JP2004035498A - Water-soluble noble metal complex - Google Patents

Water-soluble noble metal complex Download PDF

Info

Publication number
JP2004035498A
JP2004035498A JP2002196422A JP2002196422A JP2004035498A JP 2004035498 A JP2004035498 A JP 2004035498A JP 2002196422 A JP2002196422 A JP 2002196422A JP 2002196422 A JP2002196422 A JP 2002196422A JP 2004035498 A JP2004035498 A JP 2004035498A
Authority
JP
Japan
Prior art keywords
tppts
thmp
dhmpe
water
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002196422A
Other languages
Japanese (ja)
Inventor
Sanshiro Komiya
小宮 三四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP2002196422A priority Critical patent/JP2004035498A/en
Publication of JP2004035498A publication Critical patent/JP2004035498A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new water-soluble noble metal complex useful as a catalyst for an organic synthetic reaction, a polymerization reaction, or the like. <P>SOLUTION: The water-soluble noble metal complex is represented by molecular formulae: [Pt(CH<SB>3</SB>)<SB>2</SB>(TPPTS)<SB>2</SB>], [Pt(C<SB>2</SB>H<SB>5</SB>)<SB>2</SB>(TPPTS)<SB>2</SB>], [Pt(CH<SB>3</SB>)<SB>2</SB>(THMP)<SB>2</SB>], [Pt(C<SB>2</SB>H<SB>5</SB>)<SB>2</SB>(THMP)<SB>2</SB>], [Pt(C<SB>6</SB>H<SB>5</SB>)<SB>2</SB>(THMP)<SB>2</SB>], [Pt(CH<SB>3</SB>)<SB>2</SB>(DHMPE)], [Pt(C<SB>2</SB>H<SB>5</SB>)<SB>2</SB>(DHMPE)], [Pt(C<SB>6</SB>H<SB>5</SB>)<SB>2</SB>(DHMPE)], [Au(CH<SB>3</SB>)<SB>2</SB>I(TPPTS)], [Au(CH<SB>3</SB>)<SB>2</SB>I(THMP)], [Au(CH<SB>3</SB>)<SB>2</SB>(TPPTS)<SB>2</SB>]<SP>+</SP>I<SP>-</SP>, [Au(CH<SB>3</SB>)<SB>2</SB>(THMP)<SB>2</SB>]<SP>+</SP>I<SP>-</SP>, [Au(CH<SB>3</SB>)<SB>2</SB>(DHMPE)]<SP>+</SP>I<SP>-</SP>, [Rh(CH<SB>3</SB>)(CO)(TPPMS)], [Rh(CH<SB>3</SB>)(CO)(TPPTS)] or [Pd(CH<SB>3</SB>)<SB>2</SB>(TPPTS)<SB>2</SB>] [wherein, TPPTS is 3, 3', 3"-phosphinidine-tris(benzenesulfonic acid)-trisodium; TPPMS is 3-(diphenylphosphino)benzenesulfonic acid-sodium; and THMP is tri(hydroxymethyl)phosphine]. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、新規な水溶性貴金属錯体、詳しくはRh、Au、Pt又はPdの各貴金属の水溶性錯体に関する。本発明の水溶性貴金属錯体は、有機合成反応や重合反応などの触媒として工業的に有用な化合物である。
【0002】
【従来の技術】
本発明の水溶性貴金属錯体は、文献未記載の新規な化合物である。
【0003】
【発明が解決しようとする課題】
本発明は、有機合成反応や重合反応等の触媒として有用な新規な水溶性貴金属錯体を提供することを課題とする。
【0004】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、新規な化合物である次の分子式で示される水溶性貴金属錯体を見出した。
[Pt(CH(TPPTS)]、[Pt(C(TPPTS)]、[Pt(CH(THMP)]、[Pt(C(THMP)]、[Pt(C(THMP)]、[Pt(CH(DHMPE)]、[Pt(C(DHMPE)]、[Pt(C(DHMPE)]、[Au(CHI(TPPTS)]、[Au(CHI(THMP)]、[Au(CH(TPPTS)、[Au(CH(THMP)、[Au(CH(DHMPE)]、[Rh(CH)(CO)(TPPMS)]、[Rh(CH)(CO)(TPPTS)]又は[Pd(CH(TPPTS)
〔式中、TPPTSは3,3‘,3“−ホスフィニジントリス(ベンゼンスルホン酸)=トリナトリウムを、TPPMSは3−(ジフェニルホスフィノ)ベンゼンスルホン酸=ナトリウムを、THMPはトリ(ヒドロキシメチル)ホスフィンを、DHMPEは1,2−ビス{ジ(ヒドロキシメチル)ホスフィノ}エタンを表す。〕
【0005】
すなわち本発明は、次の分子式で示される水溶性貴金属錯体に関する。
[Pt(CH(TPPTS)]、[Pt(C(TPPTS)]、[Pt(CH(THMP)]、[Pt(C(THMP)]、[Pt(C(THMP)]、[Pt(CH(DHMPE)]、[Pt(C(DHMPE)]、[Pt(C(DHMPE)]、[Au(CHI(TPPTS)]、[Au(CHI(THMP)]、[Au(CH(TPPTS)、[Au(CH(THMP)、[Au(CH(DHMPE)]、[Rh(CH)(CO)(TPPMS)]、[Rh(CH)(CO)(TPPTS)]又は[Pd(CH(TPPTS)
【0006】
本発明の上記水溶性貴金属錯体は、水溶性であって水中で安定に存在し得る。したがって本発明によれば、従来の貴金属錯体を触媒として用いる反応において目的物が水溶性に乏しい化合物であるとき、触媒に本発明の水溶性貴金属錯体を使用すれば、反応終了後の反応混合物から目的物と本発明の水溶性貴金属錯体をそれぞれ分離して容易に回収することができる。即ち、例えば、触媒として本発明の水溶性貴金属錯体を用い、水−疎水性有機溶媒中で反応を実施すれば、反応終了後の反応混合物において、水層に本発明の水溶性貴金属錯体が、そして有機溶媒層に目的物がそれぞれ溶解するので、水層と有機溶媒層を分液することにより触媒と目的物の分離回収が容易に行うことができ、更に水層に含まれる本発明の水溶性貴金属錯体は反応の触媒としてそのまま再利用できるという、簡便で工業的な有機化合物の製造プロセスの構築が可能となる。
【0007】
【発明の実施の様態】
本発明を以下に詳しく説明する。
本発明の水溶性貴金属錯体は、例えば、それぞれ公知のRh、Au、Pt及びPdのアルキル又はアリール錯体、例えば、分子式[Rh(CH)(CO)(PPh](式中、PPhはトリフェニルホスフィンを表す。)、[Au(CHI]、[PtR(COD)](式中、Rはメチル基、エチル基又はフェニル基を、CODは1,5−シクロオクタジエンを表す(以下、同じ)。)、Pd[(CH(TMEDA)]等を原料とし、これらを本発明の水溶性貴金属錯体が有する水溶性配位子である下記構造式のTPPMS、TPPTS、THMP又はDHMPEと反応させて製造することができる。
【0008】
TPPTS:
【化1】

