
30 Hydrogen gas supply pipe
32 bags
50 nozzle tube
52 Vice tube
54 Base outer tube
121,501 Central nozzle tube
122-127, 502-507 Surrounding nozzle tube

Claims (5)

酸素ガス及び水素ガスを供給されてそれらのガスの噴出方向に向けて延びた筒状の外管と、
外管内に配置され外管の断面略中心部分及びそれらの周囲に配置され所要の焦点位置でガスが収束するように酸素ガスを噴き出す小径の複数のノズル管と、
それらのノズル管に仕切られる、外管内であってノズル管外の空間部分であり水素ガスが供給されて焦点位置方向に向けて該水素ガスを噴き出すノズル管外噴き出し部と、を有し、
少なくとも外管内の中心部ノズル管の外周に同心状に副管を設け中心部ノズル管と副管との間から中心部ノズル管に沿って焦点位置方向に向けて水素ガスを噴き出させる局部周噴き出し部を備えたことを特徴とする石英バーナ装置。
A cylindrical outer tube which is supplied with oxygen gas and hydrogen gas and extends in a direction in which those gases are ejected;
A plurality of small-diameter nozzle tubes which are arranged in the outer tube, are arranged substantially in the center of the cross section of the outer tube and are arranged around the outer tube, and eject oxygen gas so that the gas converges at a required focal position;
A nozzle-outside jetting portion that is separated into the nozzle tubes, is a space portion inside the outer tube and outside the nozzle tube, and is supplied with hydrogen gas and jets out the hydrogen gas toward the focal position.
At least a concentric sub-tube is provided concentrically on the outer periphery of the central nozzle tube in the outer tube, and a local periphery for ejecting hydrogen gas from between the central nozzle tube and the sub-tube toward the focal position along the central nozzle tube. A quartz burner device comprising a blowing part.
外管の内壁との間に空隙を空けて配置され複数のノズル管に共通に連通して酸素ガスが供給される基部管が設けられ、
中心部ノズル管は、基部管を貫通して酸素ガス供給側から供給される酸素ガスを直接に吐出口から噴き出すように設けられ、
さらに、その中心部ノズル管の離隔外周に設けられる副管は基端側が閉鎖された状態で中心部ノズル管との間に局部周噴き出し部を形成しつつ基部管を貫通して設けられ、
該副管の基端寄り側に水素ガス供給管が連通接続されたことを特徴とする請求項1記載の石英バーナ装置。
A base pipe is provided with an air gap between the inner pipe of the outer pipe and an oxygen gas supplied in common with a plurality of nozzle pipes.
The central nozzle pipe is provided so as to blow oxygen gas supplied from the oxygen gas supply side through the base pipe directly from the discharge port,
Further, the sub-tube provided on the spaced outer periphery of the central nozzle tube is provided through the base tube while forming a local peripheral ejection portion with the central nozzle tube in a state where the base end side is closed,
2. The quartz burner device according to claim 1, wherein a hydrogen gas supply pipe is connected to the sub pipe near the base end.
酸素ガス供給管から分岐管を介してそれぞれ中心部ノズル管と基部管に対して分岐接続されてそれぞれに酸素ガスを供給し、
さらに、水素ガス供給管から他の分岐管を介してノズル管外噴き出し部並びに局部周噴き出し部に分岐接続してそれぞれに水素ガスを供給することを特徴とする請求項1または2記載の石英バーナ装置。
The oxygen gas supply pipe is branched and connected to the central nozzle pipe and the base pipe via a branch pipe to supply oxygen gas to each,
3. The quartz burner according to claim 1, wherein the hydrogen gas supply pipe is further connected to the nozzle outside discharge section and the local peripheral discharge section via another branch pipe to supply hydrogen gas to the branch discharge section and the local peripheral discharge section, respectively. apparatus.
外管の内壁との間に空隙を空けさらに基端側を外管から突設させて配置され、複数のノズル管に共通に連通して酸素ガスが供給される基部管が設けられ、
さらに、基部管の外周に空隙を空けて基部管に対して二重管状に配置されかつ、すべてのノズル管外周側の副管との空隙部分である局部周噴き出し部に連通する基部外管が設けられ、
該基部外管の基端寄り側とノズル管外噴き出し部に連通する外管側とに水素ガス供給管が分岐管を介して分岐接続されたことを特徴とする請求項1記載の石英バーナ装置。
An air gap is provided between the outer pipe and the inner wall, and a base end side is provided so as to protrude from the outer pipe, and a base pipe to which oxygen gas is supplied in common with a plurality of nozzle pipes is provided.
Furthermore, a base outer pipe which is arranged in a double tubular shape with respect to the base pipe with a gap formed on the outer circumference of the base pipe, and which communicates with a local peripheral ejection part which is a gap portion with all the sub pipes on the outer side of the nozzle pipe. Provided,
2. The quartz burner device according to claim 1, wherein a hydrogen gas supply pipe is branched and connected via a branch pipe to a side closer to a base end of the base outer pipe and to an outer pipe communicating with the nozzle pipe discharge section. .
副管の先端が各ノズル管の長手中間位置長さに設定されていることを特徴とする請求項1ないし4のいずれかに記載の石英バーナ装置。The quartz burner device according to any one of claims 1 to 4, wherein a tip of the sub-tube is set to a length intermediate position length of each nozzle tube.
JP2002190378A 2002-06-28 2002-06-28 Quartz burner equipment Expired - Lifetime JP3640071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190378A JP3640071B2 (en) 2002-06-28 2002-06-28 Quartz burner equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190378A JP3640071B2 (en) 2002-06-28 2002-06-28 Quartz burner equipment

Publications (2)

Publication Number Publication Date
JP2004036910A true JP2004036910A (en) 2004-02-05
JP3640071B2 JP3640071B2 (en) 2005-04-20

Family

ID=31700311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190378A Expired - Lifetime JP3640071B2 (en) 2002-06-28 2002-06-28 Quartz burner equipment

Country Status (1)

Country Link
JP (1) JP3640071B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2006256A1 (en) * 2006-02-28 2008-12-24 Shin-Etsu Chemical Company, Ltd. Quartz glass made burner
WO2009107392A1 (en) * 2008-02-27 2009-09-03 信越化学工業株式会社 Burner for manufacturing porous glass base material
EP2279984A1 (en) 2009-07-30 2011-02-02 Draka Comteq B.V. A method for manufacturing a primary preform for optical fibres
KR101036064B1 (en) 2008-02-27 2011-05-19 신에쓰 가가꾸 고교 가부시끼가이샤 Burner for producing porous glass preform
KR101479539B1 (en) 2013-05-06 2015-01-07 (주) 디에스테크노 Burner for manufacturing quartz glass ingot
CN106830664A (en) * 2017-02-22 2017-06-13 长飞光纤光缆股份有限公司 A kind of blowtorch for preparing fibre parent material loosening body
CN106989389A (en) * 2017-05-24 2017-07-28 久智光电子材料科技有限公司 A kind of primary and secondary burner
JP7295990B1 (en) 2022-04-28 2023-06-21 三菱重工パワーインダストリー株式会社 gas burner
CN116618896A (en) * 2023-05-25 2023-08-22 辽宁拓邦鸿基半导体材料有限公司 Quartz inner ring lamp with double-ring structure and convenient for uniform heating

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2006256A1 (en) * 2006-02-28 2008-12-24 Shin-Etsu Chemical Company, Ltd. Quartz glass made burner
EP2006256A4 (en) * 2006-02-28 2012-07-11 Shinetsu Chemical Co Quartz glass made burner
US8079233B2 (en) 2008-02-27 2011-12-20 Shin-Etsu Chemical Co., Ltd. Burner for manufacturing porous glass base material
WO2009107392A1 (en) * 2008-02-27 2009-09-03 信越化学工業株式会社 Burner for manufacturing porous glass base material
JP2010215415A (en) * 2008-02-27 2010-09-30 Shin-Etsu Chemical Co Ltd Burner for manufacturing porous glass preform
CN101965316A (en) * 2008-02-27 2011-02-02 信越化学工业株式会社 Burner for manufacturing porous glass base material
KR101036064B1 (en) 2008-02-27 2011-05-19 신에쓰 가가꾸 고교 가부시끼가이샤 Burner for producing porous glass preform
EP2279984A1 (en) 2009-07-30 2011-02-02 Draka Comteq B.V. A method for manufacturing a primary preform for optical fibres
NL1037164C2 (en) * 2009-07-30 2011-02-02 Draka Comteq Bv METHOD FOR MANUFACTURING A PRIMARY FORM FOR OPTICAL FIBERS.
US8739575B2 (en) 2009-07-30 2014-06-03 Draka Comteq B.V. Method for manufacturing a primary preform for optical fibres
US9512028B2 (en) 2009-07-30 2016-12-06 Draka Comteq B.V. Method for manufacturing a primary preform for optical fibres
KR101479539B1 (en) 2013-05-06 2015-01-07 (주) 디에스테크노 Burner for manufacturing quartz glass ingot
CN106830664A (en) * 2017-02-22 2017-06-13 长飞光纤光缆股份有限公司 A kind of blowtorch for preparing fibre parent material loosening body
CN106989389A (en) * 2017-05-24 2017-07-28 久智光电子材料科技有限公司 A kind of primary and secondary burner
JP7295990B1 (en) 2022-04-28 2023-06-21 三菱重工パワーインダストリー株式会社 gas burner
CN116618896A (en) * 2023-05-25 2023-08-22 辽宁拓邦鸿基半导体材料有限公司 Quartz inner ring lamp with double-ring structure and convenient for uniform heating

Also Published As

Publication number Publication date
JP3640071B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
US8613207B2 (en) Method and apparatus for producing a quartz glass cylinder
US7797965B2 (en) Method for producing tubes of quartz glass
JP2004036910A (en) Quartz burner device
EP2583952B1 (en) Method and burner for producing a porous glass preform
US20100132406A1 (en) Deposition burner and method for the manufacture thereof, use of the deposition burner and method for the production of a quartz glass body by using the deposition burner
US20090068605A1 (en) Quartz glass made burner
KR20100136965A (en) Burner for manufacturing porous glass base material
US6402059B1 (en) Fuel lance for spraying liquid and/or gaseous fuels into a combustion chamber, and method of operating such a fuel lance
US5393220A (en) Combustion apparatus and process
CN1526670A (en) Method for processing optical fiber prefabricated parts, combustor system and apparatus containing the same system
ES2310189T3 (en) ATOMIZATION BURNER FOR THE THERMAL DECREASE OF SULFURED RESIDUAL MATERIAL.
US20060177788A1 (en) Burner for fabricating optical fiber preform
KR100201186B1 (en) Method and apparatus for heating elongated glass substrate
JP4241173B2 (en) Method for producing porous glass fine particle deposit and burner for glass synthesis used in the production method
US9227869B2 (en) Porous glass base material manufacturing burner and optical fiber porous glass base material manufacturing apparatus
JP3156731B2 (en) Quartz glass burner
US11168263B2 (en) Apparatus and method for preparing ethylene and/or acetylene using hydrocarbon
JPH08178225A (en) Nozzle for combustion equipment
KR101035437B1 (en) Burner for producing porous glass preform
US5255854A (en) Burner head for gas burners
KR102545710B1 (en) Burner for synthesizing
KR101036064B1 (en) Burner for producing porous glass preform
JPH0133935Y2 (en)
CN110966607B (en) Natural gas auxiliary flame treatment burner
CN112228870B (en) Flameless burner for forming neutral borosilicate glass tube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050107

R150 Certificate of patent or registration of utility model

Ref document number: 3640071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term