JP2004036003A - Method for separating high purity yttrium by extraction solvent containing phenoxy-substituted acetic acid - Google Patents

Method for separating high purity yttrium by extraction solvent containing phenoxy-substituted acetic acid Download PDF

Info

Publication number
JP2004036003A
JP2004036003A JP2003272363A JP2003272363A JP2004036003A JP 2004036003 A JP2004036003 A JP 2004036003A JP 2003272363 A JP2003272363 A JP 2003272363A JP 2003272363 A JP2003272363 A JP 2003272363A JP 2004036003 A JP2004036003 A JP 2004036003A
Authority
JP
Japan
Prior art keywords
acid
yttrium
extraction
slurry
acetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003272363A
Other languages
Japanese (ja)
Other versions
JP4046660B2 (en
Inventor
Tokuken Ri
李 徳謙
Shukuran Mo
孟 淑蘭
Yokuka O
王 弋戈
Koran O
王 香蘭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHANGCHUN SCIENT RES CT OF APP
CHANGCHUN SCIENTIFIC RESEARCH CENTER OF APPLIED CHEMISTRY CHINESE ACAD OF SCIENCE
Original Assignee
CHANGCHUN SCIENT RES CT OF APP
CHANGCHUN SCIENTIFIC RESEARCH CENTER OF APPLIED CHEMISTRY CHINESE ACAD OF SCIENCE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHANGCHUN SCIENT RES CT OF APP, CHANGCHUN SCIENTIFIC RESEARCH CENTER OF APPLIED CHEMISTRY CHINESE ACAD OF SCIENCE filed Critical CHANGCHUN SCIENT RES CT OF APP
Publication of JP2004036003A publication Critical patent/JP2004036003A/en
Application granted granted Critical
Publication of JP4046660B2 publication Critical patent/JP4046660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separation method of yttrium for separating a high purity yttrium from a mixed rare earth containing the yttrium by using phenoxy-substituted acetic acid, or alcoholate-substituted acetic acid and dialkylphosphoric acid, or its thio derivative as an extraction solvent. <P>SOLUTION: In the method, alcohol is used as an additive; rare earth chloride or rare earth nitride is used as a slurry; hydrochloric acid or nitric acid of pH 2-4 and 0.5-3 mol/L is used as a washing acid; aqueous ammonia, sodium hydroxide, ammonium bicarbonate or sodium carbonate, etc., are used as a saponification material; a flow rate ratio of an organic phase, the slurry and the washing acid is (5-15) : 1 : (1-6); the number of extraction steps is 20-40; the number of washing steps is 5-20; fractional distillation-extraction-mixing time is 5-10 minutes; clarification time is 10-25 minutes; extraction temperature is 10-35°C; purity of yttrium reaches 99.0-99.996 wt.% and yield is ≥95%. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、湿式製錬による希土金属分離工程に関し、具体的に、フェノキシ置換酢酸含有の抽出溶媒により、イットリウム含有の希土から高純度イットリウムを分離する工程に関する。 The present invention relates to a rare earth metal separation step by hydrometallurgy, specifically to a step of separating high-purity yttrium from yttrium-containing rare earth with an extraction solvent containing phenoxy-substituted acetic acid.

 イットリウムは、冶金、セラミック、レーザー、電子等ハイテク分野において、重要な用途があり、特に、高純度の酸化イットリウムは、カラーテレビの蛍光粉と蛍光発光素材、レーザー素材等方面において、需要量は益々増えて来ている。イットリウムは、ランタン系元素と化学性質の差が非常に小さいので、鉱物中に共存する。現在、イットリウムの湿式製錬分離工程において、広範囲に利用されているのがナフテン酸系である。中国特許CN85102220Bには、戴貞容らの「溶媒抽出より高純度イットリウム分離」技術が公開され、この技術は、0.8〜0.9 Mナフテン酸とナフテン酸アモニウムを抽出溶媒として、63%Y2O3の主に重希土である濃縮物から一段法より、収率98%以上、純度99.99%以上の高純度Y2O3を製造した。しかしながら、生産実践から、ナフテン酸は、石油の副産物であるので、組成が複雑で、水溶性が大きく、長期に使用すると抽出溶媒の成分が変化されるし、pKa値も比較的高く、高いpH値で希土を抽出するので、乳化の現像が起こりやすくなる。同時に、ランタンとイットリウムの分離係数も1〜1.4しかないので、これらの分離が難しくなる。 Yttrium has important applications in high-tech fields such as metallurgy, ceramics, lasers, and electronics.In particular, high-purity yttrium oxide is increasingly demanded in the areas of fluorescent powder, fluorescent materials, and laser materials for color televisions. It is increasing. Yttrium coexists in minerals because the difference in chemical properties from lanthanum elements is very small. At present, naphthenic acid is widely used in the hydrometallurgical separation process of yttrium. The Chinese patent CN85102220B, published technical "purity yttrium separated from the solvent extraction" of戴貞capacity et al, this technique, as an extraction solvent 0.8 to 0.9 M Amoniumu naphthenate and naphthenic acid, the 63% Y 2 O 3 main A high purity Y 2 O 3 having a yield of 98% or more and a purity of 99.99% or more was produced from a heavy rare earth concentrate by a one-step method. However, from the production practice, naphthenic acid is a by-product of petroleum, so its composition is complicated, its water solubility is large, the components of the extraction solvent are changed over a long period of use, its pKa value is relatively high, and its pH is high. Since rare earth is extracted by the value, development of emulsification is likely to occur. At the same time, the separation factor between lanthanum and yttrium is only 1 to 1.4, making it difficult to separate them.

