JP2004036258A - Steel pipe structure for permeable sand control dam - Google Patents

Steel pipe structure for permeable sand control dam Download PDF

Info

Publication number
JP2004036258A
JP2004036258A JP2002195697A JP2002195697A JP2004036258A JP 2004036258 A JP2004036258 A JP 2004036258A JP 2002195697 A JP2002195697 A JP 2002195697A JP 2002195697 A JP2002195697 A JP 2002195697A JP 2004036258 A JP2004036258 A JP 2004036258A
Authority
JP
Japan
Prior art keywords
steel pipe
steel
pipe structure
sabo dam
type sabo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002195697A
Other languages
Japanese (ja)
Inventor
Iwao Kono
河野 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Tower Co Ltd JST
Original Assignee
Japan Steel Tower Co Ltd JST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Tower Co Ltd JST filed Critical Japan Steel Tower Co Ltd JST
Priority to JP2002195697A priority Critical patent/JP2004036258A/en
Publication of JP2004036258A publication Critical patent/JP2004036258A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a replacing structure for a permeable sand control dam using steel pipes suitable for assembling at a site such as a mountain district, and endurable against a large-scale avalanche of sand and stone over a long period. <P>SOLUTION: The steel pipe structure 100 for the permeable sand control dam is arranged on a concrete foundation 300 of a sand control dam 200 of rivers/lakes and marshes in the mountain district. The steel pipe structure 100 for the permeable sand control dam is provided with a skeleton member 2 composed of a plurality of steel pipes 1, a shock time difference member 5 arranged in front of the skeleton member 2, a joint sleeve 3 for connecting the adjacent steel pipes 1 and a steel rope tensioning mechanism 4 for fixing the connected steel pipes 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、一般に透過型砂防ダム用鋼管構造物に関し、さらに詳しく言えば、衝撃時間差部材を備えた透過型砂防ダム用鋼管構造物に関するものである。
【0002】
【従来の技術】
砂防ダムは、山岳地等の河川・湖沼において台風、地震等による地盤崩壊が起こり、岩石を含む土砂、樹木等の転落・流出に対して、下流地域の環境保全、人命保護を図るために河川・湖沼に設けられる構造物である。この種の砂防ダムの形式は、大別して2種類ある。その1つは比較的高さが小さく(例えば、1−3m)、発生した土石流の砂、岩石、流木を共に堰き止める形式のいわゆる不透過型砂防ダムである。他の1つは、高さが大きく(例えば、10―20m以上)、比較的大きな岩石、大流木を堰き止め、土砂等は下流に流す方式の透過型砂防ダムである。
【0003】
【発明が解決しようとする課題】
上記いずれの形式の構造物を用いるとしても、土石流、流木、岩石の転落を堰き止める機能として、既存の各種鋼管は曲げおよび座屈耐力の点で優れている。特に、鋼管は透過型砂防ダム用構造物に適している。しかし、鋼管を透過型砂防ダム用構造物に適用するには、現地組立ての点でいくつかの問題がある。まず、鋼管相互を接続するためには、慣用の一般フランジ継手を用いるか、現地溶接が行われる。これらの接続作業は山岳地においては適していない。また、砂防ダムの建設場所は、狭く、険しいので、建設器材の運搬・保管には不便であり、索道等の特殊な手段を採らざるをえず、多大な費用と労力を要する。
【0004】
また、崩落現場では比較的小さな径の土石流もあるが、一方ではその直径が1−2mにも達する大規模な土石流もある。このような大規模土石流が高速度で砂防ダムを直撃した場合には、相当に大きな衝撃力になる。鋼管で構成した透過型砂防ダム用構造物はこのような大衝撃力にも耐えうることは予想できるが、長期間にわたる場合には、いまだその耐久性に関しする経験はない。しかし、このような大規模土石流を同時に受け止めるのではなく、一定の時間差をもって受け止めることができれば、鋼管を透過型砂防ダム用構造物に長期間使用できる可能性は十分にある。
【0005】
本発明は、山岳地等の現地組立てに適しかつ大規模な土石流にも長期間耐えうる鋼管を用いた透過型砂防ダム用交換構造物を提供することを課題にしている。
【0006】
【課題を解決するための手段】
本発明の複数の透過型砂防ダム用鋼管構造物は、鋼管からなる骨組み部材と、骨組み部材の前面に設けられた衝撃時間差部材と、隣接鋼管を連結する継手スリーブと、連結された鋼管を固定する鋼索緊張機構とを備えている。骨組み部材は、鋼管支柱と、鋼管横梁と、鋼管縱梁と、鋼管斜め梁とからなる。
【0007】
衝撃時間差部材は、骨組み部材の前面から前方に片持ち梁を突出させ、上段から下段に至るに従って片持ち梁の長さを短くしたものか、または骨組み部材の前面鋼管横梁を骨組み部材の幅方向に凹形多角折れ線状に形成したものからなる。
【0008】
継手スリーブは、スリーブ本体と、スリーブ本体の長手方向のほぼ中央外周に予め溶接されたストッパ・リングとからなる。鋼索緊張機構は、複数本のスチール・ワイヤを撚り合わせた鋼索と、鋼索の一端を鋼管の一端に固定するソケット部材と、鋼管の他端において鋼索の他端を把持しかつ緊張させる締付け部材とからなる。
【0009】
【発明の実施の形態】
本発明の透過型砂防ダム用鋼管構造物の好適実施例について、図面を参照して説明する。
【0010】
図1、3−5に示すように、本発明にもとづく透過型砂防ダム用鋼管構造物100は、山岳地等における河川・湖沼の砂防ダム200のコンクリート基礎300上に設置される。これらの図において、白抜き矢印400は、土石流を総称して表す。
【0011】
透過型砂防ダム用鋼管構造物100は、図1−6に示すように、複数の鋼管1からなる骨組み部材2と、骨組み部材の前面に設けられた衝撃時間差部材5と、隣接鋼管1を連結する継手スリーブ3と、連結された鋼管1を固定する鋼索緊張機構4とを備えている。
【0012】
図1、3、4に最も良く示すように、骨組み部材2は、鋼管支柱21と、鋼管横梁22と、鋼管縱梁23と、鋼管斜め梁24とからなる。継手スリーブ3は、図2、8、11、12に最も良く示すように、スリーブ本体31と、スリーブ本体31の長手方向のほぼ中央外周に予め溶接32(図10)されたストッパ・リング33とからなる。図2に最も良く示すように、隣接鋼管1の各一端が継手スリーブ31のスリーブ本体32の外周に嵌められ、ストッパ・リング33に突き合わされる。接続鋼管1は、後に詳述するように、鋼索緊張機構4によって固定される。鋼管1の穴開け、継手スリーブ3の溶接は、予め工場において加工される。
【0013】
図8は、本発明の透過型砂防ダム用鋼管構造物100に用いられる鋼管支柱21の一例を示す縦断面図である。鋼索緊張機構4の一例を、鋼管支柱21に使用される場合について説明する。鋼索緊張機構4は、複数本のスチール・ワイヤを撚り合わせた鋼索41と、鋼索41の一端(図示例では下端)を鋼管1の一端に固定するソケット部材42と、鋼管1の他端において鋼索41の他端(図示例では上端)を把持しかつ緊張させる締付け部材43とからなる。
【0014】
ソケット部材42は、図8、13に最も良く示すように、基礎300に固定されたベース・プレート421と、ベース・プレート421に溶接されたソケット定着用プレート422と、プレート422に固定されていて連結鋼管1の内部を貫通する鋼索41の下端を把持するソケット423と、ソケット定着用ボルト424とからなる。ソケット部材42は、図示するように、鋼管内部に配置される。
【0015】
締付け部材43は、図8、9、10に最も良く示すように、鋼管1の上端面に溶接固定された鋼管端プレート431と、その上に乗せられた支圧板432と、鋼索41の上端を把持するソケット433と、ソケット433を支持する締付けボルト434とからなる。締付け部材43は、図示するように、締付けボルト434の頭部のみが鋼管上端に露出しているが、それ以外の部品はすべて鋼管1の内部に配置される。締付けボルト434を締め付けることによって、鋼索41は緊張され、それに伴って連結鋼管1も堅固に固定される。
【0016】
鋼管1が直線状に連結さる鋼管横梁22、鋼管縱梁23、鋼管斜め梁24の連結固定は、上述した鋼管支柱21と同様になされるので、説明を省略する。
【0017】
鋼管支柱21、鋼管横梁22、鋼管縱梁23、鋼管斜め梁24が互いに交差する場合は、図14−16に示すように連結固定される。例えば、鋼管支柱21と鋼管横梁22とが直交して連結固定される場合について説明する。第1鋼管横梁22aと第2鋼管横梁22bとは前述の継手スリーブ3によって接続される。第1鋼管横梁22aの一端は湾曲に切断されて鋼管支柱21の上端に係合される。当て金435が第1鋼管横梁22aとは反対側の鋼管支柱21の上端に当てられ、鋼索緊張機構4の締付け部材43の締付けボルト434によって鋼管支柱21に固定される。鋼管横梁22の反対端は、前述のソケット部材42が同様に固定される。
【0018】
鋼管接続部の強度は、曲げ応力に対しては継手スリーブのスリーブ本体で抵抗し、引張り応力に対しては鋼索の張力で抵抗し、圧縮応力に対しては、継手スリーブのストッパ・リング支圧板で抵抗できる。
【0019】
鋼管骨組み部材2、継手スリーブ3、鋼索緊張機構4の穴開け、溶接、切断等の作業は、予め工場においてなされているので、現地の組立て作業においては、鋼管相互の接続、ソケットと鋼索との接続、ボルトの取付けおよび締付けのみでよい。したがって、現地組立て作業は、容易、迅速、安全になされうる。
【0020】
次に、図1、6、7を参照して、骨組み部材2の前面に設けられた衝撃時間差部材5について説明する。岩石の落下に対する砂防ダム全体の耐力について考えたとき、岩石の衝突後は加速度による衝撃荷重は消滅し、静荷重となることに着目すれば、同時に多数の岩石の衝突を避けることが重要となる。そこで、衝撃時間差部材5は、骨組み部材2の前面から前方に片持ち梁51を突出させ、上段から下段に至るに従って片持ち梁51の長さを短くしたもの(図6)か、または骨組み部材2の前面鋼管横梁22cを骨組み部材の幅方向に凹形多角折れ線状に形成したもの(図7)からなる。片持ち梁51および前面鋼管横梁22cの取付け構造は、上述した構造と同様である。上段から下段にかけて片持ち梁の長さを短くするのは、岩石が骨組み部材2を乗り越えないようにするためである。
【0021】
図6に示すように、例えば、3個の大形岩石401がダムの深さ方向にほぼ同一位置で上流から高速で流れてきた場合、片持ち梁51がないか、または片持ち梁51が同一長さで突出しているならば、3個の岩石401は同時に骨組み部材2の前面に激突する。しかし、本発明では片持ち梁51の突出長さが上段から下段にかけて短くなっているので、3個の岩石は片持ち梁51に同時に激突しない。したがって、衝撃力は軽減される。
【0022】
図7に示すように、例えば、3個の大形岩石401がダムの幅方向にほぼ同一位置で上流から高速で流れてきた場合、凹形多角折れ線状前面鋼管横梁22cがないか、または直線状の前面鋼管横梁22だけであれば、3個の岩石401は同時に骨組み部材2の前面に激突する。しかし、本発明では前面鋼管横梁22cがダムの幅方向凹形多角折れ線状になっているので、3個の岩石は前面鋼管横梁22cに同時に激突しない。したがって、衝撃力は軽減される。
【0023】
衝撃時間差部材5は、図6に示す構成と、図7に示す構成とを組み合わせてもよい。
【0024】
図17は、本発明の透過型砂防ダム用鋼管構造物100を現地にて構築するさいの工程の一例を示すフローチャートである。資材の現地搬入は、索道等を利用して行う。継手位置、鋼管部材の最大長さおよび重量は輸送手段にもとづいて予め設定する。
【0025】
本発明によれば、次の効果が得られる。
(1)従来のフランジ継手のように鋼管の外側に突起がなく、流木等の引掛りが減少する。
(2)輸送手段が限定され、部材の大きさおよび重量が制約された作業現場においても、組立て作業が容易にできる。
(3)鋼管の接続部がほぼ平滑で外観に優れている。
(4)鋼管骨組み部材および継手スリーブを予め工場生産できるので、資材の標準化および現場作業の省力化が可能となる。
(5)現場組立てが容易であるから、高所の困難な作業環境にも容易に順応できる。
(6)継手スリーブおよび鋼索緊張機構は従来のフランジ継手または溶接継手に十分匹敵する強度を有しているので、台風、地震等の災害に対しても信頼性のある構造物となる。
(7)多量の大規模岩石流の同時衝突を回避でき、衝撃力を軽減できる。
【図面の簡単な説明】
【図1】本発明の透過型砂防ダム用鋼管構造物の概略斜視図である。
【図2】本発明の透過型砂防ダム用鋼管構造物に用いられる鋼管接続機構の原理を示す接続鋼管の縦断面図である。
【図3】本発明の透過型砂防ダム用鋼管構造物の側面図である。
【図4】図3のIV−IV線から見た正面図である。
【図5】図3のV−V線から見た平面図である。
【図6】本発明の透過型砂防ダム用鋼管構造物に用い衝撃時間差部材の側面図である。
【図7】本発明の透過型砂防ダム用鋼管構造物に用いる別の衝撃時間差部材の平面図である。
【図8】本発明の透過型砂防ダム用鋼管構造物に用いられる鋼管支柱の一例の縦断面図である。
【図9】図8のIX−IX線から見た平面図である。
【図10】図8のX−X線から見た横断面図である。
【図11】図8のXI−XI線から見た横断面図である。
【図12】図8の鋼管接続部の部分拡大縦断面図である。
【図13】図8のXIII−XIII線から見た横断面図である。
【図14】本発明の透過型砂防ダム用鋼管構造物に用いられる鋼管梁の一例の部分縦断面図である。
【図15】図14のXV−XV線から見た縦断面図である。
【図16】図13の鋼管梁の接続部分に用いられる当て金の斜視図である。
【図17】本発明の透過型砂防ダム用鋼管構造物を現地にて構築するさいの工程の一例を示すフローチャートである。
【符号の説明】
1  鋼管             2  骨組み部材
3  継手スリーブ3        4  鋼索緊張機構
5  衝撃時間差部材       21  鋼管支柱
22  鋼管横梁          22c  前面鋼管横梁
23  鋼管縱梁          24  鋼管斜め梁
31  スリーブ本体        32  溶接
33  ストッパ・リング      41  鋼索
42  ソケット部材        43  締付け部材
51  片持ち梁         421  ベース・プレート
422  ソケット定着用プレート  423  ソケット
424  ソケット定着用ボルト   431  鋼管端プレート
432  支圧板          433  ソケット433
433  ソケット         434  締付けボルト
100  透過型砂防ダム用鋼管構造物
200  砂防ダム         300  コンクリート基礎
401  岩石
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention generally relates to a steel pipe structure for a transmission type sabo dam, and more particularly, to a steel pipe structure for a transmission type sabo dam provided with an impact time difference member.
[0002]
[Prior art]
Sabo dams are used to protect the downstream environment and protect human lives against the collapse and landslides caused by typhoons and earthquakes in rivers and lakes such as mountainous areas.・ It is a structure installed in lakes and marshes. There are roughly two types of sabo dams of this type. One is a so-called impervious type sabo dam of a type having a relatively small height (for example, 1-3 m) and damming sand, rocks, and driftwood of generated debris flow. The other is a permeation-type sabo dam that is large (for example, 10-20 m or more), dams relatively large rocks and large driftwoods, and flows sediment and the like downstream.
[0003]
[Problems to be solved by the invention]
Regardless of which type of structure is used, existing steel pipes are excellent in terms of bending and buckling strength as a function of blocking debris flow, driftwood, and falling of rock. In particular, steel pipes are suitable for structures for transmission type sabo dams. However, the application of steel pipes to structures for transmission type sabo dams has several problems in terms of on-site assembly. First, in order to connect the steel pipes to each other, a commonly used general flange joint is used or on-site welding is performed. These connections are not suitable in mountainous areas. In addition, since the construction site of the sabo dam is narrow and steep, it is inconvenient to transport and store construction equipment, and a special means such as a cableway has to be taken, which requires enormous cost and labor.
[0004]
Some debris flows have a relatively small diameter at the collapse site, while other large debris flows have a diameter of 1-2 m. When such large-scale debris flow hits the sabo dam at high speed, the impact force becomes considerably large. Although it is expected that a permeation-type sabo dam structure made of steel pipes can withstand such a large impact force, there is no experience in terms of its durability over a long period of time. However, if such a large-scale debris flow can be received at a certain time interval, not at the same time, there is a good possibility that the steel pipe can be used for a transmission type sabo dam structure for a long time.
[0005]
An object of the present invention is to provide an exchange structure for a permeation type sabo dam using a steel pipe which is suitable for on-site assembly in a mountainous area or the like and can withstand a large-scale debris flow for a long period of time.
[0006]
[Means for Solving the Problems]
A plurality of transmission-type sabo dam steel pipe structures according to the present invention, a frame member made of a steel pipe, an impact time difference member provided on the front surface of the frame member, a joint sleeve that connects adjacent steel pipes, and a connected steel pipe fixed. Steel cable tensioning mechanism. The frame member is composed of a steel pipe support, a steel pipe cross beam, a steel pipe longitudinal beam, and a steel pipe diagonal beam.
[0007]
The impact time difference member has a cantilever protruding forward from the front of the framing member, and the length of the cantilever is shortened from the upper stage to the lower stage. Formed in the shape of a polygonal concave polygonal line.
[0008]
The joint sleeve comprises a sleeve body and a stopper ring pre-welded to the outer periphery of the sleeve body at substantially the center in the longitudinal direction. The steel cable tensioning mechanism includes a steel cable formed by twisting a plurality of steel wires, a socket member for fixing one end of the steel cable to one end of the steel pipe, and a fastening member for gripping and tensioning the other end of the steel cable at the other end of the steel pipe. Consists of
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
A preferred embodiment of a steel pipe structure for a transmission type sabo dam according to the present invention will be described with reference to the drawings.
[0010]
As shown in FIGS. 1 and 3-5, a steel pipe structure 100 for a transmission type sabo dam according to the present invention is installed on a concrete foundation 300 of a sabo dam 200 for rivers and lakes in mountainous areas or the like. In these figures, the outline arrow 400 represents the debris flow collectively.
[0011]
As shown in FIG. 1-6, the transmission-type sabo dam steel pipe structure 100 connects a frame member 2 composed of a plurality of steel pipes 1, an impact time difference member 5 provided on the front surface of the frame member, and an adjacent steel pipe 1. And a steel cable tensioning mechanism 4 for fixing the connected steel pipe 1.
[0012]
As best shown in FIGS. 1, 3, and 4, the frame member 2 includes a steel pipe support 21, a steel pipe cross beam 22, a steel pipe longitudinal beam 23, and a steel pipe diagonal beam 24. As best shown in FIGS. 2, 8, 11 and 12, the coupling sleeve 3 comprises a sleeve body 31 and a stopper ring 33 which is pre-welded 32 (FIG. 10) to a substantially central outer periphery in the longitudinal direction of the sleeve body 31. Consists of As shown best in FIG. 2, each end of the adjacent steel pipe 1 is fitted around the outer circumference of the sleeve body 32 of the joint sleeve 31 and abuts against the stopper ring 33. The connection steel pipe 1 is fixed by a steel cable tensioning mechanism 4 as described later in detail. The drilling of the steel pipe 1 and the welding of the joint sleeve 3 are pre-processed in a factory.
[0013]
FIG. 8 is a longitudinal sectional view showing an example of the steel pipe support 21 used in the steel pipe structure 100 for the transmission type sabo dam of the present invention. An example in which the steel cable tensioning mechanism 4 is used for the steel pipe support 21 will be described. The steel cable tensioning mechanism 4 includes a steel cable 41 in which a plurality of steel wires are twisted, a socket member 42 for fixing one end (the lower end in the illustrated example) of the steel cable 41 to one end of the steel pipe 1, and a steel cable at the other end of the steel pipe 1. And a tightening member 43 for gripping and tensioning the other end (upper end in the illustrated example) of 41.
[0014]
The socket member 42 is fixed to the base plate 421 fixed to the base 300, the socket fixing plate 422 welded to the base plate 421, and the plate 422, as best shown in FIGS. It comprises a socket 423 for gripping the lower end of the steel cable 41 penetrating the inside of the connecting steel pipe 1 and a bolt 424 for fixing the socket. The socket member 42 is disposed inside the steel pipe as shown.
[0015]
As best shown in FIGS. 8, 9 and 10, the tightening member 43 is provided with a steel pipe end plate 431 welded and fixed to the upper end face of the steel pipe 1, a supporting plate 432 mounted thereon, and an upper end of the steel cable 41. It comprises a socket 433 to be gripped and a tightening bolt 434 supporting the socket 433. As shown, only the head of the tightening bolt 434 of the tightening member 43 is exposed at the upper end of the steel pipe, but all other components are arranged inside the steel pipe 1. By tightening the tightening bolts 434, the steel cable 41 is tensioned, and accordingly, the connecting steel pipe 1 is firmly fixed.
[0016]
The connection and fixing of the steel pipe horizontal beam 22, the steel pipe longitudinal beam 23, and the steel pipe diagonal beam 24 to which the steel pipe 1 is linearly connected are performed in the same manner as the steel pipe support 21 described above, and the description thereof will be omitted.
[0017]
When the steel pipe column 21, the steel pipe horizontal beam 22, the steel pipe vertical beam 23, and the steel pipe diagonal beam 24 cross each other, they are connected and fixed as shown in FIGS. For example, a case where the steel pipe support 21 and the steel pipe cross beam 22 are connected and fixed orthogonally will be described. The first steel pipe cross beam 22a and the second steel pipe cross beam 22b are connected by the joint sleeve 3 described above. One end of the first steel pipe cross beam 22 a is cut into a curve and is engaged with the upper end of the steel pipe support 21. An abutment 435 is applied to the upper end of the steel pipe support 21 on the opposite side of the first steel pipe cross beam 22a, and is fixed to the steel pipe support 21 by the tightening bolt 434 of the tightening member 43 of the steel cable tensioning mechanism 4. The above-mentioned socket member 42 is similarly fixed to the opposite end of the steel pipe cross beam 22.
[0018]
The strength of the steel pipe connection part resists bending stress by the sleeve body of the joint sleeve, resists tensile stress by the tension of the steel cable, and resists compressive stress by the stopper ring bearing plate of the joint sleeve. Can resist.
[0019]
Since operations such as drilling, welding, and cutting of the steel pipe frame member 2, the joint sleeve 3, and the steel cable tensioning mechanism 4 are performed in advance at a factory, in the on-site assembly work, the connection of the steel pipes and the connection between the socket and the steel cable are performed. All that is required is connection, bolt installation and tightening. Therefore, the on-site assembly work can be performed easily, quickly and safely.
[0020]
Next, the impact time difference member 5 provided on the front surface of the frame member 2 will be described with reference to FIGS. When considering the overall strength of the sabo dam against falling rocks, it is important to avoid the collision of many rocks at the same time, focusing on the fact that the impact load due to acceleration disappears after a rock collision and becomes a static load. . Therefore, the impact time difference member 5 has a structure in which the cantilever 51 is projected forward from the front surface of the frame member 2 and the length of the cantilever 51 is shortened from the upper stage to the lower stage (FIG. 6), or 2 is formed by forming the front steel tube cross beam 22c in a concave polygonal polygonal shape in the width direction of the frame member (FIG. 7). The mounting structure of the cantilever 51 and the front steel tube cross beam 22c is the same as the above-described structure. The reason why the length of the cantilever is reduced from the upper stage to the lower stage is to prevent rocks from climbing over the frame member 2.
[0021]
As shown in FIG. 6, for example, when three large rocks 401 flow at high speed from the upstream at substantially the same position in the depth direction of the dam, there is no cantilever 51 or the cantilever 51 If the three rocks 401 project at the same length, they will simultaneously strike the front surface of the frame member 2. However, in the present invention, since the protruding length of the cantilever 51 decreases from the upper stage to the lower stage, the three rocks do not collide with the cantilever 51 at the same time. Therefore, the impact force is reduced.
[0022]
As shown in FIG. 7, for example, when three large rocks 401 flow at a high speed from the upstream at substantially the same position in the width direction of the dam, there is no concave polygonal polygonal linear front steel pipe horizontal beam 22c or a straight line. If only the front steel tube cross beam 22 having the shape of a circle, the three rocks 401 simultaneously strike the front surface of the frame member 2. However, in the present invention, since the front steel tube cross beam 22c is formed in a polygonal polygonal shape in the width direction of the dam, the three rocks do not collide with the front steel tube cross beam 22c at the same time. Therefore, the impact force is reduced.
[0023]
The impact time difference member 5 may be a combination of the configuration shown in FIG. 6 and the configuration shown in FIG.
[0024]
FIG. 17 is a flowchart showing an example of the steps of constructing the steel pipe structure 100 for a transmission type sabo dam of the present invention on site. Materials will be brought on site using cableways. The joint position, the maximum length and weight of the steel pipe member are set in advance based on the means of transportation.
[0025]
According to the present invention, the following effects can be obtained.
(1) Unlike the conventional flange joint, there is no protrusion on the outside of the steel pipe, and the catch of driftwood and the like is reduced.
(2) The assembling work can be easily performed even in a work site where the transportation means is limited and the size and weight of the members are restricted.
(3) The connecting portion of the steel pipe is almost smooth and has excellent appearance.
(4) Since the steel tube frame member and the joint sleeve can be produced in a factory in advance, it is possible to standardize the materials and save labor on site.
(5) Since it is easy to assemble on site, it can be easily adapted to a difficult work environment at a high place.
(6) Since the joint sleeve and the steel cable tensioning mechanism have strength sufficiently comparable to the conventional flange joint or welded joint, the structure is reliable even against disasters such as typhoons and earthquakes.
(7) Simultaneous collision of a large amount of large-scale rock flows can be avoided, and the impact force can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a steel pipe structure for a transmission type sabo dam of the present invention.
FIG. 2 is a longitudinal sectional view of a connecting steel pipe showing a principle of a steel pipe connecting mechanism used in a steel pipe structure for a transmission type sabo dam of the present invention.
FIG. 3 is a side view of a steel pipe structure for a transmission type sabo dam according to the present invention.
FIG. 4 is a front view as seen from the line IV-IV in FIG. 3;
FIG. 5 is a plan view as seen from line VV in FIG. 3;
FIG. 6 is a side view of an impact time difference member used in the steel pipe structure for a transmission type sabo dam of the present invention.
FIG. 7 is a plan view of another impact time difference member used in the steel pipe structure for the transmission type sabo dam of the present invention.
FIG. 8 is a longitudinal sectional view of an example of a steel pipe support used in the steel pipe structure for a transmission type sabo dam of the present invention.
FIG. 9 is a plan view seen from line IX-IX in FIG. 8;
FIG. 10 is a transverse sectional view taken along line XX in FIG. 8;
FIG. 11 is a transverse sectional view taken along line XI-XI in FIG. 8;
FIG. 12 is a partially enlarged longitudinal sectional view of the steel pipe connection part of FIG. 8;
FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG.
FIG. 14 is a partial longitudinal sectional view of an example of a steel pipe beam used in the steel pipe structure for a transmission type sabo dam of the present invention.
FIG. 15 is a vertical sectional view taken along line XV-XV in FIG. 14;
FIG. 16 is a perspective view of a metal plate used for a connection portion of the steel pipe beam of FIG.
FIG. 17 is a flowchart showing an example of steps of constructing a steel pipe structure for a transmission type sabo dam of the present invention on site.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel pipe 2 Frame member 3 Joint sleeve 3 4 Steel cable tension mechanism 5 Impact time difference member 21 Steel pipe support 22 Steel pipe cross beam 22 c Front steel pipe cross beam 23 Steel pipe longitudinal beam 24 Steel pipe oblique beam 31 Sleeve body 32 Weld 33 Stopper ring 41 Steel cable 42 Socket member 43 Tightening member 51 Cantilever 421 Base plate 422 Socket fixing plate 423 Socket 424 Socket fixing bolt 431 Steel pipe end plate 432 Supporting plate 433 Socket 433
433 Socket 434 Tightening bolt 100 Steel pipe structure for transmission type sabo dam 200 Sabo dam 300 Concrete foundation 401 Rock

Claims (6)

複数の鋼管からなる骨組み部材と、該骨組み部材の前面に設けられた衝撃時間差部材と、隣接鋼管を連結する継手スリーブと、連結された鋼管を固定する鋼索緊張機構とを備えた、透過型砂防ダム用鋼管構造物。A transmission-type sabo comprising a frame member composed of a plurality of steel pipes, an impact time difference member provided on the front surface of the frame member, a joint sleeve for connecting adjacent steel pipes, and a steel cable tensioning mechanism for fixing the connected steel pipes. Steel pipe structure for dams. 前記骨組み部材は、鋼管支柱と、鋼管横梁と、鋼管縱梁と、鋼管斜め梁とからなる、請求項1に記載の透過型砂防ダム用鋼管構造物。The steel pipe structure for a permeation type sabo dam according to claim 1, wherein the frame member includes a steel pipe support, a steel pipe cross beam, a steel pipe longitudinal beam, and a steel pipe diagonal beam. 前記衝撃時間差部材は、前記骨組み部材の前面から前方に片持ち梁を突出させ、上段から下段に至るに従って前記片持ち梁の長さを短くしたものからなる、請求項1に記載の透過型砂防ダム用鋼管構造物。2. The transmission type sand control according to claim 1, wherein the impact time difference member is formed by projecting a cantilever forward from a front surface of the frame member, and reducing a length of the cantilever from an upper stage to a lower stage. 3. Steel pipe structure for dams. 前記衝撃時間差部材は、前記骨組み部材の前面鋼管横梁を該骨組み部材の幅方向に凹形多角折れ線状に形成したものからなる、請求項1に記載の透過型砂防ダム用鋼管構造物。The steel pipe structure for a transmission-type sabo dam according to claim 1, wherein the impact time difference member is formed by forming a front steel cross beam of the framing member into a concave polygonal polygonal line in a width direction of the framing member. 前記継手スリーブは、スリーブ本体と、該スリーブ本体の長手方向のほぼ中央外周に予め溶接されたストッパ・リングとからなる、請求項1に記載の透過型砂防ダム用鋼管構造物。The steel pipe structure for a transmission-type sabo dam according to claim 1, wherein the joint sleeve comprises a sleeve body and a stopper ring pre-welded to a substantially central outer periphery in a longitudinal direction of the sleeve body. 前記鋼索緊張機構は、複数本のスチール・ワイヤを撚り合わせた鋼索と、該鋼索の一端を鋼管の一端に固定するソケット部材と、鋼管の他端において鋼索の他端を把持しかつ緊張させる締付け部材とからなる、請求項1に記載の透過型砂防ダム用鋼管構造物。The steel cable tensioning mechanism includes a steel cable in which a plurality of steel wires are twisted, a socket member for fixing one end of the steel cable to one end of the steel pipe, and a fastening for gripping and tensioning the other end of the steel cable at the other end of the steel pipe. The steel pipe structure for a transmission-type sabo dam according to claim 1, comprising a member.
JP2002195697A 2002-07-04 2002-07-04 Steel pipe structure for permeable sand control dam Pending JP2004036258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195697A JP2004036258A (en) 2002-07-04 2002-07-04 Steel pipe structure for permeable sand control dam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195697A JP2004036258A (en) 2002-07-04 2002-07-04 Steel pipe structure for permeable sand control dam

Publications (1)

Publication Number Publication Date
JP2004036258A true JP2004036258A (en) 2004-02-05

Family

ID=31703997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195697A Pending JP2004036258A (en) 2002-07-04 2002-07-04 Steel pipe structure for permeable sand control dam

Country Status (1)

Country Link
JP (1) JP2004036258A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127280A (en) * 2007-11-22 2009-06-11 Jfe Metal Products & Engineering Inc Driftwood catching structure
KR101104823B1 (en) * 2011-07-29 2012-01-16 (주)대흥이엔지 Assembly steel frame

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127280A (en) * 2007-11-22 2009-06-11 Jfe Metal Products & Engineering Inc Driftwood catching structure
KR101104823B1 (en) * 2011-07-29 2012-01-16 (주)대흥이엔지 Assembly steel frame

Similar Documents

Publication Publication Date Title
WO2019119686A1 (en) Assembled self-restoring circular composite concrete-filled steel tube joint
KR101337001B1 (en) Connector assembly for steel pipe strut
KR100488003B1 (en) Joining method of high strength steel structure
KR101955852B1 (en) Struts and support for wall shoring structure
JP2001262774A (en) Steel concrete composite structural member
KR100716453B1 (en) Reinforcement structure of CFT column and beam connection
JP2006274575A (en) Permeable debris dam
JP2004036258A (en) Steel pipe structure for permeable sand control dam
JP2017110442A (en) Joining structure of steel pipe column
JP2002188134A (en) Steel slit dam structure and construction method
JP2006316495A (en) Foundation structure of bridge pier and its construction method
KR102178849B1 (en) Reinforced bracing system apparatus using the cubic arch-structures
JP2004036257A (en) Steel pipe structure for permeable sand control dam
JP2005282339A (en) Structure for reinforcing hollow-steel-pipe steel tower by using splice l-shaped material
JP2010059647A (en) Steel slit dam and method of repairing the same
CN110835954A (en) A antidetonation node for assembled steel construction
JP2009275434A (en) Steel slit dam and method for constructing the same
JP2006161328A (en) Arch-shaped rock shed and its construction method
JP3669766B2 (en) Structure and construction method of cable-stayed suspension frame
JP2005139670A (en) Arch bridge
JP3297806B2 (en) Steel sabo dam
JP3155474B2 (en) Sabo dam
JP2007277972A (en) Erosion control dam bank and method of constructing it
KR20180087701A (en) Concrete Filled steel Tube of Aseismic Reinforcement and Method of Aseismic Reinforcement for Existing Building Structure using the Same
JP2004036259A (en) Steel pipe structure for permeable sand control dam