Figure 2004035498
【0009】
TPPMS:
【化2】
Figure 2004035498
【0010】
THMP:
【化3】
Figure 2004035498
【0011】
DHMPE:
【化4】
Figure 2004035498
【0012】
反応は、溶媒中、原料の上記公知の貴金属錯体を、TPPMS、TPPTS、THMP又はDHMPEと0〜約100℃の温度で攪拌混合すればよい。当該反応は、通常アルゴン及び窒素等の不活性ガス雰囲気下で行われる。TPPMS、TPPTS、THMP又はDHMPEの使用量は、原料である上記公知の貴金属錯体中の貴金属1モルに対してTPPMS、TPPTS及びTHMPの場合は通常約2モルであり、DHMPEの場合は通常約1モルである。
【0013】
反応に使用される溶媒としては、水、メタノール及びエタノール等のアルコール類並びにこれらの混合物等が挙げられる。溶媒の使用量は、原料の貴金属錯体1重量部に対して通常100〜1000重量部である。
【0014】
反応終了後の反応混合物を、所望により濃縮した後、非プロトン性有機溶媒(例えば、アセトン等の脂肪族ケトン、ジエチルエーテル等のエーテル類等)を加えると本発明の水溶性貴金属錯体の沈澱が生成する。生成した沈澱を必要に応じてアルゴン及び窒素等の不活性ガス雰囲気下で濾過すれば、濾滓として本発明の水溶性貴金属錯体が得られる。得られた濾滓の水溶性貴金属錯体は、再結晶又は再沈殿によって精製してもよい。
【0015】
以下、実施例により本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。
なお、以下の実施例においてIRスペクトルはJASCO FTIR−410(日本分光株式会社製)で測定し、NMRスペクトルはJEOL LA−310(H 300.4MHz)(日本電子株式会社製)で測定し、ケミカルシフトはDSS(H)と85%HPO31P)を基準とした。また元素分析は2400シリーズII CHN分析器(パーキンエルマー社製)で行った。ガスはガスクロマトグラフィー(GC−8A)(株式会社島津製作所製)を用いて、内部標準法で測定した。
【0016】
実施例1
[Pt(CH(TPPTS)]の合成
[Pt(CH(COD)](8.7mg,0.026mmol)及びエタノール(1ml)からなる溶液にTPPTS(30.4mg、0.0535mmol)及び水(0.5ml)からなる溶液を加え、数分間室温で攪拌して無色反応液を得た。尚、反応中に放出された1,5−CODは理論量の95%であった。得られた反応液を濃縮した後、アセトンを加えて白色沈殿を生成させた。これを濾過し、濾滓をヘキサンで洗浄し、次いで減圧乾燥した。水/アセトン=1/40(容量比)から再沈殿して、白色結晶を得た。得られた結晶は分析の結果[Pt(CH(TPPTS)]4水和物であった(収率80%)。分析結果を以下に示す。
【0017】
元素分析(C383822NaPtS
計算値:C 31.83%、H 2.62%
測定値:C 31.89%、H 2.92%
【0018】
IR(KBr) cm−1:3331(νOH),1194(νasSO),1039(νSO)
【0019】
H−NMR(DO)δ ppm:0.42(m,H−Pt=69Hz,6H,Pt−CH),7.39(t,H−H=8Hz,6H,5−CH 芳香環),7.53(t,H−HH−P=8Hz,6H,6−CH 芳香環),7.76(d,H−H=8Hz,4H,4−CH 芳香環),7.79(d,H−P=8Hz,6H,2−CH 芳香環)
【0020】
31P{H}NMR(DO)δ ppm:29.3(s,P−Pt=1855Hz)
【0021】
実施例2
[Pt(C(TPPTS)]の合成
実施例1において[Pt(CH(COD)]に代えて[Pt(C(COD)](7.8mg,0.022mmol)を用いた以外は実施例1と同様に行い、水/アセトン=1/40(容量比)から再沈殿して[Pt(C(TPPTS)]の無色粉末をY.72%で得た。[Pt(C(TPPTS)]の分析結果を以下に示す。
【0022】
元素分析(C404222NaPtS
計算値:C 32.86%,H 2.90%
測定値:C 32.82%,H 3.19%
【0023】
IR(KBr) cm−1:3442(νOH),1191(νasSO),1038(νSO)
【0024】
H−NMR(DO)δ ppm:0.77(m,H−Pt=74Hz,6H,Pt−CHCH),1.13(m,H−Pt=70Hz,4H,Pt−CHCH),7.39(t,H−H=8Hz,6H,5−CH 芳香環),7.2(t,H−HH−P=8Hz,6H,6−CH 芳香環),7.71(d,H−H=8Hz,6H,4−CH 芳香環),7.85(d,H−P=8Hz,6H,2−CH 芳香環)
【0025】
31P{H}NMR(DO)δ ppm:29.0(s,P−Pt=1677Hz)
【0026】
実施例3
[Pt(CH(THMP)]の合成。
実施例1においてTPPTSに代えてTHMP(11.7mg,0.0944mmol)を用い、[Pt(CH(COD)]の使用量を15.8mg(0.0474mmol)に変えた以外は実施例1と同様に行い[Pt(CH(THMP)]を収率82%で得た。[Pt(CH(THMP)]の分析結果を以下に示す
【0027】
H−NMR(DMSO−d/DO=1/5(容量比))δ ppm:0.49(brs,H−H=66Hz,6H,Pt−CH),4.29(br,12H,PCHOH)
【0028】
31P{H}NMR(DMSO−d/DO=1/5(容量比))δ ppm:13.2(s,P−Pt=1700Hz)
【0029】
実施例4
[Pt(C(THMP)]の合成
実施例1において[Pt(CH(COD)]に代えて[Pt(C(COD)](10.9mg,0.0302mmol)を用い、TPPTSに代えてTHMP(7.8mg,0.0629mmol)を用いた以外は実施例1と同様に行い[Pt(C(THMP)]を収率86%で得た。[Pt(C(THMP)]の分析結果を以下に示す。
【0030】
H−NMR(DMSO−d/DO=1/5(容量比))δ ppm:1.14(m,6H,Pt−CHCH),1.2(q,H−H=8Hz,H−Pt=129Hz,4H,Pt−CHCH),4.33(brs,12H,PCHOH)
【0031】
31P{H}NMR(DMSO−d/DO=1/5(容量比))δ ppm:8.9(s,P−Pt=1470Hz)
【0032】
実施例5
[Pt(C(THMP)]の合成。
実施例1において[Pt(CH(COD)]に代えて[Pt(C(COD)](11.3mg,0.0247mmol)を用い、TPPTSに代えてTHMP(5.4mg,0.0436mmol)を用い、再沈殿の溶媒としてエタノール/ヘキサンを用いた以外は実施例1と同様に行い、[Pt(C(THMP)]の白色粉末を収率58%で得た。尚、反応中に放出された1,5−CODは理論量の92%であった。[Pt(C(THMP)]の分析結果を以下に示す。
【0033】
元素分析(C1828Pt)
計算値:C 36.19%,H 4.72%
測定値:C 35.52%,H 4.66%
【0034】
H−NMR(DO)δ ppm:4.06(s,H−Pt=11Hz,12H,PCHOH),6.79(t,H−H=7Hz,2H,p−Ph),7.01(t,H−H=7Hz,4H,m−Ph),7.41(d,H−H =7Hz,H−Pt=57Hz,4H,o−Ph)
【0035】
31P{H}NMR(DO)δ ppm:4.5(s,P−Pt=1660Hz)
【0036】
実施例6
[Pt(CH(DHMPE)]の合成
実施例1においてTPPTSに代えてDHMPE(30.1mg,0.141mmol)を用い、[Pt(CH(COD)]の使用量を47.6mg(0.144mmol)に変え、再沈殿の溶媒としてエタノール/ヘキサン=1/20(容量比)を用いた以外は実施例1と同様に行い、[Pt(CH(DHMPE)]の無色粉末を収率63%で得た。尚、反応中に放出された1,5−CODは理論量の100%であった。[Pt(CH(DHMPE)]の分析結果を以下に示す。
【0037】
元素分析(C22Pt)
計算値:C 21.87%,H 5.05%
測定値:C 22.40%,H 6.29%
【0038】
H−NMR(DO)δ ppm:0.50(t,H−P=7Hz,H−Pt=69Hz,6H,Pt−Me),1.96(m,4H,PC),4.14(dd,H−H=14Hz,H−P=2.1Hz,4H,PCHOH),4.25(d,H−H=14Hz,H−Pt=12Hz,4H,PCHOH)
【0039】
31P{H}NMR(DO)δ ppm:49.3(s,P−Pt=1640Hz)
【0040】
実施例7:の合成
[Pt(C(DHMPE)]
実施例1において[Pt(CH(COD)]に代えて[Pt(C(COD)](11.3mg,0.313mmol)を用い、TPPTSに代えてDHMPE(7.2mg,0.336mmol)を用いた以外は実施例1と同様に行い、[Pt(C(DHMPE)]を収率91%で得た。尚、反応中に放出された1,5−CODは理論量の94%であった。[Pt(C(DHMPE)]の分析結果を以下に示す。
【0041】
H−NMR(DMSO−d/DO=1/5(容量比))δ ppm:1.25(q,H−H=8Hz,H−Pt=71Hz,4H,Pt−CHCH),1.26(m,6H,Pt−CHCH),1.88(m,4H,PC),4.09(dd,H−H=14Hz,H−P=3Hz,4H,PCHOH),4.22(d,H−H=14Hz,H−Pt=11Hz,4H,PCHOH)
【0042】
31P{H}NMR(DMSO−d/DO=1/5(容量比))δ ppm:48.3(s,P−Pt=1460Hz)
【0043】
実施例8
[Pt(C(DHMPE)]の合成。
実施例1において[Pd(CH(COD)]に代えて[Pt(C(COD)](69.0mg,0.151mmol)を用い、TPPTSに代えてDHMPE(32.1mg,0.150mmol)を用い、再結晶の溶媒としてエタノール/ヘキサンを用いた以外は実施例1と同様に行い、[Pt(C(DHMPE)]の無色粉末を収率64%で得た。[Pt(C(DHMPE)]の分析結果を以下に示す。
【0044】
元素分析(C1826Pt)
計算値:C 38.37%,H 4.65%
測定値:C 38.38%,H 4.81%
【0045】
H−NMR(DO)δ ppm:2.10(m,4H,PC),4.11(m,8H,PCHOH),6.85(t,H−H=7Hz,2H,p−Ph),7.08(t,H−H=7Hz,4H,m−Ph),7.46(t, H−HH−P=7Hz,H−Pt=52Hz,4H,o−Ph)
【0046】
31P{H}NMR(DO)δ ppm:43.9(s,P−Pt=1600Hz)
【0047】
実施例9
cis−[Au(CHI(THMP)]の合成
[Au(CHI](36.6mg,0.0517mmol)、THMP(12.4mg、0.100mmol)をアセトン(3ml)に溶解し、0℃で3時間攪拌して無色反応液を得た。得られた反応液を濃縮し、次いで溶媒を減圧下に留去した後、減圧乾燥して無色のオイル状物質を得た。得られたオイル状物質は分析の結果cis−[Au(CHI(THMP)]であった(収率100%)。分析結果を以下に示す。
【0048】
H−NMR(DMSO−d)δ ppm:1.10(d,P−H=8.1Hz,3H,Au−CH),1.44(d,P−H=6.9Hz,3H,Au−CH),4.33(brs,6H,PCH),5.45(brs,3H,OH)
【0049】
31P{H}NMR(DMSO−d)δ ppm:15.1(s)
【0050】
実施例10
cis−[Au(CHI(TPPTS)]の合成
実施例9においてTHMPに代えてTPPTS( 48.9mg,0.0860mmol)および[Au(CHI](30.4mg、0.0430mmol)を用いた以外は実施例9と同様に行い、cis−[Au(CHI(TPPTS)]の無色粉末を収率93%で得た。cis−[Au(CHI(TPPTS)]の分析結果を以下に示す。
【0051】
H−NMR(DO/アセトン−d)δ ppm:1.34(d,P−H=8.1Hz,1H,Au−CH),1.40(d,P−H=8.7Hz,1H,Au−CH),7.4−7.9(m,12H,PC
【0052】
31P{H}NMR(DO/アセトン−d)δ ppm:33.4(s)
【0053】
実施例11
[Au(CH(THMP)の合成
実施例9においてTHMPの使用量を24.6mg(0.198mmol)に、[Au(CHI]の使用量を(35.0mg、0.0494mmol)に変えた以外は実施例9と同様に行い、[Au(CH(THMP)の無色粉末を収率92%で得た。[Au(CH(THMP)の分析結果を以下に示す。
【0054】
H−NMR(DMSO−d)δ ppm:1.14(br,6H,Au−CH),4.34(br,12H,PCHOH),5.62(br,6H,PCH2OH)
【0055】
31P{H}NMR(DMSO−d)δ ppm:17.6(s)
【0056】
実施例12
[Au(CH(TPPTS)の合成
実施例9においてTHMPに代えてTPPTS(105.6mg,0.186mmol)を用い、[Au(CHI]の使用量を32.9mg(0.0405mmol)に変えた以外は実施例9と同様に行い、[Au(CH(TPPTS)の無色粉末を収率96%で得た。[Au(CH(TPPTS)の分析結果を以下に示す。
【0057】
H−NMR(DMSO−d)δ ppm:1.09(d,P−H=8Hz,3H,cis−Au−Me),1.45(d,P−H=9Hz,3H,trans−Au−Me),7.1−7.8(24H,TPPTS)
【0058】
31P{H}NMR(DMSO−d)δ ppm:30.2(s),−4.4(s).
【0059】
実施例13
[Au(CH(DHMPE)]の合成
実施例9においてTHMPに代えてDHMPE(18.5mg,0.0864mmol)を用い、[Au(CHI]の使用量を(31.3mg、0.0442mmol)に変えた以外は実施例9と同様に行い、[Au(CH(DHMPE)]の無色粉末を収率95%で得た。[Au(CH(DHMPE)]の分析結果を以下に示す。
【0060】
H−NMR(DO)δ ppm:1.13(t,P−H=7Hz,6H,Au−CH),2.51(m,4H,PC),4.54(m,8H,PCHOH)
【0061】
31P{H}NMR(DO)δ ppm:54.4 (s).
【0062】
実施例14
[RhCH(CO)(TPPMS)]の合成
[RhCH(CO)(PPh](71.8mg,0.107mmol)、TPPMS(75.3mg,0.207mmol)をテトラヒドロフラン(THF)溶媒(4ml)中、室温で12時間攪拌して反応させ、黄色けん濁液を得た。上澄みをろ過後、沈殿をTHF及びベンゼンで洗浄し、次いで減圧乾燥して無色粉末を得た。得られた粉末は分析の結果[RhMe(CO)(TPPMS)]であった(収率14%)。分析結果を以下に示す。
【0063】
IR(KBr) cm−1:1960(νCO);1194,1039(νas及びνSO)
【0064】
H−NMR(DMSO−d)δ ppm:−0.95(s,3H,Rh−CH),7.18−7.69(m,28H,P−C4−5
【0065】
31P{H}NMR(DMSO−d)δ ppm:42.8(d,P−Rh=157Hz)
【0066】
実施例15
[Rh(CH)(CO)(TPPTS)]の合成
実施例14においてTPPMSに代えてTPPTS(29.3mg,0.0437mmol)を用い、溶媒をTHF(3ml)/メタノール(50ml)に代えた以外は実施例14と同様に行った。得られた橙色けん濁液を濃縮した後ろ過し、濾滓として[Rh(CH)(CO)(TPPTS)]の黄色粉末を収率77%で得た。
【0067】
IR(KBr) cm−1:1949(νCO);1195,1040(νas及びνSO)
【0068】
H−NMR(DMSO−d)δ ppm:−1.03(s,3H,Rh−CH),7.04−7.60(m,24H,P−C4−5
【0069】
31P{H}NMR(DMSO−d)δ ppm:43.9(d,P−Rh=156Hz)
【0070】
実施例16
[Pd(CH(TPPTS)]の合成
[Pt(CH(TMEDA)](7.6mg,0.030mmol)及びDMSO(0.5ml)からなる溶液にTPPTS(33.2mg、0.0585mmol)を加え、数分間室温で攪拌して無色反応液を得た。得られた反応液にアセトン(10ml)を加えて白色沈殿を生成させた。これを濾過し、濾滓をアセトン(1ml)で3回洗浄し、次いで減圧乾燥して白色粉末を得た。得られた粉末は分析の結果[Pd(CH(TPPTS)]であった(収率90%)。分析結果を以下に示す。
【0071】
H−NMR(DO)δ ppm:0.17(m,6H,Pd−CH),7.3−8.1(m,24H,芳香環)
【0072】
31P{H}NMR(DO)δ ppm:28.8(s)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel water-soluble noble metal complex, and more particularly to a water-soluble noble metal complex of Rh, Au, Pt or Pd. The water-soluble noble metal complex of the present invention is an industrially useful compound as a catalyst for an organic synthesis reaction, a polymerization reaction, or the like.
[0002]
[Prior art]
The water-soluble noble metal complex of the present invention is a novel compound not described in any literature.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel water-soluble noble metal complex useful as a catalyst for an organic synthesis reaction, a polymerization reaction, and the like.
[0004]
[Means for Solving the Problems]
The present inventors have intensively studied to solve the above problems. As a result, a novel water-soluble noble metal complex represented by the following molecular formula was found.
[Pt (CH 3 ) 2 (TPPTS) 2 ], [Pt (C 2 H 5 ) 2 (TPPTS) 2 ], [Pt (CH 3 ) 2 (THMP) 2 ], [Pt (C 2 H 5 ) 2] (THMP) 2], [Pt (C 6 H 5) 2 (THMP) 2], [Pt (CH 3) 2 (DHMPE)], [Pt (C 2 H 5) 2 (DHMPE)], [Pt ( C 6 H 5) 2 (DHMPE )], [Au (CH 3) 2 I (TPPTS)], [Au (CH 3) 2 I (THMP)], [Au (CH 3) 2 (TPPTS) 2] + I -, [Au (CH 3 ) 2 (THMP) 2] + I -, [Au (CH 3) 2 (DHMPE)] + I -, [Rh (CH 3) (CO) (TPPMS)], [Rh (CH 3 ) (CO) (TPPTS)] or [Pd (CH 3) ) 2 (TPPTS) 2 ]
Wherein TPPTS is 3,3 ', 3 "-phosphinidine tris (benzenesulfonic acid) = trisodium, TPPMS is 3- (diphenylphosphino) benzenesulfonic acid = sodium, and THMP is tri (hydroxymethyl ) Phosphine, and DHMPE represents 1,2-bisdi (hydroxymethyl) phosphinodiethane.]
[0005]
That is, the present invention relates to a water-soluble noble metal complex represented by the following molecular formula.
[Pt (CH 3 ) 2 (TPPTS) 2 ], [Pt (C 2 H 5 ) 2 (TPPTS) 2 ], [Pt (CH 3 ) 2 (THMP) 2 ], [Pt (C 2 H 5 ) 2] (THMP) 2], [Pt (C 6 H 5) 2 (THMP) 2], [Pt (CH 3) 2 (DHMPE)], [Pt (C 2 H 5) 2 (DHMPE)], [Pt ( C 6 H 5) 2 (DHMPE )], [Au (CH 3) 2 I (TPPTS)], [Au (CH 3) 2 I (THMP)], [Au (CH 3) 2 (TPPTS) 2] + I -, [Au (CH 3 ) 2 (THMP) 2] + I -, [Au (CH 3) 2 (DHMPE)] + I -, [Rh (CH 3) (CO) (TPPMS)], [Rh (CH 3 ) (CO) (TPPTS)] or [Pd (CH 3) ) 2 (TPPTS) 2 ]
[0006]
The water-soluble noble metal complex of the present invention is water-soluble and can be stably present in water. Therefore, according to the present invention, when the target substance is a poorly water-soluble compound in a conventional reaction using a noble metal complex as a catalyst, if the water-soluble noble metal complex of the present invention is used as a catalyst, the reaction mixture after the reaction is completed The target substance and the water-soluble noble metal complex of the present invention can be separated and easily recovered. That is, for example, using the water-soluble noble metal complex of the present invention as a catalyst and performing the reaction in water-hydrophobic organic solvent, in the reaction mixture after the reaction, the water-soluble noble metal complex of the present invention in the aqueous layer, Since the target substance is dissolved in the organic solvent layer, the aqueous layer and the organic solvent layer can be separated to easily separate and recover the catalyst and the target substance. The simple precious metal complex can be reused as it is as a catalyst for the reaction, so that a simple and industrial organic compound production process can be constructed.