 中国特許出願93112500.6号には、葉偉貞らの“希土類金属分離の抽出溶媒”が公開され、一般式ROCH2COOHのアルコキシ置換酢酸を希土類金属分離のカルボン酸型抽出溶媒とした。この類の抽出溶媒は、化学安定性が良く、組成も簡単で、これらのpKa値は、ナフテン酸のpKa値より小さいので、pHがわりと低い条件で抽出する場合、ナフテン酸による希土抽出の際生じる乳化問題を抑制するのを助ける。この類はナフテン酸によるイットリウム分離のカルボン酸型抽出溶媒に代わる可能性がある。その発明は、第二オクチルフェノキシル置換酢酸(HAで示す)による希土抽出の性能を述べ、ナフテン酸抽出性能との比較もした。その結果、HAのYに対する抽出は、各ランタン系元素(Lnで示す)の抽出より低いことが示された。Ln-Y分離係数は3.0〜4.9、までになって、ナフテン酸よりは、かなり良いことが明らかで、最低でもLn-Yも1.4である。それでYは全部のLnと有効的に分離される。ところが、HA系においては、Yは、重Ln例えば、Er、Tm、Yb、Lnとの分離係数が非常に低く、1.4〜1.7であるので、HA系より、イットリウム含有の重希土混合物から高純度のイットリウムの分離は困難である。この特許出願では、HA系によるイットリウム分離工程に関しては、未だ研究されていない。 Chinese Patent Application No. 93112500.6 discloses "Extracting Solvent for Rare Earth Metal Separation" by Wei Jing et al., And uses an alkoxy-substituted acetic acid of general formula ROCH 2 COOH as a carboxylic acid type extraction solvent for separating rare earth metal. This kind of extraction solvent has good chemical stability and simple composition.The pKa value of these solvents is smaller than the pKa value of naphthenic acid. Helps control emulsification problems that may arise. This class may replace carboxylic acid type extraction solvents for yttrium separation with naphthenic acid. The invention described the performance of rare earth extraction with secondary octylphenoxyl-substituted acetic acid (denoted by HA) and also compared it with naphthenic acid extraction performance. The results showed that the extraction of HA for Y was lower than the extraction of each lanthanum element (indicated by Ln). The Ln-Y separation factor is up to 3.0-4.9, which is much better than naphthenic acid, with a minimum Ln-Y of 1.4. So Y is effectively separated from all Ln. However, in the HA system, Y has a very low separation coefficient from heavy Ln, for example, Er, Tm, Yb, and Ln, and is 1.4 to 1.7, so that Y is higher than the HA system in the heavy rare earth mixture containing yttrium. Separation of pure yttrium is difficult. In this patent application, the yttrium separation process using the HA system has not yet been studied.

 中国特許出願99113261.8号には、イットリウム含有混合希土或いはイットリウム濃縮物をスラリとし、HAB−ROH−パラフイン炭化水素或いは、アレーンより構成された有機相を抽出溶媒として、高純度酸化イットリウムを製造するプロセスが公開された。HABはHA+HBより組成し、HAは、第二オクチルフェノキシ置換酢酸で、HBは、ジアルキル燐(ホスホン)酸で、例えば、P204、P507、Cyanex272.、302等、HCl或いはHNO3は、洗浄液と逆抽出液である。多級分留抽出を経て、99.99%純度、95%以上収率の高純度酸化イットリウム製品が得られた。この出願には、他のアルコキシ置換酢酸を抽出溶媒とした高純度イットリウム製造の工程に関する研究はなかった。 Chinese Patent Application No. 99113261.8 discloses a process for producing high-purity yttrium oxide using yttrium-containing mixed rare earth or yttrium concentrate as a slurry and an organic phase composed of HAB-ROH-paraffin hydrocarbon or arene as an extraction solvent. Was released. HAB is compositionally than HA + HB, HA is a second octylphenoxy substituted acetic acid, HB is a dialkyl phosphorous (phosphonic) acid, for example, P204, P507, Cyanex272., 302 , etc., HCl or HNO 3 is washing liquid And the back extract. After multi-fractionation extraction, a high-purity yttrium oxide product with a purity of 99.99% and a yield of 95% or more was obtained. In this application, there was no study on a process for producing high-purity yttrium using another alkoxy-substituted acetic acid as an extraction solvent.

 本発明の目的は、フェノキシ置換酢酸を含有する抽出溶媒による高純度イットリウム分離工程を提供し、この工程は、フェノキシ置換酢酸又はフェノキシ置換酢酸+ジアルキル燐(ホスホン)酸若しくはそのモノチオ誘導体を抽出溶媒として、イットリウム含有混合希土から高純度イットリウムを製造する。 An object of the present invention is to provide a high-purity yttrium separation step using an extraction solvent containing phenoxy-substituted acetic acid. To produce high-purity yttrium from a mixed rare earth containing yttrium.

 本発明の抽出溶媒アルコキシ置換酢酸HAは、次の一般式で示される。

Figure 2004036003
式中のRは、第二オクチル基以外のC4〜C16の直鎖又は分岐アルキル、例えば、ヘキシル基、ヘプチル基、ノニル又はデシル基及びそれらの各種異性体で、第二ヘプチル基及び第二ノニル基が好ましい。 The extraction solvent alkoxy-substituted acetate HA of the present invention is represented by the following general formula.
Figure 2004036003
Wherein R is a linear or branched alkyl secondary octyl other C 4 -C 16, for example, hexyl, heptyl, nonyl or decyl group and their various isomers, and the second heptyl Dinonyl groups are preferred.

 HAのYに対する抽出は各ランタン系元素(Lnで示す)に対する抽出より低く、La-Y分離係数は3.0〜4.9になり、ナフテン酸より非常に優れており、最低のLu-Y分離係数が1.4である。本発明の一つの実施態様によって、HAを抽出溶媒として採用し、イットリウムと希土元素含有の混合物からイットリウムを分離し、抽出系におけるHAの濃度は、0.2〜1.0 mol/Lである。本実施態様は、主に軽Ln系元素とイットリウム含有の混合物からのイットリウム分離に優先的に用いられる。 The extraction of HA for Y is lower than the extraction for each lanthanum element (indicated by Ln), the La-Y separation coefficient is 3.0-4.9, which is much better than naphthenic acid, and the lowest Lu-Y separation coefficient is 1.4. It is. According to one embodiment of the present invention, HA is employed as an extraction solvent to separate yttrium from a mixture containing yttrium and a rare earth element, and the concentration of HA in the extraction system is 0.2 to 1.0 mol / L. This embodiment is used preferentially mainly for separating yttrium from a mixture containing a light Ln-based element and yttrium.

 本発明の別の態様により、HA+HBの複合系を採用し、即ちHAB系を抽出溶媒として、イットリウムと希土含有の混合物から高純度イットリウムを分離する。抽出系におけるHA濃度は、0.2〜1.0 mol/L、HB添加量はスラリ中のEr-Luの含有量によって決められ、HABの0〜30%(モル)を占める。HBは、ジアルキル燐(ホスホン)酸又はそのモノチオ誘導体、其の非限定性実例は、例えば、ジ−(2−エチルヘキシル)燐酸(P204)、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルエステル(P507)、ジ−(2,4,4−トリメチルアミル)ホスフィン酸(Cyanex272)、ジ−(2−エチルヘキシル)モノチオ燐酸、ジ−(2,4,4−トリメチルアミル)モノチオリン酸(Cyanex302)等を含めている。これらの類似化合物が鉱物酸媒質から希土元素(III)を抽出する場合、その抽出能力はLnの原子番号の増加に従って増大し、YはHo-Erの間に位置する。 According to another embodiment of the present invention, a high-purity yttrium is separated from a mixture containing yttrium and a rare earth, using a composite system of HA + HB, that is, using the HAB system as an extraction solvent. The HA concentration in the extraction system is 0.2-1.0 mol / L, and the amount of HB added is determined by the content of Er-Lu in the slurry, and occupies 0-30% (mol) of HAB. HB is dialkylphosphoric (phosphonic) acid or its monothio derivative, non-limiting examples of which are, for example, di- (2-ethylhexyl) phosphoric acid (P204), 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (P507) , Di- (2,4,4-trimethylamyl) phosphinic acid (Cyanex272), di- (2-ethylhexyl) monothiophosphoric acid, di- (2,4,4-trimethylamyl) monothiophosphoric acid (Cyanex302) and the like. I have. When these analogs extract rare earth elements (III) from mineral acid media, their extraction capacity increases with increasing atomic number of Ln, and Y is located between Ho-Er.

 そこで、HA+HB組成のHAB抽出系による高純度イットリウム分離の場合、この系のLn(III)に対する抽出能力はY(III)より高く、YとLnの平均分離係数は2より大きい。HAB系は、HAの軽Ln元素に対する高い抽出能力とHBの重Ln元素に対する高い抽出能力を利用しているので、HA系におけるYと軽Ln分離係数がナフテン酸より高い長所を維持し、HA系におけるYと重ランタン(Er-Lu)分離係数の小さい欠点を克服した。 Therefore, in the case of high-purity yttrium separation by the HAB extraction system of HA + HB composition, the extraction capacity of this system for Ln (III) is higher than Y (III), and the average separation coefficient of Y and Ln is larger than 2. Since the HAB system utilizes the high extraction ability of HA for light Ln elements and the high extraction ability of HB for heavy Ln elements, the HA system maintains the advantage that the Y and light Ln separation coefficients are higher than naphthenic acid, The small disadvantage of Y and heavy lanthanum (Er-Lu) separation coefficient in the system was overcome.

 本発明は、アルコールROHをHA又はHAB系に置ける添加剤とし、その中のRは、6〜10個の炭素原子を含んだ直鎖又は分岐アルキルで、ROHの含有量は、抽出溶媒濃度5モル%〜30モル%で、ROHは、HA或いは、HB系の物理性能を改良し、乳化を除去することができる。本発明に用いられるアルコールの実例は、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、その各種異性及びその混合物を含めているが、これらには限られるものではない。 The present invention provides an additive for placing alcohol ROH in an HA or HAB system, wherein R is a linear or branched alkyl containing 6 to 10 carbon atoms, and the ROH content is determined by the extraction solvent concentration 5 At mole% to 30 mole%, ROH can improve the physical performance of HA or HB system and remove emulsification. Illustrative examples of alcohols used in the present invention include, but are not limited to, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, various isomers and mixtures thereof.

 本発明は、パラフイン系炭化水素、ナフテン系炭化水素又は、アレーンを希釈剤として使用した。本発明に用いられるパラフイン炭化水素は、C5〜C30のパラフイン炭化水素であり、ナフテン系炭化水素は、C5〜C15のアルキル置換又は無置換ナフテン炭化水素で、アレーンは、C5〜C20のアルキル置換又は無置換のアレーンである、 In the present invention, a paraffinic hydrocarbon, a naphthenic hydrocarbon, or arene is used as a diluent. The paraffin hydrocarbon used in the present invention is a C 5 to C 30 paraffin hydrocarbon, the naphthenic hydrocarbon is a C 5 to C 15 alkyl-substituted or unsubstituted naphthene hydrocarbon, and arene is a C 5 to C 15 hydrocarbon. A C 20 alkyl-substituted or unsubstituted arene,

 本発明は、塩化或いはニトロ化希土をスラリとし、その中、Yは30〜70%(重量)を占め、pHは2〜4である。
 本発明は、塩酸又は硝酸を洗浄酸とし、その濃度は0.5〜3 mol/Lである。
 本発明の優先実施態様より、HA或いはHABを鹸化させて、HA或いははHABの希土元素(III)抽出容量と分離係数を向上させた。これは、液-液抽出過程において、希土元素(III)はHA又はHAB中のH+と置換して、抽出水相の酸度を絶えず向上させ、希土元素(III)に対して、更に抽出分離に影響を及ぼしたためである。一定の分離係数の条件で、YとLnの抽出分離を維持し、HA或いはHAB系に大きな分離容量を持たせるには、HAとHABを優先的予め鹸化させる。
In the present invention, the slurry is a chlorinated or nitrated rare earth, in which Y accounts for 30-70% (weight) and pH is 2-4.
In the present invention, hydrochloric acid or nitric acid is used as a cleaning acid, and its concentration is 0.5 to 3 mol / L.
According to a preferred embodiment of the present invention, HA or HAB is saponified to improve the rare earth element (III) extraction capacity and separation factor of HA or HAB. This is because during the liquid-liquid extraction process, the rare earth element (III) is replaced with H + in HA or HAB, constantly improving the acidity of the extracted aqueous phase, and further reducing the rare earth element (III). This is because it affected extraction and separation. In order to maintain the extraction and separation of Y and Ln and to have a large separation capacity in the HA or HAB system under the condition of a constant separation coefficient, HA and HAB are preferentially pre-saponified.

 多種のアルカリ性材料を鹸化材とし、その中、アルカリ金属又はアンモニウムの水酸化物、炭酸塩、炭酸水素塩、例えば、アンモニア水、水酸化ナトリウム、水酸化カリウム、炭酸水素アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム或いは炭酸ナトリウムなどを含めるが、これらには限らない。原則上、HA或いはHABの鹸化率に対して、制限はない、典型的、HABの鹸化率は20〜99.9%で、10〜98%が好ましく、20〜95%が更に好ましく、60〜90%が最も好ましい。 Various kinds of alkaline materials are used as saponifying materials, and among them, hydroxides, carbonates, hydrogencarbonates of alkali metals or ammonium, for example, aqueous ammonia, sodium hydroxide, potassium hydroxide, ammonium hydrogencarbonate, sodium hydrogencarbonate, carbonic acid Includes, but is not limited to, potassium hydrogen or sodium carbonate. In principle, the saponification rate of HA or HAB is not limited, and typically, the saponification rate of HAB is 20 to 99.9%, preferably 10 to 98%, more preferably 20 to 95%, and more preferably 60 to 90%. Is most preferred.

 理論的束縛されたくないが、本発明に置けるフェノキシ置換酢酸によりイットリウム含有の希土から高純度イットリウムを分離する工程は、次のような反応機構に基いていると認められる。
 M3++4H2A2=MA3(HA)5+3H+ (a)
 式中のMは、LnとYを示し、H2A2はフェノキシ置換酢酸の二量体を示し、(o)は、有機相を示し、(a)は、水相を示している。
Although not wishing to be bound by theory, it is recognized that the step of separating high-purity yttrium from yttrium-containing rare earth with the phenoxy-substituted acetic acid according to the present invention is based on the following reaction mechanism.
M 3+ + 4H 2 A 2 = MA 3 (HA) 5 + 3H + (a)
In the formula, M represents Ln and Y, H 2 A 2 represents a dimer of phenoxy-substituted acetic acid, (o) represents an organic phase, and (a) represents an aqueous phase.

 パラノニルフェノキシ置換酢酸はHAで、本発明における抽出系より鉱物酸媒質から希土とYを分離する場合、イットリウムと軽ランタン系元素(La、Ca、Pr、Nd)の平均分離係数は5.87であり、中ランタン系元素(Sm、Eu、Gd、Tb、Dy)との平均分離係数は、5.54であり、重ランタン系元素(Ho、Er、Tm、Yb、Lu)との平均分離係数は、2.02であり、スカンジウムとの平均分離係数は、407.38である。これらのことより多段抽出によると、イットリウムと他の希土との分離及び高純度イットリウムを製造する目的は実現されると認められる。 Paranonylphenoxy-substituted acetic acid is HA, and when separating rare earth and Y from a mineral acid medium from the extraction system in the present invention, the average separation coefficient of yttrium and light lanthanum elements (La, Ca, Pr, Nd) is 5.87. Yes, the average separation coefficient with medium lanthanum elements (Sm, Eu, Gd, Tb, Dy) is 5.54, the average separation coefficient with heavy lanthanum elements (Ho, Er, Tm, Yb, Lu) is 2.02, and the average separation factor from scandium is 407.38. From these facts, it is recognized that the purpose of separating yttrium from other rare earths and producing high-purity yttrium can be realized by multi-stage extraction.

 本発明におけるHAB−ROH−炭化水素の抽出を採用して、イットリウム含有の希土スラリからイットリウムを分離し、分留抽出方式によって行ってもいい、抽出溶媒中のHA濃度は、0.2〜1.0 mol/Lであり、HBの量は、スラリ中のEr−Luの含有量によって、決められ、HABの0〜30%(モル)を占めており、ROHを添加剤として、その含有量は、抽出溶媒濃度の5%〜30%(モル)であり、イットリウム含有の混合塩化希土又はニトロ化希土をスラリとし、pH2〜4で、洗浄液は0.5-30 mol/LのHCl或いは、HNO3、その中で、有機相、スラリ、洗浄液の流量比は、5〜15:1:1〜6であり、抽出段数は、20〜40段、洗浄段数は、5〜20段、分留抽出混合時間は、5〜10分間で、清澄時間は、10〜25分間で、温度は、10〜35℃である。上記工程の条件において、高純度イットリウム製品が得られ、イットリウムの純度は99.0%〜99.996%(重量)までになり、収率は95%以上である。得られた製品は、プラズマ発光分析とマススペクトル法によって、分析鑑定される。 The extraction of HAB-ROH-hydrocarbon in the present invention may be used to separate yttrium from the yttrium-containing rare earth slurry and may be performed by a fractionation extraction method.The concentration of HA in the extraction solvent is 0.2 to 1.0 mol. / L, and the amount of HB is determined by the content of Er-Lu in the slurry, occupies 0 to 30% (mol) of HAB, and the content is extracted using ROH as an additive. The solvent concentration is 5% to 30% (mole), the mixed rare earth chloride or nitrated rare earth containing yttrium is used as a slurry, the pH is 2 to 4, and the washing solution is 0.5 to 30 mol / L HCl or HNO 3 , Among them, the flow ratio of the organic phase, slurry, and washing liquid is 5-15: 1: 1-6, the number of extraction stages is 20-40, the number of washing stages is 5-20, and the fractionation extraction mixing time Is 5 to 10 minutes, the fining time is 10 to 25 minutes, and the temperature is 10 to 35 ° C. Under the conditions of the above process, a high purity yttrium product is obtained, the purity of yttrium is from 99.0% to 99.996% (weight), and the yield is 95% or more. The obtained product is analyzed and evaluated by plasma emission analysis and mass spectrometry.

 本発明の長所として、高い効率で、清潔的高純度イットリウムを製造する新しい工程を提供し、各種品位のイットリウム含有の混合希土或いは濃縮物の分離に適応し、イットリウムの収率が高く、品質も良く、同時に、用いられる抽出溶媒の化学安定性が良く、調整し易く、これらのpKa値がナフテン酸のpKa値より小さいので、低いpHの下でも、希土類元素を抽出することができるし、ナフテン酸による希土の抽出場合、生じる乳化問題の抑制を助ける。中国特許出願9911826.8号に記載されている抽出溶媒に比べ、本発明に用いられる抽出溶媒の溶解度はより小さく、原料もより安く、生産コストもより低いなどである。 As an advantage of the present invention, a new process for producing clean and high-purity yttrium with high efficiency is provided, adapted to the separation of mixed rare earths or concentrates containing yttrium of various grades, the yield of yttrium is high, and the quality is high. Also, at the same time, the chemical stability of the extraction solvent used is good and easy to adjust, since these pKa values are smaller than the pKa value of naphthenic acid, it is possible to extract rare earth elements even at low pH, When extracting rare earth with naphthenic acid, it helps to suppress the emulsification problems that occur. Compared with the extraction solvent described in Chinese Patent Application No. 9911826.8, the extraction solvent used in the present invention has lower solubility, cheaper raw materials, lower production cost, and so on.

 尚、更に明確に本発明を説明するためには、次に実施例を挙げたが、発明の範囲に対しては、いかなる制限もない。 Note that the following examples are provided in order to more clearly explain the present invention, but there is no limitation on the scope of the invention.

 抽出系は0.75 Mの第二ヘプチルフェノキシ置換酢酸−15%メチルヘプチルアルコール−灯油であり、アンモニア水で鹸化し、鹸化率は、90%、用いるスラリは塩化希土スラリであり、その濃度は1.0 M、その中、51%のY、28.6%のTb-Lu、20.4%のLa-Gd等が含まれている。含有量は、スラリにおける金属重量に基いたものである。洗浄酸液は1.8 M HCl、流量比は、有機相:スラリ:洗浄酸=12.0:1:5.5である。40段分留抽出の中、23段抽出、17段洗浄であり、有機相において、分離して高純度のYを得た。分析の結果、Yの純度は99.2%で、収率は99%である。 The extraction system was 0.75 M secondary heptylphenoxy-substituted acetic acid-15% methylheptyl alcohol-kerosene, saponified with ammonia water, the saponification rate was 90%, and the slurry used was a rare earth chloride slurry with a concentration of 1.0%. M, of which 51% Y, 28.6% Tb-Lu, 20.4% La-Gd, etc. are contained. The content is based on the weight of the metal in the slurry. The washing acid solution is 1.8 M HCl, and the flow ratio is organic phase: slurry: washing acid = 12.0: 1: 5.5. Among the 40-stage fractional extractions, 23-stage extraction and 17-stage washing were performed, and the organic phase was separated to obtain high-purity Y. Analysis showed that the purity of Y was 99.2% and the yield was 99%.

 抽出系は、0.75 Mの第二ノニルフェキシ置換酢酸−15%メチルヘプチルアルコ―ル−灯油であり、アンモニア水で鹸化し、鹸化率は、90%用いるスリリは硝酸希土スラリであり、濃度は1.0 M、その中、51%のY、28.6%Tb-Lu、20.4%のLd-Gd等が含まれている。含有量は、スラリにおける金属重量に基いたものである。洗浄酸液は、1.8 M HNO3、流量比は、有機相:スラリ:洗浄酸=12.3:1:5.7である。42段分留抽出の中、28段抽出、14段洗浄で、有機相において、分離して高純度のYを得た。分析の結果、Yの純度は99.9%で、収率は97%である。各種希土類元素の含有量は、次のようである。

元素の含有量(μg/g)

Figure 2004036003

Figure 2004036003
The extraction system was 0.75 M secondary nonylphenoxy-substituted acetic acid-15% methylheptyl alcohol-kerosene, saponified with ammonia water, the saponification rate was 90%, the slurry used was a rare earth nitrate slurry, and the concentration was 1.0%. M, of which 51% Y, 28.6% Tb-Lu, 20.4% Ld-Gd, etc. are included. The content is based on the weight of the metal in the slurry. The cleaning acid solution was 1.8 M HNO 3 , and the flow ratio was organic phase: slurry: cleaning acid = 12.3: 1: 5.7. In the 42-stage fractionation extraction, 28-stage extraction and 14-stage washing were performed to separate Y in the organic phase to obtain high-purity Y. Analysis showed that the purity of Y was 99.9% and the yield was 97%. The contents of various rare earth elements are as follows.

Element content (μg / g)
Figure 2004036003

Figure 2004036003

 抽出系は、0.60 Mの第二デシルフェノキシ置換酢酸−0.10 M P204−20%混合アルコール(C7〜C9)−灯油であり、アンモニア水で鹸化し、鹸化率は、90%である。用いるスラリは塩化希土スラリで、濃度は1.0 M、その中、51%のY、228.6%のTb-Lu、20.4%のLd-Gd等が含まれてある。含有量は、スラリにおける金属重量に基いたものである。洗浄酸液は、1.8 M HCl、流量比は有機相:スラリ:洗浄液=8.1:1:3である。32段分留抽出の中で、22段抽出、10段洗浄であり、有機相において、分離して高純度のYを得た。分析の結果、Yの純度は99.98%で、収率は97.1%である。 Extraction system, 0.60 M second decylphenoxy substituted acetic acid -0.10 M P204-20% mixed alcohol (C 7 ~C 9) - a kerosene, and saponified with aqueous ammonia, saponification ratio is 90%. The slurry used was a rare earth chloride slurry having a concentration of 1.0 M, which contained 51% Y, 228.6% Tb-Lu, 20.4% Ld-Gd, and the like. The content is based on the weight of the metal in the slurry. The washing acid solution was 1.8 M HCl, and the flow ratio was organic phase: slurry: washing solution = 8.1: 1: 3. In the 32-stage fractional extraction, 22-stage extraction and 10-stage washing were performed, and in the organic phase, separation was performed to obtain high-purity Y. As a result of the analysis, the purity of Y was 99.98% and the yield was 97.1%.

 抽出系は、0.58 Mの第二ノニルフェノキシ置換酢酸−0.06 M P507−20%のメチルアルコール−灯油であり、アンモニア水で鹸化し、鹸化率は、90%、用いるスラリは硝酸希土スラリで、濃度は1.0 M、その中、61.5%のY、20.8%のTb-Lu、17.7%のLa-Gd等が含まれてある。含有量は、スラリにおける金属の重量に基いたものである。洗浄酸は、1.2 M HNO3である。流量比は、有機相:スラリ:洗浄酸=7.5:1:2.6である。40段分留抽出の中、30段抽出、10段洗浄、有機相において、分離して高純度のYを得た。分析の結果、Yの純度は99.993%で、収率は97.5%である。各種希土元素の含有量は、次のようである。

元素の含有量(μg/g)

Figure 2004036003

Figure 2004036003
The extraction system is 0.58 M secondary nonylphenoxy-substituted acetic acid-0.06 M P507-20% methyl alcohol-kerosene, saponified with ammonia water, the saponification rate is 90%, and the slurry used is a rare earth nitrate slurry. The concentration is 1.0 M, in which 61.5% of Y, 20.8% of Tb-Lu, 17.7% of La-Gd and the like are contained. The content is based on the weight of the metal in the slurry. Washing acid is 1.2 M HNO 3. The flow ratio is organic phase: slurry: washing acid = 7.5: 1: 2.6. Of the 40-stage fractional extraction, 30-stage extraction, 10-stage washing, and separation in the organic phase yielded high-purity Y. As a result of the analysis, the purity of Y is 99.993% and the yield is 97.5%. The contents of various rare earth elements are as follows.

Element content (μg / g)
Figure 2004036003

Figure 2004036003

 抽出系は、0.85 Mの第二ヘプチルフェノキシ置換酢酸−0.12 M Cynex272−25%の混合アルコール(C8〜C10)−灯油であり、アンモニアで鹸化し、鹸化率は85%である。用いるスラリは塩化希土スラリであり、濃度は1.0 M、その中、51%のY、28.6%のTb−Lu、20.4%のLa-Gd等が含まれてある。含有量は、スラリにおける金属の重量に基いたのである。洗浄酸は、1.5M HClである。流量比は、有機相:スラリ:洗浄酸=6.5:1:2.4である。45段分留抽出の中、32段抽出、13段洗浄、有機相において、分離して高純度のYを得た。分析の結果、Yの純度は99.995%で、収率は96.1%で、各種希土元素の含有量は、次のとおりである。
元素の含有量(μg/g)

Figure 2004036003

Figure 2004036003
Extraction system, 0.85 M second heptyl-phenoxy-substituted acetic acid -0.12 M Cynex272-25% mixed alcohol (C 8 ~C 10) - a kerosene, saponified with ammonia, the saponification ratio is 85%. The slurry used is a rare earth chloride slurry having a concentration of 1.0 M, which contains 51% of Y, 28.6% of Tb-Lu, 20.4% of La-Gd, and the like. The content was based on the weight of the metal in the slurry. The washing acid is 1.5M HCl. The flow ratio is organic phase: slurry: washing acid = 6.5: 1: 2.4. Of the 45-stage fractional extraction, 32-stage extraction, 13-stage washing, and organic phase separation were performed to obtain high-purity Y. As a result of analysis, the purity of Y was 99.995%, the yield was 96.1%, and the contents of various rare earth elements were as follows.
Element content (μg / g)
Figure 2004036003

Figure 2004036003

 抽出系は、0.85 Mの第二ノニルフェノキシ置換酢酸−0.12 M P507−25%メチルヘプチルアルコール−灯油であり、アンモニア水で鹸化し、鹸化率は、85%である。用いるスラリは塩化希土スラリであり、濃度は1.0 M、その中、61.5%のY、20.8%のTb-Lu、17.7%のLa-Gd等が含まれてある。含有量は、スラリにおける金属重量に基いたものである。洗浄酸は1.2 M HClである。流量比は、有機相:スラリ:洗浄酸=5.6:1:2.6である。50段分留抽出の中、38段抽出、12段洗浄、有機相において、分離して高重度のYを得た。分析の結果、Yの純度は99.996%で、収率は95%である。
The extraction system is 0.85 M secondary nonylphenoxy-substituted acetic acid-0.12 M P507-25% methylheptyl alcohol-kerosene, saponified with ammonia water, the saponification rate is 85%. The slurry used is a rare earth chloride slurry having a concentration of 1.0 M, which contains 61.5% of Y, 20.8% of Tb-Lu, 17.7% of La-Gd, and the like. The content is based on the weight of the metal in the slurry. The cleaning acid is 1.2 M HCl. The flow ratio is organic phase: slurry: washing acid = 5.6: 1: 2.6. In the 50-stage fractionation extraction, 38-stage extraction, 12-stage washing, and separation in the organic phase, Y of high severity was obtained. As a result of analysis, the purity of Y is 99.996% and the yield is 95%.

Claims (9)

分離抽出イットリウム含有のスラリを抽出溶媒と接触させてイットリウムを回収する高純度イットリウムの分離方法において、
 上記分離抽出イットリウム含有のスラリが塩化又はニトロ化希土のスラリであって、
 次の一般式で示されるフェノキシ置換酢酸
Figure 2004036003

(ここで、Rは直鎖又は分岐のヘキシル基、ヘプチル基、ノニル基又はデシル基である。)と、
 C〜C30のパラフィン、C〜C15のアルキル基で置換した又は無置換のナフテン、そしてC〜C20のアルキル基で置換した又は無置換のアレーンから選択された少なくとも1種の希釈剤とを含み、
 フェノキシ置換酢酸の濃度が0.2〜1.0Mである抽出溶媒を用いることを特徴とする高純度イットリウムの分離方法。
In a separation method of high-purity yttrium to recover the yttrium by contacting the slurry containing the extracted yttrium with the extraction solvent,
The separated extraction yttrium-containing slurry is a chlorinated or nitrated rare earth slurry,
Phenoxy-substituted acetic acid represented by the following general formula
Figure 2004036003

(Where R is a linear or branched hexyl group, heptyl group, nonyl group or decyl group) and
Of C 5 -C 30 paraffins, C 5 -C of substituted or unsubstituted alkyl group of 15 naphthene, and C 6 -C 20 least one selected from the substituted or unsubstituted arene by an alkyl group And a diluent,
A method for separating high-purity yttrium, comprising using an extraction solvent having a concentration of phenoxy-substituted acetic acid of 0.2 to 1.0 M.
上記抽出溶媒はさらにジアルキルリン酸又はその誘導体を含み、その含有量が30mol%以下であることを特徴とする請求項1記載の分離方法。 The separation method according to claim 1, wherein the extraction solvent further contains a dialkyl phosphoric acid or a derivative thereof, and the content thereof is 30 mol% or less. 上記抽出溶媒はさらに一般式ROHのアルコールを含み、その含有量が5mol%〜30mol%であり、RがC〜C10の直鎖又は分岐のアルキル基であることを特徴とする請求項1又は2に記載の分離方法。 The extraction solvent further comprises an alcohol of the general formula ROH, the content of which is 5 mol% to 30 mol%, and wherein R is a C 6 -C 10 linear or branched alkyl group. Or the separation method according to 2. 上記抽出溶媒は、アンモニア水、水酸化ナトリウム、水酸化カリウム、炭酸水素アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、又は炭酸ナトリウムで鹸化され、鹸化率は60〜90%であることを特徴とする請求項1又は2に記載の方法。 The extraction solvent is saponified with aqueous ammonia, sodium hydroxide, potassium hydroxide, ammonium bicarbonate, sodium bicarbonate, potassium bicarbonate, or sodium carbonate, and has a saponification rate of 60 to 90%. Item 3. The method according to Item 1 or 2. 上記フェノキシ置換酢酸は、第二へキシルフェノキシ置換酢酸、第二ブチルフェノキシ置換酢酸、第二ノニルフェノキシ置換酢酸、又は第二デシルフェノキシ置換酢酸であることを特徴とする請求項1又は2に記載の分離方法。 The method according to claim 1, wherein the phenoxy-substituted acetic acid is a second hexylphenoxy-substituted acetic acid, a second butylphenoxy-substituted acetic acid, a second nonylphenoxy-substituted acetic acid, or a second decylphenoxy-substituted acetic acid. 4. Separation method. 上記分離抽出イットリウム含有のスラリにおけるイットリウムの含有量が酸化物換算で30〜70重量%であることを特徴とする請求項1又は2に記載の分離方法。 3. The separation method according to claim 1, wherein the content of yttrium in the separated and extracted yttrium-containing slurry is 30 to 70% by weight in terms of oxide. 上記ジアルキルリン酸は、ジ-(2−エチルへキシル)リン酸、ジエチルへキシルホスホン酸−モノ−2−エチルへキシルエステル又はジ-(2,4,4−トリメチルアミル)ホスホン酸であることを特徴とする請求項2記載の方法。 The dialkyl phosphoric acid is di- (2-ethylhexyl) phosphoric acid, diethylhexylphosphonic acid-mono-2-ethylhexyl ester or di- (2,4,4-trimethylamyl) phosphonic acid 3. The method according to claim 2, wherein: 上記のチオ誘導体は、ジ-(2−エチルへキシル)モノチオリン酸又はジ-(2,4,4−トリメチルアミル)モノチオホスホン酸であることを特徴とする請求項2記載の分離方法。 The method according to claim 2, wherein the thio derivative is di- (2-ethylhexyl) monothiophosphoric acid or di- (2,4,4-trimethylamyl) monothiophosphonic acid. 上記スラリのpHが2〜4で、0.5〜3Mの塩酸又は硝酸を洗浄酸とし、抽出溶媒相、スラリ相そして洗浄酸相の流量比は5〜15:1:1〜6、抽出段数は20〜40段、洗浄段数は5〜20段、分離抽出混合時間は5〜10分間、清澄時間は10〜25分間、抽出温度は10〜35℃であることを特徴とする請求項1記載の分離方法。
The pH of the slurry is 2 to 4 and hydrochloric acid or nitric acid of 0.5 to 3 M is used as a washing acid. The flow ratio of the extraction solvent phase, the slurry phase and the washing acid phase is 5 to 15: 1: 1 to 6, the number of extraction stages. The number of washing steps is 5 to 20 steps, the separation and extraction time is 5 to 10 minutes, the clarification time is 10 to 25 minutes, and the extraction temperature is 10 to 35 ° C. Separation method.
JP2003272363A 2002-07-09 2003-07-09 Separation of high-purity yttrium by extraction solvent containing phenoxy-substituted acetic acid Expired - Fee Related JP4046660B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN02123912A CN1394972A (en) 2002-07-09 2002-07-09 Process for separating high-purity yttrium by using oxyl substituted acetic acid as extracting agent

Publications (2)

Publication Number Publication Date
JP2004036003A true JP2004036003A (en) 2004-02-05
JP4046660B2 JP4046660B2 (en) 2008-02-13

Family

ID=4745253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272363A Expired - Fee Related JP4046660B2 (en) 2002-07-09 2003-07-09 Separation of high-purity yttrium by extraction solvent containing phenoxy-substituted acetic acid

Country Status (2)

Country Link
JP (1) JP4046660B2 (en)
CN (1) CN1394972A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100435899C (en) * 2006-01-24 2008-11-26 北京有色金属研究总院 Saponification of organic extractant
WO2013005349A1 (en) 2011-07-06 2013-01-10 Jx日鉱日石金属株式会社 High-purity yttrium, process for producing high-purity yttrium, high-purity yttrium sputtering target, metal gate film deposited with high-purity yttrium sputtering target, and semiconductor element and device equipped with said metal gate film
WO2013177729A1 (en) * 2012-05-28 2013-12-05 五矿(北京)稀土研究院有限公司 Method for separating rare-earth by coupled recycling of materials
CN115818693A (en) * 2022-11-21 2023-03-21 江苏南方永磁科技有限公司 Production process of gadolinium oxide

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451140C (en) * 2004-07-01 2009-01-14 包头市京瑞新材料有限公司 Self protection process for preparing fluorescent grade europium oxide extractor by reducing extracting method
CN100352954C (en) * 2005-04-05 2007-12-05 中国科学院长春应用化学研究所 Technology for separating rare earth element by extraction system added with modifier
CN108456792B (en) * 2017-02-17 2019-11-26 厦门稀土材料研究所 A kind of rare earth extraction separation extractant and preparation method thereof and extraction separating method
CN106916948B (en) * 2017-03-07 2019-07-09 四川省冕宁县方兴稀土有限公司 A kind of saponification agent and its application method of rare earth organic extractant
CN110002487B (en) * 2019-04-17 2020-06-16 中国科学院长春应用化学研究所 Method for separating yttrium oxide from high-yttrium type rare earth ore components
CN112457188B (en) * 2020-11-24 2022-07-08 苏州博萃循环科技有限公司 Carboxylic acid compound and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100435899C (en) * 2006-01-24 2008-11-26 北京有色金属研究总院 Saponification of organic extractant
WO2013005349A1 (en) 2011-07-06 2013-01-10 Jx日鉱日石金属株式会社 High-purity yttrium, process for producing high-purity yttrium, high-purity yttrium sputtering target, metal gate film deposited with high-purity yttrium sputtering target, and semiconductor element and device equipped with said metal gate film
KR20140012190A (en) 2011-07-06 2014-01-29 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 High-purity yttrium, process for producing high-purity yttrium, high-purity yttrium sputtering target, metal gate film deposited with high-purity yttrium sputtering target, and semiconductor element and device equipped with said metal gate film
US10041155B2 (en) 2011-07-06 2018-08-07 Jx Nippon Mining & Metals Corporation High-purity yttrium, process of producing high-purity yttrium, high-purity yttrium sputtering target, metal gate film deposited with high-purity yttrium sputtering target, and semiconductor element and device equipped with the metal gate film
WO2013177729A1 (en) * 2012-05-28 2013-12-05 五矿(北京)稀土研究院有限公司 Method for separating rare-earth by coupled recycling of materials
CN115818693A (en) * 2022-11-21 2023-03-21 江苏南方永磁科技有限公司 Production process of gadolinium oxide
CN115818693B (en) * 2022-11-21 2024-02-13 江苏南方永磁科技有限公司 Gadolinium oxide production process

Also Published As

Publication number Publication date
JP4046660B2 (en) 2008-02-13
CN1394972A (en) 2003-02-05

Similar Documents

Publication Publication Date Title
US9752212B2 (en) Method for extracting and separating rare-earth element
US8177881B2 (en) Method for extracting and separating rare earth elements
AU2008217450B2 (en) Pretreatment process for organic extractants and the pretreated products and the use thereof
JP2004036003A (en) Method for separating high purity yttrium by extraction solvent containing phenoxy-substituted acetic acid
EP2592068B1 (en) Method for synthesizing rare earth metal extractant
CA2804237C (en) Method for synthesizing rare earth metal extractant
EP2404892B1 (en) Synthesis of Rare Earth Metal Extractant
JP6573115B2 (en) Amidated phosphate ester compound, extractant, and extraction method
CN112639141B (en) Preparation of rare earth metal oxides
JP5496387B2 (en) Amide derivatives
WO2016090809A1 (en) Use of amino group-containing neutral phosphine extraction agent for extraction and separation of tetravalent cerium, and method
CN111575493B (en) Method for removing impurities in high-purity scandium product
WO2019034631A1 (en) Separation of rare-earth ions by non-aqueous solvent extraction
Kujawski et al. Processes and technologies for the recycling of spent fluorescent lamps
CN1563442A (en) Technique for separating high purity yttrium oxide through solvent extraction
JP2012184503A (en) Metal extracting agent comprising phenylphosphonic ester
CN104817589A (en) Dialkyl phosphinic acid compound or salt thereof and preparation method thereof
JPH0436373A (en) Extracting agent for rare earth metal and method of extracting it
JP2019173071A (en) Method of separation and collection of molybdenum and/or zirconium
CN109234535B (en) Method for purifying lithium element from battery powder
FR2660645A1 (en) METHOD FOR SEPARATING YTTRIUM
AU2014256362B2 (en) Method for extracting and separating rare earth elements
JPH05147932A (en) Extracting agent for rare earth metal and extraction method
JPH0134933B2 (en)
EP0485256A1 (en) Process for the separation of the rare earths

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050405

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070906

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees