JP2004036626A - Control method of direct injection engine - Google Patents

Control method of direct injection engine Download PDF

Info

Publication number
JP2004036626A
JP2004036626A JP2003336149A JP2003336149A JP2004036626A JP 2004036626 A JP2004036626 A JP 2004036626A JP 2003336149 A JP2003336149 A JP 2003336149A JP 2003336149 A JP2003336149 A JP 2003336149A JP 2004036626 A JP2004036626 A JP 2004036626A
Authority
JP
Japan
Prior art keywords
engine
temperature
catalyst
fuel
direct injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003336149A
Other languages
Japanese (ja)
Other versions
JP3939279B2 (en
Inventor
Jun Iwade
岩出 純
Kimitaka Saito
斎藤 公孝
Tokio Kohama
小浜 時男
Toshiaki Asada
浅田 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2003336149A priority Critical patent/JP3939279B2/en
Publication of JP2004036626A publication Critical patent/JP2004036626A/en
Application granted granted Critical
Publication of JP3939279B2 publication Critical patent/JP3939279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of an engine to prevent deterioration of exhaust air emission because of a catalyst not at activating temperature at the time of restarting as wall temperature of a cylinder and temperature of the exhaust air purifying catalyst are lowered during temporary stopping of the engine on a hybrid vehicle assembling a direct injection engine using gasoline as fuel and an electric motor. <P>SOLUTION: An ECU 7 stops the engine after raising the temperature of the exhaust gas purifying catalyst 5 up to a heat resistance limit of the catalyst by previously changing injection timing of the fuel over to an early stage of a suction process from an intermediate stage of the suction process so that the exhaust air temperature becomes higher in advance of stopping of the engine. Consequently, it is possible to prevent deterioration of emission after restarting because an exhaust air purifying function of the catalyst 5 is displayed after the restarting or in a short period of time after restart since the temperature of the catalyst 5 is high at restarting. <P>COPYRIGHT: (C)2004,JPO

Description

 この発明は、動力源として電気モータとガソリンを燃料とする内燃機関(エンジン)を併せ持つ車両(HV=Hybrid Vehicle、ハイブリッド車両)に適用される筒内直接噴射式エンジン(筒内直噴エンジン)の制御方法に関するものである。 The present invention relates to an in-cylinder direct injection engine (in-cylinder direct injection engine) applied to a vehicle (HV = Hybrid Vehicle, hybrid vehicle) having both an electric motor as a power source and an internal combustion engine (engine) using gasoline as fuel. It relates to a control method.

 自動車の低燃費化の要求から多様な動力源が考案されている。電気モータと内燃機関を組み合わせて用いる所謂HVシステムもその一つである。HVシステムにおいて電気モータと組み合わせる内燃機関としてはガソリン機関、ディーゼル機関等が挙げられるが、比出力に優れるガソリン筒内直噴機関を用いる試みもなされている。 多 様 Various power sources have been devised to meet the demand for lower fuel consumption of automobiles. A so-called HV system using an electric motor and an internal combustion engine in combination is one of them. As an internal combustion engine combined with an electric motor in the HV system, a gasoline engine, a diesel engine, and the like can be mentioned, and an attempt has been made to use a gasoline in-cylinder direct injection engine having excellent specific power.

 ガソリン筒内直噴機関においては、要求負荷に応じて低負荷時には圧縮行程において燃料を噴射して成層燃焼を行い、高負荷時には吸気行程において燃料を噴射して予混合均一燃焼を行うという制御モードが公知である。 In a gasoline direct injection engine, a control mode is used in which stratified combustion is performed by injecting fuel in the compression stroke at low load, and premixed uniform combustion by injecting fuel in the intake stroke at high load, according to the required load. Is known.

 HVにおいては、車両の要求負荷が小の時はエンジンを停止させて電気モータによって走行するため、エンジンの要求負荷は高負荷に限定されるので、その燃焼形態は吸気行程噴射による予混合均一燃焼に限られる。 In the HV, when the required load of the vehicle is small, the engine is stopped and the vehicle is driven by the electric motor. Therefore, the required load of the engine is limited to a high load. Limited to

 前述のように、HVにおいては低負荷時にエンジンを停止させるため、通常走行中にエンジンの始動及び停止が頻繁に繰り返される。そのためにシリンダ壁面の温度や排気ガス浄化触媒の温度が低下しやすいという問題がある。 As described above, in the HV, the engine is stopped when the load is low, so that the engine is frequently started and stopped during normal running. Therefore, there is a problem that the temperature of the cylinder wall surface and the temperature of the exhaust gas purifying catalyst tend to decrease.

 通常走行中であっても、エンジンを停止させることによって排気ガス浄化触媒の温度が活性化温度以下まで低下すると、再始動直後は排気ガスが浄化されなくなるので、排気エミッションの悪化を招くことになる。本発明はこのような問題を解決するためになされたものである。 Even during normal running, if the temperature of the exhaust gas purifying catalyst is lowered to the activation temperature or lower by stopping the engine, the exhaust gas is not purified immediately after restarting, so that the exhaust emission is deteriorated. . The present invention has been made to solve such a problem.

 この発明は、上記課題を解決するために、請求項1に記載された技術手段を採用する。即ち、エンジン停止時に予め触媒を耐久限度まで昇温させることによって、再始動時の触媒温度を高くし、触媒の暖機に必要な時間を短縮するか、或いはなくして、触媒の排気ガス浄化能力に切れ目が生じるのを防止することができ、触媒暖機中の排気エミッションの増加を防止することができる。 This invention employs the technical means described in claim 1 in order to solve the above problems. That is, by raising the temperature of the catalyst to the endurance limit in advance when the engine is stopped, the catalyst temperature at the time of restart is increased, and the time required for warming up the catalyst is reduced or eliminated, and the exhaust gas purification performance of the catalyst is reduced. This makes it possible to prevent the occurrence of a break in the exhaust gas, thereby preventing an increase in exhaust emission during warm-up of the catalyst.

 この技術手段によれば、暖機過程において、触媒の昇温を促進することができるだけでなく、オイルダイリューションを低減させること、及び、暖機後において低燃費を実現することができる。 According to this technical means, in the warming-up process, not only can the catalyst temperature rise be promoted, but also the oil dilution can be reduced, and low fuel consumption can be realized after the warming-up.

 請求項2に記載された技術手段によれば、軽負荷時等のようにエンジンが一時的に停止される時には請求項1の技術手段と同様な効果が得られると共に、車両の連続的な停止時には、運転者がHVのメインスイッチ(イグニッションキー)をOFFとすることによってエンジンを直ちに停止させることができるので、運転者に不快感を与えない。 According to the technical means described in claim 2, when the engine is temporarily stopped such as at a light load, the same effect as that of the technical means of claim 1 is obtained, and the vehicle is continuously stopped. At times, the driver can turn off the main switch (ignition key) of the HV to immediately stop the engine, so that the driver does not feel uncomfortable.

 請求項3に記載された技術手段によれば、エンジンの一時的停止に先立って、燃料の噴射時期を排気温度が高くなる点に変更する、即ち燃料の噴射時期を吸気行程の中期から吸気行程の早期に変更することにより、請求項1及び2の技術手段と同じ効果が得られる。 According to the technical means described in claim 3, prior to the temporary stop of the engine, the fuel injection timing is changed to a point at which the exhaust gas temperature increases, that is, the fuel injection timing is changed from the middle stage of the intake stroke to the intake stroke. The same effect as the technical means of claims 1 and 2 can be obtained by changing early.