[0007]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention will be described in detail below.
The water-soluble noble metal complex of the present invention is, for example, a known alkyl or aryl complex of Rh, Au, Pt and Pd, for example, a molecular formula [Rh (CH 3 ) (CO) (PPh 3 ) 2 ] (where PPh 3 represents triphenylphosphine), [Au (CH 3 ) 2 I] 2 , [PtR 2 (COD)] (wherein R represents a methyl group, an ethyl group or a phenyl group, and COD represents 1,5- Which represents cyclooctadiene (the same applies hereinafter), Pd [(CH 3 ) 2 (TMEDA)], etc., and uses these as a water-soluble ligand of the water-soluble noble metal complex of the present invention; Of TPPMS, TPPTS, THMP or DHMPE.
[0008]
TPPTS:
Embedded image
Figure 2004035498
[0009]
TPPMS:
Embedded image
Figure 2004035498
[0010]
THMP:
Embedded image
Figure 2004035498
[0011]
DHMPE:
Embedded image
Figure 2004035498
[0012]
The reaction may be performed by stirring and mixing the above-mentioned known noble metal complex as a raw material with TPPMS, TPPTS, THMP or DHMPE in a solvent at a temperature of 0 to about 100 ° C. The reaction is usually performed under an atmosphere of an inert gas such as argon and nitrogen. The amount of TPPMS, TPPTS, THMP or DHMPE used is usually about 2 moles in the case of TPPMS, TPPTS and THMP, and usually about 1 mole in the case of TPPMS, TPPTS and THMP per mole of the noble metal in the known noble metal complex as a raw material. Is a mole.
[0013]
Examples of the solvent used in the reaction include water, alcohols such as methanol and ethanol, and mixtures thereof. The amount of the solvent used is usually 100 to 1000 parts by weight per 1 part by weight of the noble metal complex as the raw material.
[0014]
After the reaction mixture after completion of the reaction is concentrated as required, an aprotic organic solvent (for example, an aliphatic ketone such as acetone, or an ether such as diethyl ether or the like) is added to precipitate the water-soluble noble metal complex of the present invention. Generate. If necessary, the resulting precipitate is filtered under an atmosphere of an inert gas such as argon and nitrogen to obtain the water-soluble noble metal complex of the present invention as a filter cake. The obtained water-soluble noble metal complex of the filter cake may be purified by recrystallization or reprecipitation.
[0015]
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
Incidentally, IR spectra were measured with a JASCO FTIR-410 (manufactured by JASCO Corporation) in the following examples, NMR spectra were measured with a JEOL LA-310 (1 H 300.4MHz ) ( manufactured by JEOL Ltd.), Chemical shifts were referenced to DSS (1 H) and 85% H 3 PO 4 (31 P). Elemental analysis was performed using a 2400 series II CHN analyzer (manufactured by PerkinElmer). The gas was measured by an internal standard method using gas chromatography (GC-8A) (manufactured by Shimadzu Corporation).
[0016]
Example 1
Synthesis of [Pt (CH 3 ) 2 (TPPTS) 2 ] To a solution consisting of [Pt (CH 3 ) 2 (COD)] (8.7 mg, 0.026 mmol) and ethanol (1 ml) was added TPPTS (30.4 mg, 0 ml). (0.0535 mmol) and water (0.5 ml) were added and stirred at room temperature for several minutes to obtain a colorless reaction solution. The 1,5-COD released during the reaction was 95% of the theoretical amount. After concentrating the obtained reaction solution, acetone was added to generate a white precipitate. This was filtered, the cake was washed with hexane, and then dried under reduced pressure. Reprecipitation from water / acetone = 1/40 (volume ratio) gave white crystals. The obtained crystals were analyzed to be [Pt (CH 3 ) 2 (TPPTS) 2 ] tetrahydrate (yield 80%). The analysis results are shown below.
[0017]
Elemental analysis (C 38 H 38 O 22 Na 6 P 2 PtS 6)
Calculated value: C 31.83%, H 2.62%
Measured value: C 31.89%, H 2.92%
[0018]
IR (KBr) cm −1 : 3331 (νOH), 1194 (ν as SO), 1039 (ν s SO)
[0019]
1 H-NMR (D 2 O) δ ppm: 0.42 (m, 2 J H-Pt = 69 Hz, 6H, Pt-CH 3 ), 7.39 (t, 3 J H-H = 8 Hz, 6 H , 5-CH aromatic ring), 7.53 (t, 3 J H-H = 3 J H-P = 8Hz, 6H, 6-CH aromatic ring), 7.76 (d, 3 J H-H = 8Hz, 4H, 4-CH aromatic ring), 7.79 (d, 3 J H-P = 8Hz, 6H, 2-CH aromatic)
[0020]
31 P { 1 H} NMR (D 2 O) δ ppm: 29.3 (s, 1 JP -Pt = 1855 Hz)
[0021]
Example 2
[Pt (C 2 H 5) 2 (TPPTS) 2] Synthesis Example 1 in place of [Pt (CH 3) 2 ( COD)] [Pt (C 2 H 5) 2 (COD)] (7. The same procedure as in Example 1 was carried out except that 8 mg, 0.022 mmol) was used, and the precipitate was reprecipitated from water / acetone = 1/40 (volume ratio) to obtain [Pt (C 2 H 5 ) 2 (TPPTS) 2 ]. A colorless powder was obtained from Y. Obtained at 72%. The analysis results of [Pt (C 2 H 5 ) 2 (TPPTS) 2 ] are shown below.
[0022]
Elemental analysis (C 40 H 42 O 22 Na 6 P 2 PtS 6)
Calculated value: C 32.86%, H 2.90%
Measured value: C: 32.82%, H: 3.19%
[0023]
IR (KBr) cm -1 : 3442 (νOH), 1191 (ν as SO), 1038 (ν s SO)
[0024]
1 H-NMR (D 2 O) δ ppm: 0.77 (m, 3 J H-Pt = 74 Hz, 6 H, Pt-CH 2 CH 3 ), 1.13 (m, 2 J H-Pt = 70 Hz, 4H, Pt-CH 2 CH 3 ), 7.39 (t, 3 J H-H = 8Hz, 6H, 5-CH aromatic ring), 7.2 (t, 3 J H-H = 3 J H-P = 8 Hz, 6H, 6-CH aromatic ring), 7.71 (d, 3 JH-H = 8 Hz, 6H, 4-CH aromatic ring), 7.85 (d, 3 JH-P = 8 Hz, 6H , 2-CH aromatic ring)
[0025]
31 P { 1 H} NMR (D 2 O) δ ppm: 29.0 (s, 1 JP -Pt = 1677 Hz)
[0026]
Example 3
Synthesis of [Pt (CH 3 ) 2 (THMP) 2 ].
Example 1 was repeated except that THMP (11.7 mg, 0.0944 mmol) was used in place of TPPTS and the amount of [Pt (CH 3 ) 2 (COD)] was changed to 15.8 mg (0.0474 mmol). [Pt (CH 3 ) 2 (THMP) 2 ] was obtained in a yield of 82% in the same manner as in Example 1. The analysis results of [Pt (CH 3 ) 2 (THMP) 2 ] are shown below.
1 H-NMR (DMSO-d 6 / D 2 O = 1/5 ( volume ratio)) δ ppm: 0.49 (brs , 2 J H-H = 66Hz, 6H, Pt-CH 3), 4.29 (Br, 12H, PCH 2 OH)
[0028]
31 P { 1 H} NMR (DMSO-d 6 / D 2 O = 1/5 (volume ratio)) δ ppm: 13.2 (s, 1 JP -Pt = 1700 Hz)
[0029]
Example 4
[Pt (C 2 H 5) 2 (THMP) 2] [Pt (CH 3) 2 (COD)] instead of [Pt (C 2 H 5) 2 (COD)] Synthesis Example 1 (10. 9 mg, 0.0302 mmol) and [Pt (C 2 H 5 ) 2 (THMP) 2 ] was conducted in the same manner as in Example 1 except that THMP (7.8 mg, 0.0629 mmol) was used instead of TPPTS. Obtained in 86% yield. The analysis results of [Pt (C 2 H 5 ) 2 (THMP) 2 ] are shown below.
[0030]
1 H-NMR (DMSO-d 6 / D 2 O = 1/5 (volume ratio)) δ ppm: 1.14 (m, 6H, Pt-CH 2 CH 3 ), 1.2 (q, 3 JH) -H = 8Hz, 2 J H- Pt = 129Hz, 4H, Pt-CH 2 CH 3), 4.33 (brs, 12H, PCH 2 OH)
[0031]
31 P { 1 H} NMR (DMSO-d 6 / D 2 O = 1/5 (volume ratio)) δ ppm: 8.9 (s, 1 JP -Pt = 1470 Hz)
[0032]
Example 5
Synthesis of [Pt (C 6 H 5 ) 2 (THMP) 2 ].
In Example 1, [Pt (C 6 H 5 ) 2 (COD)] (11.3 mg, 0.0247 mmol) was used instead of [Pt (CH 3 ) 2 (COD)], and THMP (5) was used instead of TPPTS. .4 mg, 0.0436 mmol), and the same procedure as in Example 1 was carried out except that ethanol / hexane was used as a reprecipitation solvent, to collect a white powder of [Pt (C 6 H 5 ) 2 (THMP) 2 ]. Obtained at a rate of 58%. The 1,5-COD released during the reaction was 92% of the theoretical amount. The analysis results of [Pt (C 6 H 5 ) 2 (THMP) 2 ] are shown below.
[0033]
Elemental analysis (C 18 H 28 O 6 P 2 Pt)
Calculated value: C 36.19%, H 4.72%
Measured value: C 35.52%, H 4.66%
[0034]
1 H-NMR (D 2 O) δ ppm: 4.06 (s, 2 J H-Pt = 11 Hz, 12 H, PCH 2 OH), 6.79 (t, 3 J H-H = 7 Hz, 2 H, p -Ph), 7.01 (t, 3 J H-H = 7Hz, 4H, m-Ph), 7.41 (d, 3 J H-H = 7Hz, 3 J H-Pt = 57Hz, 4H, o -Ph)
[0035]
31 P { 1 H} NMR (D 2 O) δ ppm: 4.5 (s, 1 JP -Pt = 1660 Hz)
[0036]
Example 6
Synthesis of [Pt (CH 3 ) 2 (DHMPE)] In Example 1, DHMPE (30.1 mg, 0.141 mmol) was used instead of TPPTS, and the amount of [Pt (CH 3 ) 2 (COD)] used was 47. [Pt (CH 3 ) 2 (DHMPE)], except that the amount was changed to 0.6 mg (0.144 mmol) and ethanol / hexane = 1/20 (volume ratio) was used as a solvent for reprecipitation. Was obtained in a yield of 63%. The 1,5-COD released during the reaction was 100% of the theoretical amount. The analysis results of [Pt (CH 3 ) 2 (DHMPE)] are shown below.
[0037]
Elemental analysis (C 8 H 22 O 4 P 2 Pt)
Calculated value: C 21.87%, H 5.05%
Measured value: C 22.40%, H 6.29%
[0038]
1 H-NMR (D 2 O) δ ppm: 0.50 (t, 3 J H-P = 7 Hz, 2 J H-Pt = 69 Hz, 6 H, Pt-Me), 1.96 (m, 4 H, PC 2 H 4), 4.14 (dd , 2 J H-H = 14Hz, 3 J H-P = 2.1Hz, 4H, PCH 2 OH), 4.25 (d, 2 J H-H = 14Hz, 3 J H-Pt = 12Hz, 4H, PCH 2 OH)
[0039]
31 P { 1 H} NMR (D 2 O) δ ppm: 49.3 (s, 1 JP -Pt = 1640 Hz)
[0040]
Synthesis of Example 7: [Pt (C 2 H 5 ) 2 (DHMPE)]
In Example 1, [Pt (C 2 H 5 ) 2 (COD)] (11.3 mg, 0.313 mmol) was used instead of [Pt (CH 3 ) 2 (COD)], and DHMPE (7) was used instead of TPPTS. [Pt (C 2 H 5 ) 2 (DHMPE)] in a yield of 91%. The 1,5-COD released during the reaction was 94% of the theoretical amount. The analysis results of [Pt (C 2 H 5 ) 2 (DHMPE)] are shown below.
[0041]
1 H-NMR (DMSO-d 6 / D 2 O = 1/5 (volume ratio)) δ ppm: 1.25 (q, 3 J H−H = 8 Hz, 2 J H−Pt = 71 Hz, 4 H, Pt) -CH 2 CH 3), 1.26 ( m, 6H, Pt-CH 2 CH 3), 1.88 (m, 4H, PC 2 H 4), 4.09 (dd, 2 J H-H = 14Hz , 2 J H-P = 3Hz , 4H, PCH 2 OH), 4.22 (d, 2 J H-H = 14Hz, 2 J H-Pt = 11Hz, 4H, PCH 2 OH)
[0042]
31 P { 1 H} NMR (DMSO-d 6 / D 2 O = 1/5 (volume ratio)) δ ppm: 48.3 (s, 1 JP -Pt = 1460 Hz)
[0043]
Example 8
Synthesis of [Pt (C 6 H 5 ) 2 (DHMPE)].
In Example 1, [Pt (C 6 H 5 ) 2 (COD)] (69.0 mg, 0.151 mmol) was used instead of [Pd (CH 3 ) 2 (COD)], and DHMPE (32) was used instead of TPPTS. .1 mg, 0.150 mmol) and the same procedure as in Example 1 except that ethanol / hexane was used as a solvent for recrystallization to obtain a colorless powder of [Pt (C 6 H 5 ) 2 (DHMPE)]. Obtained at 64%. The analysis results of [Pt (C 6 H 5 ) 2 (DHMPE)] are shown below.
[0044]
Elemental analysis (C 18 H 26 O 4 P 2 Pt)
Calculated value: C 38.37%, H 4.65%
Measured value: C 38.38%, H 4.81%
[0045]
1 H-NMR (D 2 O) δ ppm: 2.10 (m, 4H, PC 2 H 4 ), 4.11 (m, 8 H, PCH 2 OH), 6.85 (t, 3 J H-H) = 7Hz, 2H, p-Ph ), 7.08 (t, 3 J H-H = 7Hz, 4H, m-Ph), 7.46 (t, 3 J H-H = 4 J H-P = 7Hz , 3 J H-Pt = 52 Hz, 4H, o-Ph)
[0046]
31 P { 1 H} NMR (D 2 O) δ ppm: 43.9 (s, 1 JP -Pt = 1600 Hz)
[0047]
Example 9
Synthesis of cis- [Au (CH 3 ) 2 I (THMP)] [Au (CH 3 ) 2 I] 2 (36.6 mg, 0.0517 mmol) and THMP (12.4 mg, 0.100 mmol) in acetone (3 ml) ) And stirred at 0 ° C. for 3 hours to obtain a colorless reaction solution. The obtained reaction solution was concentrated, then the solvent was distilled off under reduced pressure, and then dried under reduced pressure to obtain a colorless oily substance. As a result of analysis, the obtained oily substance was cis- [Au (CH 3 ) 2 I (THMP)] (yield 100%). The analysis results are shown below.
[0048]
1 H-NMR (DMSO-d 6 ) δ ppm: 1.10 (d, 3 JP -H = 8.1 Hz, 3 H, Au-CH 3 ), 1.44 (d, 3 JP -H = 6) .9Hz, 3H, Au-CH 3 ), 4.33 (brs, 6H, PCH 2), 5.45 (brs, 3H, OH)
[0049]
31 P { 1 H} NMR (DMSO-d 6 ) δ ppm: 15.1 (s)
[0050]
Example 10
Synthesis of cis- [Au (CH 3 ) 2 I (TPPTS)] In Example 9, TPPTS (48.9 mg, 0.0860 mmol) and [Au (CH 3 ) 2 I] 2 (30.4 mg, Except for using 0.0430 mmol), the same procedure as in Example 9 was carried out to obtain a colorless powder of cis- [Au (CH 3 ) 2 I (TPPTS)] at a yield of 93%. The analysis results of cis- [Au (CH 3 ) 2 I (TPPTS)] are shown below.
[0051]
1 H-NMR (D 2 O / acetone -d 6) δ ppm: 1.34 ( d, 3 J P-H = 8.1Hz, 1H, Au-CH 3), 1.40 (d, 3 J P -H = 8.7Hz, 1H, Au- CH 3), 7.4-7.9 (m, 12H, PC 6 H 4)
[0052]
31 P { 1 H} NMR (D 2 O / acetone-d 6 ) δ ppm: 33.4 (s)
[0053]
Example 11
Synthesis of [Au (CH 3 ) 2 (THMP) 2 ] + I − In Example 9, the amount of THMP used was 24.6 mg (0.198 mmol), and the amount of [Au (CH 3 ) 2 I] 2 used was (35.0 mg, 0.0494 mmol) was carried out in the same manner as in Example 9 to obtain a colorless powder of [Au (CH 3 ) 2 (THMP) 2 ] + I with a yield of 92%. [Au (CH 3) 2 ( THMP) 2] + I - shows the result of analysis below.
[0054]
1 H-NMR (DMSO-d 6) δ ppm: 1.14 (br, 6H, Au-CH 3), 4.34 (br, 12H, PCH 2 OH), 5.62 (br, 6H, PCH2OH)
[0055]
31 P { 1 H} NMR (DMSO-d 6 ) δ ppm: 17.6 (s)
[0056]
Example 12
Synthesis of [Au (CH 3 ) 2 (TPPTS) 2 ] + I − In Example 9, TPPTS (105.6 mg, 0.186 mmol) was used instead of THMP, and [Au (CH 3 ) 2 I] 2 was used. Except that the amount was changed to 32.9 mg (0.0405 mmol), the same procedures as in Example 9 were carried out to obtain a colorless powder of [Au (CH 3 ) 2 (TPPTS) 2 ] + I with a yield of 96%. [Au (CH 3) 2 ( TPPTS) 2] + I - shows the result of analysis below.
[0057]
1 H-NMR (DMSO-d 6 ) δ ppm: 1.09 (d, 3 JP -H = 8 Hz, 3 H, cis-Au-Me), 1.45 (d, 3 JP -H = 9 Hz, 3H, trans-Au-Me), 7.1-7.8 (24H, TPPTS).
[0058]
31 P { 1 H} NMR (DMSO-d 6 ) δ ppm: 30.2 (s), -4.4 (s).
[0059]
Example 13
Synthesis of [Au (CH 3 ) 2 (DHMPE)] + I − In Example 9, DHMPE (18.5 mg, 0.0864 mmol) was used instead of THMP, and the amount of [Au (CH 3 ) 2 I] 2 used Was changed to (31.3 mg, 0.0442 mmol) in the same manner as in Example 9 to obtain a colorless powder of [Au (CH 3 ) 2 (DHMPE)] + I − in a yield of 95%. The analysis results of [Au (CH 3 ) 2 (DHMPE)] + I are shown below.
[0060]
3. 1 H-NMR (D 2 O) δ ppm: 1.13 (t, 3 JP -H = 7 Hz, 6 H , Au-CH 3 ), 2.51 (m, 4 H, PC 2 H 4 ), 4. 54 (m, 8H, PCH 2 OH)
[0061]
31 P { 1 H} NMR (D 2 O) δ ppm: 54.4 (s).
[0062]
Example 14
Synthesis of [RhCH 3 (CO) (TPPMS) 2 ] [RhCH 3 (CO) (PPh 3 ) 2 ] (71.8 mg, 0.107 mmol) and TPPMS (75.3 mg, 0.207 mmol) in tetrahydrofuran (THF) The mixture was stirred and reacted in a solvent (4 ml) at room temperature for 12 hours to obtain a yellow suspension. After filtering the supernatant, the precipitate was washed with THF and benzene, and then dried under reduced pressure to obtain a colorless powder. As a result of analysis, the obtained powder was [RhMe (CO) (TPPMS) 2 ] (yield: 14%). The analysis results are shown below.
[0063]
IR (KBr) cm -1 : 1960 (νCO); 1194, 1039 (ν as and ν s SO)
[0064]
1 H-NMR (DMSO-d 6) δ ppm: -0.95 (s, 3H, Rh-CH 3), 7.18-7.69 (m, 28H, P-C 6 H 4-5)
[0065]
31 P { 1 H} NMR (DMSO-d 6 ) δ ppm: 42.8 (d, 1 JP -Rh = 157 Hz)
[0066]
Example 15
Synthesis of [Rh (CH 3 ) (CO) (TPPTS) 2 ] In Example 14, TPPTS (29.3 mg, 0.0437 mmol) was used instead of TPPMS, and the solvent was changed to THF (3 ml) / methanol (50 ml). The procedure was performed in the same manner as in Example 14 except for the above. The obtained orange suspension was concentrated and then filtered to obtain a yellow powder of [Rh (CH 3 ) (CO) (TPPTS) 2 ] as a filter residue in a yield of 77%.
[0067]
IR (KBr) cm -1 : 1949 (νCO); 1195, 1040 (ν as and ν s SO)
[0068]
1 H-NMR (DMSO-d 6) δ ppm: -1.03 (s, 3H, Rh-CH 3), 7.04-7.60 (m, 24H, P-C 6 H 4-5)
[0069]
31 P { 1 H} NMR (DMSO-d 6 ) δ ppm: 43.9 (d, 1 JP -Rh = 156 Hz)
[0070]
Example 16
Synthesis of [Pd (CH 3 ) 2 (TPPTS) 2 ] To a solution consisting of [Pt (CH 3 ) 2 (TMEDA)] (7.6 mg, 0.030 mmol) and DMSO (0.5 ml) was added TPPTS (33.2 mg). , 0.0585 mmol) and stirred at room temperature for several minutes to give a colorless reaction solution. Acetone (10 ml) was added to the obtained reaction solution to produce a white precipitate. This was filtered, and the filter cake was washed three times with acetone (1 ml) and then dried under reduced pressure to obtain a white powder. As a result of analysis, the obtained powder was [Pd (CH 3 ) 2 (TPPTS) 2 ] (yield 90%). The analysis results are shown below.
[0071]
1 H-NMR (D 2 O) δ ppm: 0.17 (m, 6H, Pd-CH 3 ), 7.3-8.1 (m, 24H, aromatic ring)
[0072]
31 P { 1 H} NMR (D 2 O) δ ppm: 28.8 (s)

Claims (1)

次の分子式で示される水溶性貴金属錯体。
[Pt(CH(TPPTS)]、[Pt(C(TPPTS)]、[Pt(CH(THMP)]、[Pt(C(THMP)]、[Pt(C(THMP)]、[Pt(CH(DHMPE)]、[Pt(C(DHMPE)]、[Pt(C(DHMPE)]、[Au(CHI(TPPTS)]、[Au(CHI(THMP)]、[Au(CH(TPPTS)、[Au(CH(THMP)、[Au(CH(DHMPE)]、[Rh(CH)(CO)(TPPMS)]、[Rh(CH)(CO)(TPPTS)]又は[Pd(CH(TPPTS)
〔式中、TPPTSは3,3‘,3“−ホスフィニジントリス(ベンゼンスルホン酸)=トリナトリウムを、TPPMSは3−(ジフェニルホスフィノ)ベンゼンスルホン酸=ナトリウムを、THMPはトリ(ヒドロキシメチル)ホスフィンを、DHMPEは1,2−ビス{ジ(ヒドロキシメチル)ホスフィノ}エタンを表す。〕
A water-soluble noble metal complex represented by the following molecular formula.
[Pt (CH 3 ) 2 (TPPTS) 2 ], [Pt (C 2 H 5 ) 2 (TPPTS) 2 ], [Pt (CH 3 ) 2 (THMP) 2 ], [Pt (C 2 H 5 ) 2] (THMP) 2], [Pt (C 6 H 5) 2 (THMP) 2], [Pt (CH 3) 2 (DHMPE)], [Pt (C 2 H 5) 2 (DHMPE)], [Pt ( C 6 H 5) 2 (DHMPE )], [Au (CH 3) 2 I (TPPTS)], [Au (CH 3) 2 I (THMP)], [Au (CH 3) 2 (TPPTS) 2] + I -, [Au (CH 3 ) 2 (THMP) 2] + I -, [Au (CH 3) 2 (DHMPE)] + I -, [Rh (CH 3) (CO) (TPPMS)], [Rh (CH 3 ) (CO) (TPPTS)] or [Pd (CH 3) ) 2 (TPPTS) 2 ]
Wherein TPPTS is 3,3 ', 3 "-phosphinidine tris (benzenesulfonic acid) = trisodium, TPPMS is 3- (diphenylphosphino) benzenesulfonic acid = sodium, and THMP is tri (hydroxymethyl ) Phosphine, and DHMPE represents 1,2-bisdi (hydroxymethyl) phosphinodiethane.]
JP2002196422A 2002-07-04 2002-07-04 Water-soluble noble metal complex Pending JP2004035498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196422A JP2004035498A (en) 2002-07-04 2002-07-04 Water-soluble noble metal complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196422A JP2004035498A (en) 2002-07-04 2002-07-04 Water-soluble noble metal complex

Publications (1)

Publication Number Publication Date
JP2004035498A true JP2004035498A (en) 2004-02-05

Family

ID=31704517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196422A Pending JP2004035498A (en) 2002-07-04 2002-07-04 Water-soluble noble metal complex

Country Status (1)

Country Link
JP (1) JP2004035498A (en)

Similar Documents

Publication Publication Date Title
JP4644881B2 (en) Method for producing ruthenium complex
CN110088114B (en) General method for preparing acylphosphine
JPH0320290A (en) 2,2&#39;-bis(di(m-tolyl)phosphino)-1,1&#39;-binaphthyl
DE112011104615T5 (en) Organoboron compound and process for producing the same
Kottsieper et al. Synthesis of enantiopure C1 symmetric diphosphines and phosphino-phosphonites with ortho-phenylene backbones
Karasik et al. Water-soluble aminomethyl (ferrocenylmethyl) phosphines and their trinuclear transition metal complexes
JPH03255090A (en) 2,2&#39;-bis(di-(3,5-dialkylphenyl)phosphino)-1,1&#39;-binaphthyl and transition metal complex containing the compound as ligand
Slawin et al. Preparation and coordination chemistry of Ph2PNHNHpy
JP2004536153A5 (en)
JP3034305B2 (en) Phosphinite-borane compound having chiral structure, method for producing the same and use thereof
JP3217504B2 (en) Method for producing tertiary phosphane
Cadierno et al. Unexpected Formal [1+ 3] Cycloadditions between Azides and α‐Zirconated Phosphanes: A Route to Unprecedented Phosphazide and Iminophosphorane Complexes
i Zubiri et al. The preparation and coordination chemistry of phosphorus (III) derivatives of piperazine and homopiperazine
Balakrishna et al. Aminophosphines derived from morpholine and N-methylpiperazine: Synthesis, oxidation reactions and transition metal complexes
JP2004035498A (en) Water-soluble noble metal complex
Schull et al. Synthesis of symmetrical triarylphosphines from aryl fluorides and red phosphorus: scope and limitations
Akbayeva et al. [(η5‐C5HR4) CuCO](R= CHMe2)–A Remarkably Stable Copper Carbonyl Complex and its Reaction with P4
JP2001316395A (en) Alkenylphosphonic esters and method for producing the same
Xu et al. New bis (phosphine-amide) ligands: Oxidation, coordination and supramolecular chemistry
JP2002371088A (en) Sulfonic acid amine salt and method for producing the same
Ganesan et al. Reductive carbonylation route to Co (0) and Co (I) carbonyl complexes containing bridging, chelating and cleaved diphosphazanes. Structures of [Co (CO){P (OR) 2 (NHMe)} 2 {P (O)(OR) 2}{P (H)(OR′) 2}](R= CH2CF3, R′= CH2CH3),[Co2 (CO) 2 {μ-MeN {P (OR) 2} 2} 3](R= CH2CF3), and [Co (CO){η2-MeN {P (OR) 2} 2} 2][CoCl3 (OC4H8)](R= Ph)
JP2010235518A (en) Method for producing azaboracyclopentene compound and synthetic intermediate therefor
Veits et al. Synthesis of o-diorganylphosphino-substituted benzoic acids and their derivatives
Coetzee et al. Phosphorus containing mixed anhydrides—their preparation, labile behaviour and potential routes to their stabilisation
JP4183974B2 (en) Process for producing para-diarylphosphinobenzenesulfonate

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050701

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20080603

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Effective date: 20080909

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127