 図1は、ガソリン筒内直噴エンジンを動力源の1つとするHVシステムにおいて、本発明の制御方法の制御対象となるエンジン部分のみの第1実施形態を示すシステム構成図である。第1実施形態の筒内直噴エンジンにおいては、シリンダ1の燃料噴射弁2の噴孔と対向している側の壁面の、燃料噴霧が付着する位置にシリンダ壁温センサ3を設けると共に、排気通路4に設けられた触媒5には触媒温度センサ6が設置され、これらのセンサ3及び6の出力信号がマイクロコンピュータを内蔵するECU(電子式制御装置)7に入力される。 FIG. 1 is a system configuration diagram showing a first embodiment of only an engine portion to be controlled by a control method of the present invention in an HV system in which a gasoline direct injection engine is one of the power sources. In the in-cylinder direct injection engine of the first embodiment, a cylinder wall temperature sensor 3 is provided at a position on the wall surface of the cylinder 1 facing the injection hole of the fuel injection valve 2 where fuel spray adheres, and exhaust gas is discharged. A catalyst temperature sensor 6 is provided in the catalyst 5 provided in the passage 4, and output signals of these sensors 3 and 6 are input to an ECU (electronic control device) 7 having a built-in microcomputer.

 この他、ECU7には、運転者が操作するアクセルペダル8の踏込量を検出するアクセルポジションセンサ9や、吸入空気量を検出するエアフローセンサ10、排気通路4に設けられて酸素濃度を検出する空燃比センサ11、クランクシャフト12に対向して設けられてその回転位置や回転数を検出するクランク角センサ13等からの出力信号が入力される。そして、ECU7は、それらの信号に基づいて燃料噴射弁2の燃料噴射時期や点火プラグ14を付勢する点火時期等を決定する。なお、吸気通路15に設けられたスロットル弁16は、アクセルペダル8によって直接に、或いはECU7を介して間接的に開閉制御される。17は燃料タンク、18は高圧燃料ポンプ、19はピストンを示す。 In addition, the ECU 7 includes an accelerator position sensor 9 for detecting the amount of depression of an accelerator pedal 8 operated by the driver, an air flow sensor 10 for detecting the amount of intake air, and an empty space provided in the exhaust passage 4 for detecting the oxygen concentration. Output signals from a crank angle sensor 13 and the like, which are provided to face the fuel ratio sensor 11 and the crankshaft 12 and detect the rotation position and the number of rotations, are input. Then, the ECU 7 determines the fuel injection timing of the fuel injection valve 2, the ignition timing for energizing the ignition plug 14, and the like based on these signals. The opening and closing of the throttle valve 16 provided in the intake passage 15 is controlled directly by the accelerator pedal 8 or indirectly via the ECU 7. 17 is a fuel tank, 18 is a high-pressure fuel pump, and 19 is a piston.

 図2は、図1に示されたガソリン筒内直噴エンジンにおいて吸気行程噴射を行った場合の燃料消費率、燃料のシリンダ壁面への付着量及び排気温度の変化を示したものである。図3に示すように、吸気行程の中期(図2のA点付近)において燃料を噴射すると、燃料消費率が低くなるものの、シリンダ壁への燃料の付着量が増加し、排気温度が低くなる。これに対して、図4に示すように吸気行程の初期(図2のB点付近)において燃料を噴射すると、燃料のシリンダ付着量が低減すると共に排気温度が高くなる。 FIG. 2 shows changes in the fuel consumption rate, the amount of fuel adhering to the cylinder wall surface, and the exhaust gas temperature when the intake stroke injection is performed in the gasoline cylinder direct injection engine shown in FIG. As shown in FIG. 3, when the fuel is injected in the middle stage of the intake stroke (around point A in FIG. 2), the fuel consumption rate decreases, but the amount of fuel adhering to the cylinder wall increases, and the exhaust temperature decreases. . On the other hand, when fuel is injected at the beginning of the intake stroke (around point B in FIG. 2) as shown in FIG. 4, the amount of fuel adhering to the cylinder is reduced and the exhaust temperature is increased.

 図5は、図2に示した性質を利用する本発明の制御方法を例示したフローチャートである。次に、この制御例を図1から図5の各図を用いて説明する。 FIG. 5 is a flowchart illustrating a control method of the present invention utilizing the properties shown in FIG. Next, this control example will be described with reference to FIGS. 1 to 5.

 図5のフローチャートに示す制御プログラムがスタートすると、まずステップ101においてシリンダ壁温センサ3の出力信号がECU7に読み込まれて、所定の温度と比較される。また、ステップ102においては、触媒温度センサ6の出力信号が読み込まれて、触媒の活性化温度と比較される。シリンダ壁温度が高く、且つ触媒温度が触媒5の活性化温度以上の場合はステップ103に進んで、燃料噴射時期は図2のA点、即ち燃料消費率が最良となる吸気行程の中期の点を選定する。 When the control program shown in the flowchart of FIG. 5 starts, first, in step 101, the output signal of the cylinder wall temperature sensor 3 is read by the ECU 7 and compared with a predetermined temperature. In step 102, the output signal of the catalyst temperature sensor 6 is read and compared with the activation temperature of the catalyst. If the cylinder wall temperature is high and the catalyst temperature is equal to or higher than the activation temperature of the catalyst 5, the routine proceeds to step 103, and the fuel injection timing is set to the point A in FIG. 2, that is, the middle point of the intake stroke at which the fuel consumption rate becomes the best. Is selected.

 このときは燃料噴射弁2から噴射された燃料噴霧の一部が、図3に示すように、シリンダ1の壁面に衝突して付着する。そのため図2のようにシリンダ燃料付着量は増加するところであるが、シリンダ壁温が高いために、付着する燃料が壁面の熱によって直ちに気化し、オイルダイリューションの増加につながらない。また、エンジンから排出されるエミッションも、活性化している触媒5により十分に浄化されて低減する。 At this time, a part of the fuel spray injected from the fuel injection valve 2 collides with and adheres to the wall surface of the cylinder 1 as shown in FIG. Therefore, as shown in FIG. 2, the amount of fuel adhering to the cylinder is about to increase. However, since the cylinder wall temperature is high, the adhering fuel is immediately vaporized by the heat of the wall surface, and does not lead to an increase in oil dilution. Further, the emission discharged from the engine is sufficiently purified by the activated catalyst 5 and reduced.

 しかしながら、HVにおいては、車両の動力源に対する要求負荷が小さい時にはエンジンを一時的に停止するため、走行中であってもシリンダ壁温や触媒温度が低下する場合がある。 However, in the HV, when the required load on the power source of the vehicle is small, the engine is temporarily stopped, so that the cylinder wall temperature and the catalyst temperature may decrease even during running.

 シリンダ1の壁温が低下している時には、シリンダ1に付着する燃料は気化し難いために、壁面上に潤滑油膜を形成しているオイルに混入し、オイルと共にピストンリングによって掻き落されて、クランクケース内のオイルパンに貯溜されているオイルがダイリューション(希釈)を起こす。この場合、図5に例示した制御方法では、ステップ101からステップ104に進み、燃料の噴射時期を吸気行程内の早期噴射点である図2のB点に制御する。噴射時期がB点になると、燃料の噴霧は図4に示すようにピストン19の頂面に向って噴射されるため、シリンダ1の壁面への付着は図2に示すように少なくなり、オイルダイリューションを防止することができる。 When the wall temperature of the cylinder 1 is low, the fuel adhering to the cylinder 1 is hard to vaporize, so it is mixed with the oil forming the lubricating oil film on the wall, and is scraped off by the piston ring together with the oil. Oil stored in the oil pan in the crankcase causes dilution. In this case, in the control method illustrated in FIG. 5, the process proceeds from step 101 to step 104, and the fuel injection timing is controlled to the point B in FIG. 2, which is the early injection point in the intake stroke. When the injection timing reaches point B, the fuel spray is injected toward the top surface of the piston 19 as shown in FIG. 4, so that the adhesion to the wall surface of the cylinder 1 is reduced as shown in FIG. Solution can be prevented.

 また、触媒5の温度が触媒の活性化温度以下の場合は十分な浄化性能が得られないために、車両からの排出エミッションが悪化する。このときは図5のステップ102からステップ104に進み、前述の場合と同様に燃料噴射時期をA点からB点へ変更する。図2から明らかなようにB点における噴射では、A点における噴射に比べて排気温度が高くなるため、触媒5の昇温が促進される。 (4) If the temperature of the catalyst 5 is lower than the activation temperature of the catalyst, sufficient purification performance cannot be obtained, so that emission emissions from the vehicle deteriorate. In this case, the process proceeds from step 102 to step 104 in FIG. 5, and the fuel injection timing is changed from the point A to the point B as in the case described above. As is clear from FIG. 2, the injection temperature at the point B is higher than the injection temperature at the point A, so that the temperature rise of the catalyst 5 is promoted.

 図6にHV全体のシステムの概略を示す。HVにおけるエンジン停止には、運転者の意志による車両の停止に伴うエンジンの連続的な停止(イグニッションキースイッチ20のOFF等による)と、走行状態或いは負荷状態によりメインCU(主制御装置)21が筒内直噴エンジン22を一時的に停止させると判断した場合の一時的な停止とがある。このようなエンジン停止のための制御プログラムを図7のフローチャートによって説明する。 Fig. 6 shows an outline of the system of the entire HV. When the engine is stopped in the HV, the main CU (main control device) 21 depends on the continuous stop of the engine (eg, by turning off the ignition key switch 20) accompanying the stop of the vehicle by the driver's will, and the running state or load state. There is a temporary stop when it is determined that the in-cylinder direct injection engine 22 is temporarily stopped. A control program for stopping the engine will be described with reference to a flowchart of FIG.

 ステップ201においてメインCU21からエンジン22の停止指令が出た場合、それが運転者の意志(イグニッションキーOFF等)によるものであることがステップ202において判明すると、ただちにステップ203に進んでエンジンECU23によってエンジン22を停止させる。しかし、ステップ202の判定において、そのエンジン停止が運転者の意志によるものではないことが判明した時は、ステップ204に進む。この場合、つまり車両の走行状態からメインCU21がエンジン22のトルクは不要と判断した場合でも、ステップ204において、センサ6によって検知される触媒温度が耐熱限度に達する時まで、ステップ205において燃料噴射弁2の燃料の噴射時期をB点へ移動させる制御を行ってエンジン22の運転を継続させ、耐熱限度に達した時に、ステップ203に進んでエンジンECU23によってエンジン22を一時的に停止させる。なお、この場合はモータECU24によるモータ25の運転制御が継続される。 When a stop command for the engine 22 is issued from the main CU 21 in step 201, and it is found in step 202 that the command is due to the driver's will (ignition key OFF or the like), the process immediately proceeds to step 203 and the engine ECU 23 22 is stopped. However, when it is determined in step 202 that the engine stop is not due to the driver's intention, the process proceeds to step 204. In this case, that is, even when the main CU 21 determines that the torque of the engine 22 is unnecessary from the running state of the vehicle, in step 204, until the catalyst temperature detected by the sensor 6 reaches the heat resistance limit, the fuel injection valve The control of moving the fuel injection timing of No. 2 to the point B is performed to continue the operation of the engine 22. When the heat limit is reached, the routine proceeds to step 203, where the engine ECU 23 temporarily stops the engine 22. In this case, the operation control of the motor 25 by the motor ECU 24 is continued.

 この制御により再始動時の触媒温度を高くして、触媒5の暖機時間を短縮、或いは実質的になくすことができるので、触媒5の暖機過程におけるエミッションを低減することができる。 (4) By this control, the catalyst temperature at the time of restart can be increased, and the warm-up time of the catalyst 5 can be shortened or substantially eliminated, so that the emission in the warm-up process of the catalyst 5 can be reduced.

 図8に、本発明の制御方法が適用されるHV用のガソリン筒内直噴エンジンに関する他の実施形態を示す。この実施形態においては、シリンダ壁温センサを設置しないで、従来からエンジンの冷却水通路に設けられて冷却水温の検出に用いられている冷却水温センサ26の出力信号をエンジンECU7に入力し、水温によってシリンダ1の付着燃料の気化状態を判定するもので、その他の制御は前述例と同様である。また、図8において、27はラジエータ、28は冷却水通路を示す。その他の参照符号は図1に示したものと同じである。 FIG. 8 shows another embodiment of a gasoline direct injection engine for HV to which the control method of the present invention is applied. In this embodiment, an output signal of a cooling water temperature sensor 26 conventionally provided in an engine cooling water passage and used for detecting a cooling water temperature is input to an engine ECU 7 without installing a cylinder wall temperature sensor. This determines the vaporization state of the fuel adhering to the cylinder 1, and the other controls are the same as in the above-described example. In FIG. 8, reference numeral 27 denotes a radiator, and reference numeral 28 denotes a cooling water passage. Other reference numerals are the same as those shown in FIG.

本発明の制御方法が適用される筒内直噴エンジンの第1の実施形態を示すシステム構成図である。FIG. 1 is a system configuration diagram showing a first embodiment of a direct injection engine to which a control method of the present invention is applied. 筒内直噴エンジンの吸気行程噴射における噴射時期の変化に伴う諸特性の変化を示す線図である。FIG. 4 is a graph showing changes in various characteristics of an in-cylinder direct injection engine with changes in injection timing during intake stroke injection. 筒内直噴エンジンの吸気行程中期噴射を示す断面図である。FIG. 3 is a cross-sectional view showing a middle-stage injection in an intake stroke of a direct injection engine. 筒内直噴エンジンの吸気行程初期噴射を示す断面図である。FIG. 3 is a cross-sectional view illustrating an initial injection in an intake stroke of a direct injection engine. 本発明による制御例を示すフローチャートである。5 is a flowchart illustrating a control example according to the present invention. HVシステムの全体を略示するシステム構成図である。1 is a system configuration diagram schematically illustrating the entire HV system. HVシステムにおけるエンジン停止の制御例を示すフローチャートである。5 is a flowchart illustrating an example of control for stopping the engine in the HV system. 本発明の制御方法が適用される筒内直噴エンジンの第2の実施形態を示すシステム構成図である。It is a system configuration diagram showing a second embodiment of a direct injection engine to which a control method of the present invention is applied.

符号の説明Explanation of reference numerals

1…ガソリン筒内直噴エンジンのシリンダ
2…燃料噴射弁
3…シリンダ壁温センサ
5…排気浄化触媒
6…触媒温度センサ
7…筒内直噴エンジン用の電子式制御装置
20…メインスイッチ(イグニッションキースイッチ)
21…HV( Hybrid Vehicle )用の主制御装置(メインCU)
22…ガソリン筒内直噴エンジン
25…モータ
26…冷却水温センサ
DESCRIPTION OF SYMBOLS 1 ... Cylinder of gasoline in-cylinder direct injection engine 2 ... Fuel injection valve 3 ... Cylinder wall temperature sensor 5 ... Exhaust purification catalyst 6 ... Catalyst temperature sensor 7 ... Electronic control device 20 for in-cylinder direct injection engine 20 ... Main switch (ignition Key switch)
21: Main control unit (Main CU) for HV (Hybrid Vehicle)
22 ... gasoline cylinder direct injection engine 25 ... motor 26 ... cooling water temperature sensor

Claims (3)

 動力源として電気モータと内燃機関を併せ持つ車両に適用されるガソリン筒内直噴エンジンにおいて、エンジン停止に先立って排気温度が高くなる制御モードに切り換えて、排気ガス浄化触媒の温度を触媒の耐熱限界まで昇温させた後にエンジンを停止させることを特徴とする筒内直噴エンジンの制御方法。 For direct injection engines in gasoline cylinders applied to vehicles that have both an electric motor and an internal combustion engine as power sources, switch to a control mode in which the exhaust gas temperature rises before the engine stops, and set the temperature of the exhaust gas purification catalyst to the heat resistance limit of the catalyst. A method for controlling an in-cylinder direct injection engine, wherein the engine is stopped after the temperature is raised to the maximum.  請求項1における制御方法を、メインスイッチの遮断による連続的なエンジン停止以外の、動力源として電気モータと内燃機関を併せ持つ車両に用いられるエンジンに特有の一時的なエンジン停止時において実行することを特徴とする制御方法。 The control method according to claim 1 is executed at the time of a temporary engine stop peculiar to an engine used in a vehicle having both an electric motor and an internal combustion engine as a power source, other than a continuous engine stop by shutting off a main switch. Characteristic control method.  請求項1又は2において、排気温度を高くする制御モードとして、燃料の噴射時期を吸気行程の中期から吸気行程の早期に変更することを特徴とする制御方法。 A control method according to claim 1 or 2, wherein the control mode for increasing the exhaust gas temperature is to change the fuel injection timing from a middle stage of the intake stroke to an early stage of the intake stroke.
JP2003336149A 2003-09-26 2003-09-26 In-cylinder direct injection engine control method Expired - Fee Related JP3939279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336149A JP3939279B2 (en) 2003-09-26 2003-09-26 In-cylinder direct injection engine control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336149A JP3939279B2 (en) 2003-09-26 2003-09-26 In-cylinder direct injection engine control method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1062198A Division JPH11210521A (en) 1998-01-22 1998-01-22 Control method for cylinder direct injection engine

Publications (2)

Publication Number Publication Date
JP2004036626A true JP2004036626A (en) 2004-02-05
JP3939279B2 JP3939279B2 (en) 2007-07-04

Family

ID=31712777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336149A Expired - Fee Related JP3939279B2 (en) 2003-09-26 2003-09-26 In-cylinder direct injection engine control method

Country Status (1)

Country Link
JP (1) JP3939279B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747926B1 (en) 2006-05-18 2007-08-08 현대자동차주식회사 A control method for hybrid engine
WO2008050530A1 (en) * 2006-10-25 2008-05-02 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controling the same
US9517760B2 (en) 2011-12-28 2016-12-13 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
KR20180065374A (en) * 2016-12-07 2018-06-18 현대오트론 주식회사 Device and method to protect the catalyst for the mild hybrid electric vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747926B1 (en) 2006-05-18 2007-08-08 현대자동차주식회사 A control method for hybrid engine
WO2008050530A1 (en) * 2006-10-25 2008-05-02 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controling the same
JP2008106675A (en) * 2006-10-25 2008-05-08 Toyota Motor Corp Hybrid vehicle and method for controlling same
JP4552921B2 (en) * 2006-10-25 2010-09-29 トヨタ自動車株式会社 Hybrid vehicle and control method thereof
US8234029B2 (en) 2006-10-25 2012-07-31 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method of hybrid vehicle
US9517760B2 (en) 2011-12-28 2016-12-13 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
KR20180065374A (en) * 2016-12-07 2018-06-18 현대오트론 주식회사 Device and method to protect the catalyst for the mild hybrid electric vehicle

Also Published As

Publication number Publication date
JP3939279B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
EP1423590B1 (en) Stop-start control apparatus of internal combustion engine, and control method thereof
US7377248B2 (en) Engine starting control system of internal combustion engine
EP1789668B1 (en) A control system for controlling a dual fuel injector per cylinder fuel system during engine start
US20100000487A1 (en) Engine starting apparatus
US6823830B2 (en) Cylinder disabling control apparatus for a multi-cylinder engine
JP4811304B2 (en) Automatic stop device for vehicle engine
JP2008303788A (en) Automatic stop device of internal combustion engine
EP1859144B1 (en) Control apparatus for internal combustion engine
JP2008185022A (en) Control device for vehicle
JP2009052416A (en) Automatic stop device for engine
US9869260B2 (en) Control device of multi-cylinder internal combustion engine
JP2004036561A (en) Automatic stopping and starting device for cylinder injection type internal combustion engine
JP3939279B2 (en) In-cylinder direct injection engine control method
JPH11210521A (en) Control method for cylinder direct injection engine
JP2009209722A (en) Start control device and start control method for engine
JP7237419B2 (en) vehicle controller
JP2002317681A (en) Control device of internal combustion engine
JP7337585B2 (en) Control device for internal combustion engine
JP7218054B2 (en) Control device for internal combustion engine
JP2001164966A (en) Method for operating internal combustion engine
JP2002188484A (en) Control device for internal combustion engine
JP3161361B2 (en) Vehicle control device
JPH02267337A (en) Electronic fuel injection device
JPH09303169A (en) Fuel supply control device for internal combustion engine with transmission
JP2014206075A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees