JP2004035497A - DECAHYDRO-2H-BENZO[a]XANTHENE-3,11-DIOL DERIVATIVE AND PRODUCTION INTERMEDIATE - Google Patents

DECAHYDRO-2H-BENZO[a]XANTHENE-3,11-DIOL DERIVATIVE AND PRODUCTION INTERMEDIATE Download PDF

Info

Publication number
JP2004035497A
JP2004035497A JP2002196384A JP2002196384A JP2004035497A JP 2004035497 A JP2004035497 A JP 2004035497A JP 2002196384 A JP2002196384 A JP 2002196384A JP 2002196384 A JP2002196384 A JP 2002196384A JP 2004035497 A JP2004035497 A JP 2004035497A
Authority
JP
Japan
Prior art keywords
decahydro
benzo
general formula
hydroxyl
xanthene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002196384A
Other languages
Japanese (ja)
Inventor
Tadashi Kato
加藤 正
Munenobu Inoue
井上 宗宣
Mari Nakatani
中谷 真理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP2002196384A priority Critical patent/JP2004035497A/en
Publication of JP2004035497A publication Critical patent/JP2004035497A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Pyrane Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a 4,4,6a,12b-tetramethyl-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-3,11-dioxy-2H-benzo[a]xanthene derivative expected to have an application as an excellent antitumor agent, and to provide a production intermediate thereof. <P>SOLUTION: The decahydro-3,11-dioxy-2H-benzo[a]xanthene-3,11-diol derivative and the production intermediate thereof are represented by general formula (1) (wherein, R<SP>1</SP>and R<SP>2</SP>are the same or different and each a hydrogen atom or a protective group or a hydroxy group). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、新規な抗腫瘍剤としての用途が期待される4,4,6a,12b−テトラメチル−1,3,4,4a,5,6,6a,12,12a,12b−デカヒドロ−3,11−ジオキシ−2H−ベンゾ[a]キサンテン誘導体およびその製造法に関する。
【0002】
【従来の技術】
癌は、癌細胞が無限に増殖し、全身に広がり、人間を死に至らしめる恐ろしい病気である。細胞の癌化は、その増殖や分化を調節する遺伝子の変異が大きな要因になっていることが明確になりつつあり、今日では、変異した遺伝子の実体が癌遺伝子あるいは癌抑制遺伝子であると考えられるようになってきた。中でも、ras遺伝子群は代表的な癌遺伝子の一つであり、点突然変異によって活性化されたras遺伝子はさまざまなヒト腫瘍組織から検出されている。ras遺伝子産物であるRasタンパク質は機能的には未成熟(不活性型)であり、いくつかの酵素的化学修飾を受けて初めて成熟型(活性型)になる。そして、化学修飾を受けた活性型Rasタンパク質は細胞膜の内側に結合し、そこで他のタンパク質と相互作用して、細胞増殖のシグナル伝達を開始する。プロテインファルネシルトランスフェラーゼ(PFTase)は、ras遺伝子産物であるRasタンパク質前駆体のC末端側から4番目のシステインのチオール基にファルネシル基を結合させる酵素であり、この化学修飾はRasタンパク質の成熟化にとって必須な条件である。したがって、PFTase阻害剤は、ras遺伝子の発現する機能タンパク質を制御するものであり、新しい作用機序を有する抗腫瘍剤としての可能性が強く示唆されている(日経サイエンス,1996年12月号, pp.152−159;実験医学,1996, 14, 269−271)。式(6)〜(8)で示されるカンパノールA〜Cは、1998年、子嚢菌(Stachybotrys kampalensis)から単離・構造決定された、優れたPFTase阻害活性を有する非ペプチド性低分子有機化合物群であり、世界的に注目されている(Bioorg. Med. Chem. Lett., 1998, 8, 2071−2076)。これらカンパノール類の化学構造上の大きな特徴として、デカリン環(AB環)にベンゾフラン環(CD環)が縮環したデカヒドロ−2H−ベンゾ[a]キサンテン骨格(ABCD環システム)を有する点があげられる。
【0003】
【化7】

Figure 2004035497
【0004】
【化8】
Figure 2004035497
【0005】
【化9】
Figure 2004035497
【0006】
一般に化合物の抗腫瘍活性と抗腫瘍スペクトルは、その化合物の化学構造に大きく依存することが知られている。したがって、上記カンパノール類すべてに共通する四環性構造(ABCD環システム)である一般式(1)
【0007】
【化10】
Figure 2004035497
【0008】
(式中、RおよびRは同一または異なって水素原子、または水酸基の保護基を表す。)で示される4,4,6a,12b−テトラメチル−1,3,4,4a,5,6,6a,12,12a,12b−デカヒドロ−3,11−ジオキシ−2H−ベンゾ[a]キサンテン誘導体は、抗腫活性発現のための重要な基本構造であると考えられ、新規な抗腫瘍剤としての用途が大いに期待される。しかしながら、このような4,4,6a,12b−テトラメチル−1,3,4,4a,5,6,6a,12,12a,12b−デカヒドロ−3,11−ジオキシ−2H−ベンゾ[a]キサンテン誘導体は文献未記載の新規化合物であり、また、当然のことながら、その化学合成法も知られていない。
【0009】
【発明が解決しようとする課題】
本発明の目的は、抗腫瘍剤としての用途が期待される新規化合物である4,4,6a,12b−テトラメチル−1,3,4,4a,5,6,6a,12,12a,12b−デカヒドロ−3,11−ジオキシ−2H−ベンゾ[a]キサンテン誘導体、並びにその製造中間体を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記の課題に鑑み、鋭意検討を重ねた結果、新規な化学構造を有する下記発明化合物が、新しい作用機序を有する抗腫瘍剤としての用途が期待されることを見いだし、本発明を完成させるに至った。すなわち、本発明は下記一般式(1)
【0011】
【化11】
Figure 2004035497
【0012】
(式中、RおよびRは同一または異なって水素原子、または水酸基の保護基を表す。)で示される4,4,6a,12b−テトラメチル−1,3,4,4a,5,6,6a,12,12a,12b−デカヒドロ−3,11−ジオキシ−2H−ベンゾ[a]キサンテン誘導体、下記一般式(2)
【0013】
【化12】
Figure 2004035497
【0014】
(式中、R、R、Rは同一または異なって水素原子、または水酸基の保護基を表す。)で示される5−(2,6−ジオキシベンジル)−1,1,4a−トリメチル−6−メチレン−2−オキシ−デカヒドロナフタレン誘導体、下記一般式(3)
【0015】
【化13】
Figure 2004035497
【0016】
(式中、R、R、Rは同一または異なって水酸基の保護基を表す。)で示される1−(2,6−ジオキシベンジル)−5,5,8a−トリメチル−6−オキシ−オクタヒドロナフタレン−2−オン誘導体、下記一般式(4)
【0017】
【化14】
Figure 2004035497
【0018】
(式中、Rは水酸基の保護基を表す。)で示される5,5,8a−トリメチル−1−メチレン−6−オキシ−オクタヒドロナフタレン−2−オン誘導体と、下記一般式(5)
【0019】
【化15】
Figure 2004035497
【0020】
(式中、RおよびRは同一または異なって水酸基の保護基を表す。)で示される2−ブロモレゾルシノール誘導体を反応させることを特徴とする、一般式(3a)
【0021】
【化16】
Figure 2004035497
【0022】
(式中、R、R、Rは同一または異なって水酸基の保護基を表す。)で示される1−(2,6−ジオキシベンジル)−5,5,8a−トリメチル−6−オキシ−オクタヒドロナフタレン−2−オン誘導体の製造方法を提供するものである。
【0023】
【発明の実施の形態】
本発明において、「水酸基の保護基」としては、ホルミル基;アセチル基、ベンゾイル基、ピバロイル基等のアシル基;ベンジル基、p−メトキシベンジル基、トリフェニルメチル基、メトキシメチル基、ベンジルオキシメチル、テトラヒドロピラニル基、1−エトキシエチル基等の置換アルキル基;トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、t−ブチルジメチルシリル基、t−ブチルジフェニルシリル基、トリフェニルシリル基等のシリル基があげられる。これらの水酸基の保護基の導入と脱保護は文献記載の方法を適宜採用して行うことができる(Protective Groups in Organic Synthesis, 3rd Ed., Wieley Interscience Publication, John−Wiley & Sons, New York, 1999, pp 23−200)。
【0024】
前記一般式(1)で表される4,4,6a,12b−テトラメチル−1,3,4,4a,5,6,6a,12,12a,12b−デカヒドロ−3,11−ジオキシ−2H−ベンゾ[a]キサンテン誘導体は、例えば下記の合成工程(第一工程〜第九工程)により製造することができる。なお、本発明の化合物は、複数の不斉炭素を有しており光学異性体が存在し得るが、これらの光学異性体およびこれらの混合物も本発明に包含されるものである。
【0025】
【化17】
Figure 2004035497
【0026】
【化18】
Figure 2004035497
【0027】
【化19】
Figure 2004035497
【0028】
(式中、R、R、Rは同一または異なって水酸基の保護基を表す。)
【0029】
(第一工程)
本工程は、前記式(9)で表される2−ブロモレゾルシノールの二つの水酸基のうち一つを保護し、前記一般式(10)で表される2−ブロモフェノール誘導体を製造するものである。
【0030】
本工程の原料である前記式(9)で表される2−ブロモレゾルシノールは、公知の方法(Can. J. Chem., 1989, 67, 335−344)により製造することができる  化合物である。また、本工程の水酸基の保護は、公知の方法に従い行うことがで  きる(Protective Groupsin Organic Synthesis, 3rd Ed., Wieley Interscience Publication, John−Wiley & Sons,New York, 1999, pp 23−200)。
【0031】
(第二工程)
本工程は、前記一般式(10)で表される2−ブロモフェノール誘導体の水酸基を保護し、前記一般式(5)で表される2−ブロモベンゼン誘導体を製造するものである。
【0032】
本工程の水酸基の保護は、公知の方法に従い行うことができる(Protective Groups in Organic Synthesis, 3rd Ed., Wieley Interscience Publication, John−Wiley & Sons, New York, 1999, pp 23−200)。
【0033】
(第三工程)
本工程は、前記一般式(5)で表される2−ブロモベンゼン誘導体からグリニャール試薬を調製し、前記一般式(4)で表される5,5,8a−トリメチル−1−メチレン−6−オキシ−オクタヒドロナフタレン−2−オン誘導体とカップリング反応を行ない、前記一般式(3)で表される1−置換ベンジル−5,5,8a−トリメチル−6−オキシ−オクタヒドロナフタレン−2−オン誘導体を製造するものである。
【0034】
本工程の原料である前記一般式(4)で表される5,5,8a−トリメチル−1−メチレン−6−オキシ−オクタヒドロナフタレン−2−オン誘導体は、公知の方法(Tetrahedron Lett., 1997, 38, 2081−2084)により製造することができる化合物である。グリニャール試薬の調製は、ジエチルエーテルまたはテトラヒドロフラン等のエーテル系溶媒中、金属マグネシウムを作用させて行うことができる。また、カップリング反応は、溶媒中で行うことが望ましく、例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,2−ジメトキシエタン、1,4−ジオキサン等のエーテル系溶媒;ペンタン、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン等の炭化水素系溶媒が用いられ、また、上記の溶媒のうち2種類以上を混合しても差し支えない。反応は、−78℃から溶媒還流温度の間で行うことができる。
【0035】
(第四工程)
本工程は、前記一般式(3)で表される1−置換ベンジル−5,5,8a−トリメチル−6−オキシ−オクタヒドロナフタレン−2−オン誘導体の2位のカルボニル基に、メチルトリフェニルホスホニウム塩と塩基により調製したイリドを作用させることによりオレフィン化し、前記一般式(2)で表される5−置換ベンジル−1,1,4a−トリメチル−6−メチレン−2−オキシ−デカヒドロナフタレン誘導体を製造するものである。
【0036】
本工程で用いられるホスホニウム塩としては、例えば、メチルトリフェニルホスホニウムヨージド、メチルトリフェニルホスホニウムブロミド、メチルトリフェニルホスホニウムクロリドがあげられ、用いる塩基としては、例えば、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウム−t−ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウム−t−ブトキシドのようなアルカリ金属アルコキシド、n−ブチルリチウム、s−ブチルリチウム、t−ブチルリチウム、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ナトリウムビス(トリメチルシリル)アミド、カリウムビス(トリメチルシリル)アミドのようなアルカリ金属有機塩基をあげることができる。反応は、溶媒中で行うことが望ましく、例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,2−ジメトキシエタン、1,4−ジオキサン等のエーテル系溶媒;ジクロロメタン、1,2−ジクロロエタン、クロロホルム等のハロゲン化炭化水素系溶媒;ペンタン、ヘキサン、シクロヘキサン、ベンゼン、トルエン等の炭化水素系溶媒;酢酸エチル、アセトニトリル、プロピオニトリル、アセトン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶媒が用いられ、また、上記の溶媒のうち2種類以上を混合しても差し支えない。反応は、−78℃から溶媒還流温度の間で行うことができる。
【0037】
(第五工程)
本工程は、前記一般式(2)で表される5−置換ベンジル−1,1,4a−トリメチル−6−メチレン−2−オキシ−デカヒドロナフタレン誘導体の5位の置換ベンジル基上の二つの水酸基の保護基のうち、一つだけを脱保護し、前記一般式(2a)で表される5−置換ベンジル−1,1,4a−トリメチル−6−メチレン−2−オキシ−デカヒドロナフタレン誘導体を製造するものである。
【0038】
本工程の水酸基の脱保護は、公知の方法に従い行うことができる(Protective Groups in Organic Synthesis, 3rd Ed., Wieley Interscience Publication,
John−Wiley & Sons, New York, 1999, pp 23−200)。
【0039】
(第六工程)
本工程は、前記一般式(2a)で表される5−置換ベンジル−1,1,4a−トリメチル−6−メチレン−2−オキシ−デカヒドロナフタレン誘導体を分子内エーテル環化し、前記一般式(1)で表される4,4,6a,12b−テトラメチル−1,3,4,4a,5,6,6a,12,12a,12b−デカヒドロ−3,11−ジオキシ−2H−ベンゾ[a]キサンテン誘導体を製造するものである。
【0040】
反応は、例えば、塩酸、臭化水素酸、フッ化水素酸、p−トルエンスルホン酸、メタンスルホン酸、カンファースルホン酸、硫酸、過塩素酸、ギ酸、酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸等のプロトン酸存在下、あるいは、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、三フッ化ホウ素−ジエチルエーテル錯体、塩化ロジウム、塩化アルミニウム、アルミニウムメチルジクロリド、アルミニウムメチルジクロリド、アルミニウムエチルジクロリド、アルミニウムジエチルクロリド等のルイス酸存在下で行うことができる。また、本反応は、臭素あるいはヨウ素等のハロゲン化試薬を用いるハロエーテル環化反応とそれに続く脱ハロゲン化反応、あるいは、N−(フェニルセレノ)フタルイミドを用いるセレノエーテル環化反応とそれに続く脱セレノ化反応等を用いても行うことができる。溶媒としては反応に関与しなければいかなるものも用いることができるが、例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,2−ジメトキシエタン、1,4−ジオキサン等のエーテル系溶媒;ジクロロメタン、1,2−ジクロロエタン、クロロホルム等のハロゲン化炭化水素系溶媒;ペンタン、ヘキサン、シクロヘキサン、ベンゼン、トルエン等の炭化水素系溶媒;酢酸エチル、アセトニトリル、プロピオニトリル、アセトン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶媒が用いられ、また、上記の溶媒のうち2種類以上を混合しても差し支えない。反応は、−78℃から溶媒還流温度の間で行うことができる。
【0041】
(第七工程)
本工程は、前記一般式(1)で表される4,4,6a,12b−テトラメチル−1,3,4,4a,5,6,6a,12,12a,12b−デカヒドロ−3,11−ジオキシ−2H−ベンゾ[a]キサンテン誘導体の二つの水酸基の保護基を同時に脱保護し、前記式(1a)で表される4,4,6a,12b−テトラメチル−1,3,4,4a,5,6,6a,12,12a,12b−デカヒドロ−2H−ベンゾ[a]キサンテン−3,11−ジオ−ルを製造するものである。
【0042】
本工程の水酸基の脱保護は、公知の方法に従い行うことができる(T. W. Greene,P. G. M. Wuts, Protective Groups in Organic Synthesis, 3rd Ed., Wieley Interscience Publication, John−Wiley & Sons,New York, 1999, pp 23−200)。
【0043】
(第八工程)
本工程は、前記式(1a)で表される4,4,6a,12b−テトラメチル−1,3,4,4a,5,6,6a,12,12a,12b−デカヒドロ−2H−ベンゾ[a]キサンテン−3,11−ジオ−ルの二つの水酸基を同時に保護し、前記一般式(1b)で表される4,4,6a,12b−テトラメチル−1,3,4,4a,5,6,6a,12,12a,12b−デカヒドロ−3,11−ジオキシ−2H−ベンゾ[a]キサンテン誘導体を製造するものである。
【0044】
本工程の水酸基の保護は、公知の方法に従い行うことができる(Protective Groups in Organic Synthesis, 3rd Ed., Wieley Interscience Publication, John−Wiley & Sons,New York, 1999, pp 23−200)。
【0045】
(第九工程)
本工程は、前記一般式(1b)で表される4,4,6a,12b−テトラメチル−1,3,4,4a,5,6,6a,12,12a,12b−デカヒドロ−3,11−ジオキシ−2H−ベンゾ[a]キサンテン誘導体のフェノール性水酸基の保護基を選択的に脱保護し、前記一般式(1c)で表される4,4,6a,12b−テトラメチル−1,3,4,4a,5,6,6a,12,12a,12b−デカヒドロ−3−オキシ−2H−ベンゾ[a]キサンテン−11−オール誘導体を製造するものである。
【0046】
本工程の水酸基の保護基の脱保護は、公知の方法に従い行うことができる(Protective Groups in Organic Synthesis, 3rd Ed., Wieley Interscience Publication, John−Wiley & Sons,New York, 1999, pp 23−245)。
【0047】
以下、実施例、参考例で本発明を詳細に説明が、本発明はこれらに限定されるものでないことは言うまでもない。
【0048】
【実施例】
【0049】
実施例1
【0050】
【化20】
Figure 2004035497
【0051】
アルゴン雰囲気下にて、マグネシウム(粉末状)(132mg, 5.43mmol)の脱水ジエチルエーテル懸濁液(1.00ml)にエチレンジブロミド(79.0μl, 0.91mmol)を加え発泡させた後、2−ベンジルオキシメトキシ−6−メトキシメトキシブロモベンゼン(1.28g, 3.62mmol)の脱水ジエチルエーテル溶液(5.00ml)を加えて穏やかに加熱し、反応が開始したら室温で1時間攪拌した。その後、0℃まで冷却し、(4a,6,8a)−6β−(tert−ブチルジメチルシロキシ)−5,5,8aβ−トリメチル−1−メチレン−3,4,4aα−5,6,7,8,8a−オクタヒドロナフタレン−2−オン(203mg, 0.60mmol)の脱水ジエチルエーテル溶液(4.00ml)を加え、同温度にて5時間撹拌した。反応混合物に飽和塩化アンモニウム水溶液(4.00ml)を加え、有機物を酢酸エチル(20.0ml)で2回抽出し、有機層を2%塩酸水溶液、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。無水硫酸ナトリウムをろ過し溶媒を減圧下留去した後、残査をカラムクロマトグラフィー(ヘキサン:酢酸エチル=50:1)により分離精製し、(4a,6,8,8a)−1β−(2−ベンジルオキシメトキシ−6−メトキシメトキシメチル−ベンジル)−6β−(tert−ブチルジメチルシロキシ)−5,5,8aβ−トリメチル−3,4,4aα,5,6,7,8,8a−オクタヒドロナフタレン−2−オン(349mg, 95%)を無色油状物質として得た。
H−NMR(250MHz, CDCl): δ 0.02(6H, s), 0.79(3H, s), 0.87−0.90 (1H, m), 0.88 (12H, s), 0.96(3H, s), 1.18−1.30(2H, m), 1.40−1.53(2H, m), 1.60−1.87(2H, m), 1.88−1.98(1H, m), 2.15−2.32(1H, m), 2.32−2.45(1H, m), 2.58−2.73(2H, m), 3.13−3.28(2H, m), 3.49(3H, s), 4.70(2H, s), 5.17(2H, s), 5.28(2H, s), 6.75(1H, d), 6.82(1H, d), 7.05(1H, dd), 7.26−7.36(5H, m).
【0052】
実施例2
【0053】
【化21】
Figure 2004035497
【0054】
アルゴン雰囲気下にて、tert−ブトキシカリウム(330mg, 2.86mmol)の脱水ベンゼン溶液(5.00ml)にメチルトリフェニルホスホニウムブロミド(1.04g, 2.86mmol)を加え、3時間加熱還流した。その後、(4a,6,8,8a)−1β−(2−ベンジルオキシメトキシ−6−メトキシメトキシメチル−ベンジル)−6β−(tert−ブチルジメチルシロキシ)−5,5,8aβ−トリメチル−3,4,4aα,5,6,7,8,8a−オクタヒドロナフタレン−2−オン(349mg, 0.571mmol)の脱水ベンゼン溶液(5.00ml)を加え、さらに13時間加熱還流した。その後、室温まで冷却して反応混合物に水(5.00ml)を加えた。反応混合物をジエチルエーテル(20.0ml)で4回抽出し、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。無水硫酸ナトリウムをろ過し溶媒を減圧下留去した後、残査をカラムクロマトグラフィー(ヘキサン:酢酸エチル=50:1)により分離精製し、(4a,6,8,8a)−1β−(2−ベンジルオキシメトキシ−6−メトキシメトキシメチル−ベンジル)−6β−(tert−ブチルジメチルシロキシ)−5,5,8aβ−トリメチル−2−メチレン−3,4,4aα,5,6,7,8,8a−オクタヒドロナフタレン(338mg, 97%)を無色油状物質として得た。
H−NMR(250MHz, CDCl): δ 0.04(6H, s), 0.76(3H, s), 0.85(3H, s), 0.89(9H, s), 0.90(3H, s), 0.80−0.90(1H, m), 1.09(1H, dd), 1.30−1.40(1H, m), 1.40−1.48(1H, m), 1.57−1.77(2H, m), 1.80−1.98(2H, m), 2.24−2.38(1H, m), 2.50−2.59(1H, m), 2.78(1H, dd), 2.92(1H, dd), 3.20(1H, dd), 3.50(3H, s), 4.70(1H, s), 4.73(2H, s), 4.99(1H, s), 5.18(2H, s), 5.30(2H, s), 6.75(1H, d), 6.82(1H, d), 7.05(1H, dd), 7.26−7.38(5H, m).
【0055】
実施例3
【0056】
【化22】
Figure 2004035497
【0057】
アルゴン雰囲気下にて、金属リチウム(116mg, 16.7mmol)の液体アンモニア溶液(20.0ml)を室温にて還流し、(4a,6,8,8a)−1β−(2−ベンジルオキシメトキシ−6−メトキシメトキシメチル−ベンジル)−6β−(tert−ブチルジメチルシロキシ)−5,5,8aβ−トリメチル−2−メチレン−3,4,4aα,5,6,7,8,8a−オクタヒドロナフタレン(338mg, 0.56mmol)の脱水テトラヒドロフラン(THF)溶液(7.00ml)を加え、1時間還流した。反応混合物に飽和塩化アンモニウム水溶液(5.00ml)をゆっくり加え、室温にして液体アンモニアを気化させた。反応混合物を酢酸エチル(20.0ml)で3回抽出し、有機層を飽和食塩水で洗浄し無水硫酸ナトリウムで乾燥した。無水硫酸ナトリウムをろ過し溶媒を減圧下留去した後、残査をカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1)により分離精製し、(1,4a,6,8a)−2−[6β−tert−ブチルジメチルシロキシ−5,5,8aβ−トリメチル−2−メチレン−1,2,3,4,4a,5,6,7,8,8a−デカヒドロナフタレン−1β−イルメチル]−3−メトキシメトキシフェノール(258mg, 95%)を無色油状物質として得た。
H−NMR(250MHz, CDCl): δ 0.03(3H, s), 0.04(3H, s), 0.76(3H, s), 0.82(3H, s), 0.88(9H, s), 0.89(3H, s), 1.11(1H, dd, J=2.7, 12.5Hz), 1.22−1.33(1H, m), 1.35−1.46(1H, m), 1.50−1.56(1H, m), 1.58−1.68(1H, m),  1.70−1.79(1H, m), 1.88−2.01(2H, m), 2.30−2.41(2H, m), 2.76(1H, dd, J=8.1, 14.6Hz),2.86(1H, dd, J=3.7, 14.6Hz), 3.20(1H, dd, J=4.5, 11.4Hz), 3.50(3H, s), 4.82(1H, d, J=1.1Hz), 4.89(1H, s), 5.04(1H, d, J=1.1Hz), 5.17(1H, d, J=6.6Hz), 5.20(1H, d, J=6.6Hz), 6.43(1H, dd, J=0.8,8.2Hz), 6.66(1H, dd, J=0.8, 8.2Hz), 6.98(1H, dd, J=8.2, 8.2Hz).
FT−IR(neat, cm−1): 3420, 2936, 2855, 1719, 1647, 1595, 1466, 1385, 1254,1194, 1154, 1094, 1044,941, 887, 835, 774, 731, 664.EI−MS(m/z): 488(57, M), 431(18), 45(100).
【0058】
実施例4
【0059】
【化23】
Figure 2004035497
【0060】
アルゴン雰囲気下にて、(1,4a,6,8a)−2−[6β−tert−ブチルジメチルシロキシ−5,5,8aβ−トリメチル−2−メチレン−1,2,3,4,4a,5,6,7,8,8a−デカヒドロナフタレン−1β−イルメチル]−3−メトキシメトキシフェノール(11.4mg, 23μmol)の脱水塩化メチレン溶液(0.80ml)を‐78℃に冷却し、−(フェニルセレノ)フタルイミド(8.60mg, 28μmol)の脱水塩化メチレン溶液(1.0ml)および四塩化スズ(1.0Min CHCl, 25μl, 25μmol)を加え同温度にて1時間反応させた。その後、溶媒を減圧下留去し、残査をカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1)により分離精製し、(3,4a,6a,12a,12b)−3β−tert−ブチルジメチルシロキシ−11−メトキシメトキシ−4,4,12bβ−トリメチル−6aα−フェニルセレニルメチル−1,3,4,4aα,5,6,6a,12,12aα,12b−デカヒドロ−2−ベンゾ[]キサンテン(11.9mg, 79%)を黄色油状物質として得た。
H−NMR(500MHz, CDCl): δ 0.04(3H, s), 0.05(3H, s), 0.69(3H, s), 0.74(3H, s), 0.88(9H, s), 0.89−0.92(1H, m), 0.94(3H, s), 1.01−1.12(1H, m), 1.45−1.53(1H, m), 1.55−1.61(2H, m), 1.61−1.75(2H, m), 1.75−1.88
(2H, m), 2.15−2.24(1H, m), 2.44(1H, dd, J=8.4, 18.7Hz), 2.73(1H, d, J=18.7Hz), 3.09(2H, m), 3.23(1H, dd, J=4.7, 11.3Hz), 3.45(3H, s), 5.17 (2H, d, J=1.6Hz), 6.43(1H, dd, J=0.8, 8.2Hz), 6.56(1H, dd, J=0.8,
8.2Hz), 6.98(1H, dd, J=8.2, 8.2Hz), 7.14−7.23(3H, m), 7.40−7.47(2H, m).EI−MS(m/z): 643(5, M), 488(2), 473(100), 45(42).
上記で得られた(3,4a,6a,12a,12b)−3β−tert−ブチルジメチルシロキシ−11−メトキシメトキシ−4,4,12bβ−トリメチル−6aα−フェニルセレニルメチル−1,3,4,4aα,5,6,6a,12,12aα,12b−デカヒドロ−2−ベンゾ[]キサンテン(79.1mg, 0.12mmol)の脱水トルエン溶液(3.00ml)に、アルゴン雰囲気下にて、水素化‐トリブチルスズ(68.0μl, 0.25mmol)および2,2’‐アゾビスイソブチロニトリル(AIBN)(1.00mg, 6.0μmol)を加えた。反応混合物を液体窒素で凍結し、減圧することにより脱気した。その後、室温に上昇し溶媒を解凍した後、6時間加熱還流した。反応容器を室温に戻し、再度、水素化‐トリブチルスズ(34.0μl, 23μmol)および2,2’‐アゾビスイソブチロニトリル(AIBN)(1.00mg, 6.0μmol)を加え、1時間加熱還流した。反応混合物を室温に冷却した後、溶媒を減圧下留去し、残査をカラムクロマトグラフィー(ヘキサン:酢酸エチル=50:1→20:1)により分離精製し、(3,4a,6a,12a,12b)−3β−tert−ブチルジメチルシロキシ−11−メトキシメトキシ−4,4,6aα,12bβ−テトラメチル−1,3,4,4aα,5,6,6a,12,12aα,12b−デカヒドロ−2−ベンゾ[]キサンテン(47.0mg, 78%)を無色油状物質として得た。
H−NMR(500MHz, CDCl): δ 0.04(6H, s), 0.69(3H, s), 0.74(3H, s), 0.84−0.91(1H, m), 0.88(9H, s), 0.93(3H, s), 0.97−1.10(1H, m), 1.16(3H, s), 1.32(1H, d, J=8.2Hz), 1.45−1.63(4H, m), 1.64−1.74(1H, m), 1.80−1.89(1H, m), 2.11−2.21(1H, m), 2.63(1H, dd, J=8.2, 18.5Hz), 2.80(1H, d, J=18.5Hz), 3.20(1H, dd, J=4.6, 11.4Hz), 3.49(3H, s), 5.20(2H, s), 6.44(1H, d, J=8.2Hz), 6.56(1H, d, J=8.2Hz),6.99(1H, dd, J=8.2, 8.2Hz).EI−MS(m/z): 488(100,M), 473(5), 431(35), 45(67).
【0061】
実施例5
【0062】
【化24】
Figure 2004035497
【0063】
(3,4a,6a,12a,12b)−3β−tert−ブチルジメチルシロキシ−11−メトキシメトキシ−4,4,6aα,12bβ−テトラメチル−1,3,4,4aα,5,6,6a,12,12aα,12b−デカヒドロ−2−ベンゾ[]キサンテン(106mg, 0.22mmol)のメタノール(4.00ml)に6M塩酸水溶液(0.36ml)を加え、50℃にて3時間反応させた。反応混合物に飽和食塩水(3.00ml)を加え、酢酸エチル(10.0ml)で3回抽出し、有機層を無水硫酸ナトリウムで乾燥した。無水硫酸ナトリウムをろ過し溶媒を減圧下留去した後、残査をカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)により分離精製し、(3,4a,6a,12a,12b)−4,4,6aα,12bβ−テトラメチル−1,3,4,4aα,5,6,6a,12,12aα,12b−デカヒドロ−2−ベンゾ[]キサンテン−3β,11−ジオール(60.6mg, 85%)を白色固体として得た。
H−NMR(500MHz, CDCl): δ 0.71(3H, s), 0.79(3H, s), 0.89−0.95(1H, m), 1.03(3H, s), 1.04−1.12(1H,m), 1.17(3H, s), 1.37(1H, d, J=7.8Hz), 1.55−1.62(3H, m), 1.62−1.75(2H, m), 1.92(1H, ddd, J=3.6,3.6, 13.0Hz), 2.14−2.21(1H, m), 2.17(1H, s), 2.65(1H, dd, J=7.7, 17.8Hz), 2.73(1H, d, J=17.8Hz), 3.21−3.27(1H, m), 4.63(1H, s), 6.30(1H, dd, J=1.0, 8.1Hz), 6.37(1H, dd, J=1.0, 8.1Hz), 6.92(1H, dd, J=8.1, 8.1Hz).
13C−NMR(125MHz, CDCl): δ 14.0, 14.1, 15.6, 17.4, 17.9, 26.9, 27.0, 28.5, 38.1, 38.2, 38.8, 40.6, 48.8, 54.3, 75.0, 79.1, 106.2, 109.5, 126.5, 153.5, 155.8.
FT−IR(KBr, cm−1): 3439, 2928, 1616, 1593, 1466, 1370, 1273, 1169, 1134, 1026, 903, 775.
【0064】
実施例6
【0065】
【化25】
Figure 2004035497
【0066】
アルゴン雰囲気下にて、(3,4a,6a,12a,12b)−4,4,6aα,12bβ−テトラメチル−1,3,4,4aα,5,6,6a,12,12aα,12b−デカヒドロ−2−ベンゾ[]キサンテン−3β,11−ジオール(60.4mg, 0.18mmol)に無水酢酸(0.17ml, 1.83mmol)、ピリジン(1.00ml)及び4‐ジメチルアミノピリジン(11.0mg, 0.092mmol)を加え、室温で18時間反応させた。反応混合物を酢酸エチル(15.0ml)で希釈し、有機層を2%塩酸水溶液、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。無水硫酸ナトリウムをろ過し溶媒を減圧下留去した後、残査をカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)により分離精製し、(3,4a,6a,12a,12b)−3β,11−ビスアセトキシ−4,4,6aα,12bβ−テトラメチル−1,3,4,4aα,5,6,6a,12,12aα,12b−デカヒドロ−2−ベンゾ[]キサンテン(61.9mg, 81%)を白色固体として得た。
H−NMR(500MHz, CDCl):δ 0.72(3H, s), 0.85(3H, s), 0.90(3H, s), 0.96−1.01(1H, m), 1.07−1.15(1H, m), 1.17(3H, s), 1.33(1H, d, J=7.8Hz), 1.54−1.63(2H, m), 1.63−1.77(3H, m), 1.83(1H, ddd, J=3.6,3.6, 13.1Hz), 2.05(3H, s), 2.14−2.21(1H, m), 2.32(3H, s), 2.56(1H, d, J=18.1Hz), 2.63(1H, dd, J=7.8, 18.1Hz), 4.49(1H, dd, J=4.8, 11.6Hz), 6.56(1H, dd, J=1.0, 8.1Hz), 6.65(1H, dd, J=1.0, 8.1Hz), 7.07(1H, dd, J=8.1, 8.1Hz).
13C−NMR(125MHz, CDCl): δ 14.1, 16.8, 17.7, 17.8, 20.8, 21.3, 23.4, 26.8, 28.4, 37.7, 37.8, 37.9, 40.4, 48.6, 54.4, 75.3, 80.7, 113.1, 114.8,115.7, 126.7, 148.9, 155.7, 169.1, 171.0.
FT−IR(KBr, cm−1): 2971, 2932, 2886, 1753, 1723, 1615, 1584, 1466, 1372, 1318, 1252, 1209, 1165, 1136, 1086, 1030, 1009, 974, 916, 893, 876, 849 , 804, 785, 725, 706, 658, 598, 557, 527.
【0067】
実施例7
【0068】
【化26】
Figure 2004035497
【0069】
アルゴン雰囲気下にて、(3,4a,6a,12a,12b)−3β,11−ビスアセトキシ−4,4,6aα,12bβ−テトラメチル−1,3,4,4aα,5,6,6a,12,12aα,12b−デカヒドロ−2−ベンゾ[]キサンテン(61.9mg, 0.149mol)のテトラヒドロフラン:tert−ブチルアルコール(5:1)の混合溶液(3.00ml)にtert−ブトキシカリウム(51.7mg, 0.48mmol)を加え、室温にて20分間反応させた。反応混合物に飽和塩化アンモニウム水溶液(4.00ml)を加え、次いで酢酸エチル(15.0ml)で2回抽出した。有機層を2%塩酸水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。無水硫酸ナトリウムをろ過し溶媒を減圧下留去した後、残査をカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1→2:1)により分離精製し、(3S,4aR,6aS,12aR,12bS)−3β−アセトキシ−11−ヒドロキシ−4,4,6aα,12bβ−テトラメチル−1,3,4,4aα,5,6,6a,12,12aα,12b−デカヒドロ−2−ベンゾ[]キサンテン(34.5mg, 62%)を白色固体として得た。
H−NMR(500MHz, CDCl):δ 0.74(3H, s), 0.86(3H, s), 0.90(3H, s), 0.97−1.03(1H, m), 1.09−1.21(1H, m), 1.18(3H, s), 1.38(1H, d, J=7.5Hz), 1.49−1.77(5H, m), 1.91(1H, ddd, J=3.5, 3.5, 13.2Hz), 2.05(3H, s), 2.12−2.21(1H, m), 2.66(1H, dd, J=7.5, 17.9Hz), 2.72(1H, d, J=17.9Hz), 4.50(1H, dd, J=4.7, 11.7Hz), 4.77(1H, s), 6.30(1H, dd, J=0.8, 8.0Hz), 6.37(1H, d, J=8.0Hz), 6.92(1H, dd, J=8.0, 8.0Hz).
13C−NMR(125MHz, CDCl): δ 14.2, 16.8, 17.4, 17.8, 21.3, 23.4, 26.8, 28.4, 37.7, 37.8, 38.0, 40.5, 48.7, 54.4, 75.0, 81.1, 106.2, 109.5, 109.8, 126.6, 153.5, 155.8, 171.4.
FT−IR(KBr, cm−1): 3447, 2946, 2361, 1699, 1616, 1595, 1468, 1377, 1277, 1169, 1136, 1084, 1030, 972, 905, 777, 561.
EI−MS(m/z): 372(100, M), 312(6), 297(13), 43(58).
【0070】
【参考例】
【0071】
参考例1
【0072】
【化27】
Figure 2004035497
【0073】
アルゴン雰囲気下にて、2−ブロモレソルシノール(400mg, 2.12mmol)の脱水塩化メチレン溶液(7.00ml)にジイソプロピルエチルアミン(0.37ml, 2.12mmol)及びクロロメチルメチルエーテル(0.16ml, 2.12mmol)を加え、室温で1時間反応させた。その後、反応混合物に2%塩酸水溶液を加え弱酸性にした後、反応混合物を酢酸エチル(30.0ml)で2回抽出し、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。無水硫酸ナトリウムをろ過し溶媒を減圧下留去した後、残査をカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)により分離精製し、2−ブロモ−3−メトキシメトキシフェノール(215mg, 44%)を白色固体として得た。
H−NMR(500MHz, CDCl): δ 3.52(3H, s), 5.25(2H, s), 5.62(1H, s), 6.69−6.74(2H, m), 7.15(1H, dd, J=8.3, 8.3Hz).
FT−IR(KBr, cm−1): 3426, 2932, 1593, 1466, 1385, 1321, 1260, 1190, 1154, 1088, 1034, 926, 772,  581.
EI−MS(m/z): 234 (57, M+1), 233(5, M+), 232(57), 45(100).
【0074】
参考例2
【0075】
【化28】
Figure 2004035497
【0076】
アルゴン雰囲気下にて、2−ブロモ−3−メトキシメトキシフェノール(215mg, 0.92mmol)の脱水塩化メチレン溶液(4.0ml)にジイソプロピルエチルアミン(0.27ml, 1.57mmol)及びベンジルクロロメチルエーテル(0.21ml, 1.38mmol)を加え、室温で1時間反応させた。その後、反応混合物に飽和塩化アンモニウム水溶液(4.0ml)を加え、有機物を酢酸エチル(30.0ml)で2回抽出し、有機層を2%塩酸水溶液、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。無水硫酸ナトリウムをろ過し溶媒を減圧下留去した後、残査をカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)により分離精製し、2−ベンジルオキシメトキシ−6−メトキシメトキシブロモベンゼン(283mg, 87%)を白色固体として得た。
H−NMR(500MHz, CDCl): δ 3.53(3H, s), 4.77(2H, s), 5.26(2H, s), 5.37(2H, s), 6.85(1H, dd, J=1.2, 8.3Hz), 6.91(1H, dd, J=1.2, 8.3Hz), 7.19(1H, dd, J=8.3, 8.3Hz), 7.33−7.40(5H, m).
FT−IR(KBr, cm−1): 2905, 1721, 1593, 1466, 1385, 1246, 1206, 1155, 1086, 1042, 891, 772, 739, 698, 606.
EI−MS(m/z): 354 (1, M+1), 352(1), 322(10), 91(100), 45(23).[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides 4,4,6a, 12b-tetramethyl-1,3,4,4a, 5,6,6a, 12,12a, 12b-decahydro-3, which is expected to be used as a novel antitumor agent. , 11-dioxy-2H-benzo [a] xanthene derivatives and a method for producing the same.
[0002]
[Prior art]
Cancer is a terrible disease that causes cancer cells to grow indefinitely, spread throughout the body, and cause human death. It is becoming clear that mutations in genes that regulate cell proliferation and differentiation play a major role in canceration of cells, and today it is thought that the mutated genes are oncogenes or tumor suppressor genes. It has come to be. Above all, the ras gene group is one of the representative oncogenes, and the ras gene activated by point mutation has been detected in various human tumor tissues. Ras protein, a product of the ras gene, is functionally immature (inactive) and becomes mature (active) only after undergoing some enzymatic chemical modification. Then, the chemically modified active Ras protein binds to the inside of the cell membrane, where it interacts with other proteins and initiates cell growth signaling. Protein farnesyltransferase (PFTase) is an enzyme that binds a farnesyl group to the thiol group of the fourth cysteine from the C-terminal side of the Ras protein precursor, which is a ras gene product. This chemical modification is essential for the maturation of Ras protein. Conditions. Therefore, the PFTase inhibitor controls a functional protein expressed by the ras gene, and is strongly suggested as a potential antitumor agent having a new mechanism of action (Nikkei Science, December 1996, pp. 152-159; Experimental Medicine, 1996, 14, 269-271). Campanols A to C represented by formulas (6) to (8) are non-peptidic low-molecular-weight organic compounds having excellent PFTase inhibitory activity, which were isolated and structurally determined from Stachybotrys kampalensis in 1998. And has attracted worldwide attention (Bioorg. Med. Chem. Lett., 1998, 8, 2071-2076). A major feature of the chemical structure of these campanols is that they have a decahydro-2H-benzo [a] xanthene skeleton (ABCD ring system) in which a benzofuran ring (CD ring) is condensed with a decalin ring (AB ring). .
[0003]
Embedded image
Figure 2004035497
[0004]
Embedded image
Figure 2004035497
[0005]
Embedded image
Figure 2004035497
[0006]
In general, it is known that the antitumor activity and antitumor spectrum of a compound largely depend on the chemical structure of the compound. Therefore, the general formula (1) which is a tetracyclic structure (ABCD ring system) common to all of the above-mentioned camanols
[0007]
Embedded image
Figure 2004035497
[0008]
(Where R 1 And R 2 Represents the same or different hydrogen atoms or hydroxyl-protecting groups. 4,4,6a, 12b-Tetramethyl-1,3,4,4a, 5,6,6a, 12,12a, 12b-Decahydro-3,11-dioxy-2H-benzo [a] xanthene Derivatives are considered to be an important basic structure for the expression of antitumor activity, and their use as novel antitumor agents is greatly expected. However, such 4,4,6a, 12b-tetramethyl-1,3,4,4a, 5,6,6a, 12,12a, 12b-decahydro-3,11-dioxy-2H-benzo [a] The xanthene derivative is a novel compound that has not been described in the literature, and of course, its chemical synthesis method is not known.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel compound, 4,4,6a, 12b-tetramethyl-1,3,4,4a, 5,6,6a, 12,12a, 12b, which is expected to be used as an antitumor agent. -Decahydro-3,11-dioxy-2H-benzo [a] xanthene derivative, and an intermediate for producing the same.
[0010]
[Means for Solving the Problems]
The present inventors have in view of the above problems, as a result of intensive studies, the following invention compounds having a novel chemical structure, and found to be expected to be used as an antitumor agent having a new mechanism of action, The present invention has been completed. That is, the present invention provides the following general formula (1)
[0011]
Embedded image
Figure 2004035497
[0012]
(Where R 1 And R 2 Represents the same or different hydrogen atoms or hydroxyl-protecting groups. 4,4,6a, 12b-Tetramethyl-1,3,4,4a, 5,6,6a, 12,12a, 12b-Decahydro-3,11-dioxy-2H-benzo [a] xanthene Derivative, the following general formula (2)
[0013]
Embedded image
Figure 2004035497
[0014]
(Where R 1 , R 2 , R 3 Represents the same or different hydrogen atoms or hydroxyl-protecting groups. )), A 5- (2,6-dioxybenzyl) -1,1,4a-trimethyl-6-methylene-2-oxy-decahydronaphthalene derivative represented by the following general formula (3)
[0015]
Embedded image
Figure 2004035497
[0016]
(Where R 1 , R 2 , R 3 Represents the same or different hydroxyl-protecting groups. 1)-(2,6-dioxybenzyl) -5,5,8a-trimethyl-6-oxy-octahydronaphthalen-2-one derivative represented by the following general formula (4)
[0017]
Embedded image
Figure 2004035497
[0018]
(Where R 1 Represents a hydroxyl-protecting group. 5,5,8a-trimethyl-1-methylene-6-oxy-octahydronaphthalen-2-one derivative represented by the following general formula (5)
[0019]
Embedded image
Figure 2004035497
[0020]
(Where R 2 And R 3 Represents the same or different hydroxyl-protecting groups. A) reacting a 2-bromoresorcinol derivative represented by the general formula (3a):
[0021]
Embedded image
Figure 2004035497
[0022]
(Where R 1 , R 2 , R 3 Represents the same or different hydroxyl-protecting groups. The present invention provides a method for producing a 1- (2,6-dioxybenzyl) -5,5,8a-trimethyl-6-oxy-octahydronaphthalen-2-one derivative represented by the following formula:
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the term "protecting group for hydroxyl group" includes a formyl group; an acyl group such as an acetyl group, a benzoyl group and a pivaloyl group; a benzyl group, a p-methoxybenzyl group, a triphenylmethyl group, a methoxymethyl group, and a benzyloxymethyl group. And substituted alkyl groups such as tetrahydropyranyl group and 1-ethoxyethyl group; silyl groups such as trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group and triphenylsilyl group Groups. The introduction and deprotection of these hydroxyl-protecting groups can be carried out by appropriately employing the methods described in the literature (Protective Groups in Organic Synthesis, 3rd Ed., Wiley Interscience Publication, John-Wiley & Nations, NY & Wiley & Nancy). , Pp 23-200).
[0024]
4,4,6a, 12b-Tetramethyl-1,3,4,4a, 5,6,6a, 12,12a, 12b-Decahydro-3,11-dioxy-2H represented by the general formula (1) The -benzo [a] xanthene derivative can be produced, for example, by the following synthesis steps (first to ninth steps). The compound of the present invention has a plurality of asymmetric carbon atoms and may have optical isomers, and these optical isomers and mixtures thereof are also included in the present invention.
[0025]
Embedded image
Figure 2004035497
[0026]
Embedded image
Figure 2004035497
[0027]
Embedded image
Figure 2004035497
[0028]
(Where R 1 , R 2 , R 3 Represents the same or different hydroxyl-protecting groups. )
[0029]
(First step)
In this step, one of the two hydroxyl groups of 2-bromoresorcinol represented by the formula (9) is protected to produce a 2-bromophenol derivative represented by the general formula (10). .
[0030]
The 2-bromoresorcinol represented by the formula (9), which is a raw material of this step, is a compound that can be produced by a known method (Can. J. Chem., 1989, 67, 335-344). Further, the protection of the hydroxyl group in this step can be carried out according to a known method (Protective Groups Organic Synthesis, 3rd Ed., Wiley Interscience Publication, John-Wiley & Sons, Canada, New York, 1992).
[0031]
(Second step)
In this step, the hydroxyl group of the 2-bromophenol derivative represented by the general formula (10) is protected to produce a 2-bromobenzene derivative represented by the general formula (5).
[0032]
The protection of the hydroxyl group in this step can be carried out according to a known method (Protective Groups in Organic Synthesis, 3rd Ed., Wiley Interscience Publication, John-Wiley & Sons, New York, New York, New York, New York).
[0033]
(Third step)
In this step, a Grignard reagent is prepared from the 2-bromobenzene derivative represented by the general formula (5), and the 5,5,8a-trimethyl-1-methylene-6- represented by the general formula (4) is prepared. A coupling reaction is carried out with the oxy-octahydronaphthalen-2-one derivative, and the 1-substituted benzyl-5,5,8a-trimethyl-6-oxy-octahydronaphthalen-2- represented by the general formula (3) is obtained. It is for producing an on derivative.
[0034]
The 5,5,8a-trimethyl-1-methylene-6-oxy-octahydronaphthalen-2-one derivative represented by the general formula (4), which is a raw material of this step, can be obtained by a known method (Tetrahedron Lett., 1997, 38, 2081-2084). The Grignard reagent can be prepared by reacting metallic magnesium in an ether solvent such as diethyl ether or tetrahydrofuran. The coupling reaction is preferably performed in a solvent, for example, ether solvents such as diethyl ether, diisopropyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane; pentane, hexane, cyclohexane, heptane A hydrocarbon solvent such as benzene, toluene or the like is used, and two or more of the above solvents may be mixed. The reaction can be carried out between -78 ° C and the solvent reflux temperature.
[0035]
(Fourth step)
In this step, methyltriphenyl is added to the 2-position carbonyl group of the 1-substituted benzyl-5,5,8a-trimethyl-6-oxy-octahydronaphthalen-2-one derivative represented by the general formula (3). Olefinization is carried out by reacting an ylide prepared from a phosphonium salt and a base to give a 5-substituted benzyl-1,1,4a-trimethyl-6-methylene-2-oxy-decahydronaphthalene represented by the general formula (2). It is for producing derivatives.
[0036]
Examples of the phosphonium salt used in this step include, for example, methyltriphenylphosphonium iodide, methyltriphenylphosphonium bromide, and methyltriphenylphosphonium chloride.As the base to be used, for example, sodium methoxide, sodium ethoxide, sodium ethoxide Alkali metal alkoxides such as -t-butoxide, potassium methoxide, potassium ethoxide, potassium-t-butoxide, n-butyllithium, s-butyllithium, t-butyllithium, lithium diisopropylamide, lithium bis (trimethylsilyl) amide And alkali metal organic bases such as sodium bis (trimethylsilyl) amide and potassium bis (trimethylsilyl) amide. The reaction is desirably performed in a solvent, for example, ether solvents such as diethyl ether, diisopropyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane; dichloromethane, 1,2-dichloroethane, chloroform and the like. Halogenated hydrocarbon solvents; hydrocarbon solvents such as pentane, hexane, cyclohexane, benzene, and toluene; aprotic solvents such as ethyl acetate, acetonitrile, propionitrile, acetone, nitromethane, N, N-dimethylformamide, and dimethyl sulfoxide A polar solvent is used, and two or more of the above solvents may be mixed. The reaction can be carried out between -78 ° C and the solvent reflux temperature.
[0037]
(Fifth step)
This step comprises two steps on the 5-substituted benzyl group of the 5-substituted benzyl-1,1,4a-trimethyl-6-methylene-2-oxy-decahydronaphthalene derivative represented by the general formula (2). Only one of the hydroxyl-protecting groups is deprotected to give a 5-substituted benzyl-1,1,4a-trimethyl-6-methylene-2-oxy-decahydronaphthalene derivative represented by the general formula (2a). Is to manufacture.
[0038]
The deprotection of the hydroxyl group in this step can be performed according to a known method (Protective Groups in Organic Synthesis, 3rd Ed., Wiley Interscience Publication,
John-Wiley & Sons, New York, 1999, pp 23-200).
[0039]
(Sixth process)
In this step, the 5-substituted benzyl-1,1,4a-trimethyl-6-methylene-2-oxy-decahydronaphthalene derivative represented by the general formula (2a) is subjected to intramolecular ether cyclization, and 4,4,6a, 12b-Tetramethyl-1,3,4,4a, 5,6,6a, 12,12a, 12b-Decahydro-3,11-dioxy-2H-benzo [a represented by 1) ] To produce a xanthene derivative.
[0040]
The reaction is performed, for example, with hydrochloric acid, hydrobromic acid, hydrofluoric acid, p-toluenesulfonic acid, methanesulfonic acid, camphorsulfonic acid, sulfuric acid, perchloric acid, formic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid and the like. In the presence of a protonic acid, or zinc chloride, zinc bromide, zinc iodide, boron trifluoride-diethyl ether complex, rhodium chloride, aluminum chloride, aluminum methyl dichloride, aluminum methyl dichloride, aluminum ethyl dichloride, aluminum diethyl chloride, etc. Can be carried out in the presence of a Lewis acid. This reaction may be carried out by a haloether cyclization reaction using a halogenating reagent such as bromine or iodine and a subsequent dehalogenation reaction, or a selenoether cyclization reaction using N- (phenylseleno) phthalimide and a subsequent deselenolysis reaction. It can also be carried out using a chemical reaction or the like. Any solvent can be used as long as it does not participate in the reaction. Examples thereof include ether solvents such as diethyl ether, diisopropyl ether, tetrahydrofuran, 1,2-dimethoxyethane, and 1,4-dioxane; Halogenated hydrocarbon solvents such as 2-dichloroethane and chloroform; hydrocarbon solvents such as pentane, hexane, cyclohexane, benzene and toluene; ethyl acetate, acetonitrile, propionitrile, acetone, nitromethane, N, N-dimethylformamide, An aprotic polar solvent such as dimethyl sulfoxide is used, and two or more of the above solvents may be mixed. The reaction can be carried out between -78 ° C and the solvent reflux temperature.
[0041]
(Seventh process)
In this step, 4,4,6a, 12b-tetramethyl-1,3,4,4a, 5,6,6a, 12,12a, 12b-decahydro-3,11 represented by the general formula (1) is used. The two hydroxyl-protecting groups of the -dioxy-2H-benzo [a] xanthene derivative are simultaneously deprotected, and 4,4,6a, 12b-tetramethyl-1,3,4 represented by the above formula (1a) is obtained. 4a, 5,6,6a, 12,12a, 12b-Decahydro-2H-benzo [a] xanthen-3,11-diol.
[0042]
The deprotection of the hydroxyl group in this step can be carried out according to a known method (TW Greene, PGM Wuts, Protective Groups in Organic Synthesis, 3rd Ed., Wiley Interaction & Publishing, Wiley International Press & Public Relations, Wisconsin &amp; Sons, New York, 1999, pp 23-200).
[0043]
(Eighth process)
In this step, 4,4,6a, 12b-tetramethyl-1,3,4,4a, 5,6,6a, 12,12a, 12b-decahydro-2H-benzo [represented by the formula (1a) is used. a] The two hydroxyl groups of xanthene-3,11-diol are simultaneously protected and 4,4,6a, 12b-tetramethyl-1,3,4,4a, 5 represented by the general formula (1b) , 6,6a, 12,12a, 12b-Decahydro-3,11-dioxy-2H-benzo [a] xanthene derivative.
[0044]
The protection of the hydroxyl group in this step can be carried out according to a known method (Protective Groups in Organic Synthesis, 3rd Ed., Wiley Interscience Publication, John-Wiley & Sons, New York, New York, New York, 1992).
[0045]
(Ninth step)
In this step, 4,4,6a, 12b-tetramethyl-1,3,4,4a, 5,6,6a, 12,12a, 12b-decahydro-3,11 represented by the general formula (1b) is used. -Dioxy-2H-benzo [a] xanthene derivative is selectively deprotected from a protecting group of a phenolic hydroxyl group, and 4,4,6a, 12b-tetramethyl-1,3 represented by the general formula (1c). , 4,4a, 5,6,6a, 12,12a, 12b-Decahydro-3-oxy-2H-benzo [a] xanthen-11-ol derivative.
[0046]
The deprotection of the hydroxyl-protecting group in this step can be carried out according to a known method (Protective Groups in Organic Synthesis, 3rd Ed., Wiley Interscience Publication, John-Wiley & Sons, Canada, Canada, 1992). ).
[0047]
Hereinafter, the present invention will be described in detail with reference to Examples and Reference Examples, but it goes without saying that the present invention is not limited to these.
[0048]
【Example】
[0049]
Example 1
[0050]
Embedded image
Figure 2004035497
[0051]
Under an argon atmosphere, ethylene dibromide (79.0 μl, 0.91 mmol) was added to a suspension of magnesium (powder) (132 mg, 5.43 mmol) in dehydrated diethyl ether (1.00 ml) to cause foaming. A solution of 2-benzyloxymethoxy-6-methoxymethoxybromobenzene (1.28 g, 3.62 mmol) in dehydrated diethyl ether (5.00 ml) was added, and the mixture was heated gently. After the reaction started, the mixture was stirred at room temperature for 1 hour. Then, it cooled to 0 degreeC, (4a R , 6 S , 8a S ) -6β- ( tert -Butyldimethylsiloxy) -5,5,8aβ-trimethyl-1-methylene-3,4,4aα-5,6,7,8,8a-octahydronaphthalen-2-one (203 mg, 0.60 mmol) A diethyl ether solution (4.00 ml) was added, and the mixture was stirred at the same temperature for 5 hours. To the reaction mixture was added a saturated aqueous ammonium chloride solution (4.00 ml), and the organic matter was extracted twice with ethyl acetate (20.0 ml). The organic layer was washed with a 2% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution and a saturated saline solution. , And dried over anhydrous sodium sulfate. After the anhydrous sodium sulfate was filtered and the solvent was distilled off under reduced pressure, the residue was separated and purified by column chromatography (hexane: ethyl acetate = 50: 1). R , 6 S , 8 R , 8a S ) -1β- (2-benzyloxymethoxy-6-methoxymethoxymethyl-benzyl) -6β- ( tert -Butyldimethylsiloxy) -5,5,8aβ-trimethyl-3,4,4aα, 5,6,7,8,8a-octahydronaphthalen-2-one (349 mg, 95%) as a colorless oil. .
1 H-NMR (250 MHz, CDCl 3 ): Δ 0.02 (6H, s), 0.79 (3H, s), 0.87-0.90 (1H, m), 0.88 (12H, s), 0.96 (3H, s) ), 1.18-1.30 (2H, m), 1.40-1.53 (2H, m), 1.60-1.87 (2H, m), 1.88-1.98 (1H , M), 2.15-2.32 (1H, m), 2.32-2.45 (1H, m), 2.58-2.73 (2H, m), 3.13-3.38 (2H, m), 3.49 (3H, s), 4.70 (2H, s), 5.17 (2H, s), 5.28 (2H, s), 6.75 (1H, d) , 6.82 (1H, d), 7.05 (1H, dd), 7.26-7.36 (5H, m).
[0052]
Example 2
[0053]
Embedded image
Figure 2004035497
[0054]
Under argon atmosphere, tert- Methyltriphenylphosphonium bromide (1.04 g, 2.86 mmol) was added to a dehydrated benzene solution (5.00 ml) of potassium butoxy (330 mg, 2.86 mmol), and the mixture was heated under reflux for 3 hours. Then, (4a R , 6 S , 8 R , 8a S ) -1β- (2-benzyloxymethoxy-6-methoxymethoxymethyl-benzyl) -6β- ( tert -Butyldimethylsiloxy) -5,5,8aβ-trimethyl-3,4,4aα, 5,6,7,8,8a-octahydronaphthalen-2-one (349 mg, 0.571 mmol) in dehydrated benzene solution (5 .00 ml), and the mixture was further heated under reflux for 13 hours. Thereafter, the mixture was cooled to room temperature, and water (5.00 ml) was added to the reaction mixture. The reaction mixture was extracted four times with diethyl ether (20.0 ml), and the organic layer was washed with saturated saline and dried over anhydrous sodium sulfate. After the anhydrous sodium sulfate was filtered and the solvent was distilled off under reduced pressure, the residue was separated and purified by column chromatography (hexane: ethyl acetate = 50: 1). R , 6 S , 8 R , 8a S ) -1β- (2-benzyloxymethoxy-6-methoxymethoxymethyl-benzyl) -6β- ( tert -Butyldimethylsiloxy) -5,5,8aβ-trimethyl-2-methylene-3,4,4aα, 5,6,7,8,8a-octahydronaphthalene (338 mg, 97%) as a colorless oil. .
1 H-NMR (250 MHz, CDCl 3 ): Δ 0.04 (6H, s), 0.76 (3H, s), 0.85 (3H, s), 0.89 (9H, s), 0.90 (3H, s), 0. 80-0.90 (1H, m), 1.09 (1H, dd), 1.30-1.40 (1H, m), 1.40-1.48 (1H, m), 1.57- 1.77 (2H, m), 1.80-1.98 (2H, m), 2.24-2.38 (1H, m), 2.50-2.59 (1H, m), 2. 78 (1H, dd), 2.92 (1H, dd), 3.20 (1H, dd), 3.50 (3H, s), 4.70 (1H, s), 4.73 (2H, s) ), 4.99 (1H, s), 5.18 (2H, s), 5.30 (2H, s), 6.75 (1H, d), 6.82 (1H, d), 7.05. (1H, dd , 7.26-7.38 (5H, m).
[0055]
Example 3
[0056]
Embedded image
Figure 2004035497
[0057]
Under an argon atmosphere, a liquid ammonia solution (20.0 ml) of lithium metal (116 mg, 16.7 mmol) was refluxed at room temperature to obtain (4a R , 6 S , 8 R , 8a S ) -1β- (2-benzyloxymethoxy-6-methoxymethoxymethyl-benzyl) -6β- ( tert -Butyldimethylsiloxy) -5,5,8aβ-trimethyl-2-methylene-3,4,4aα, 5,6,7,8,8a-octahydronaphthalene (338 mg, 0.56 mmol) in dehydrated tetrahydrofuran (THF) The solution (7.00 ml) was added and refluxed for 1 hour. A saturated aqueous ammonium chloride solution (5.00 ml) was slowly added to the reaction mixture, and the mixture was brought to room temperature to evaporate liquid ammonia. The reaction mixture was extracted three times with ethyl acetate (20.0 ml), and the organic layer was washed with saturated saline and dried over anhydrous sodium sulfate. After the anhydrous sodium sulfate was filtered and the solvent was distilled off under reduced pressure, the residue was separated and purified by column chromatography (hexane: ethyl acetate = 20: 1). S , 4a R , 6 S , 8a R ) -2- [6β- tert -Butyldimethylsiloxy-5,5,8aβ-trimethyl-2-methylene-1,2,3,4,4a, 5,6,7,8,8a-decahydronaphthalen-1β-ylmethyl] -3-methoxymethoxy Phenol (258 mg, 95%) was obtained as a colorless oil.
1 H-NMR (250 MHz, CDCl 3 ): Δ 0.03 (3H, s), 0.04 (3H, s), 0.76 (3H, s), 0.82 (3H, s), 0.88 (9H, s), 0. 89 (3H, s), 1.11 (1H, dd, J = 2.7, 12.5 Hz), 1.22-1.33 (1H, m), 1.35-1.46 (1H, m ), 1.50-1.56 (1H, m), 1.58-1.68 (1H, m), 1.70-1.79 (1H, m), 1.88-2.01 (2H , M), 2.30-2.41 (2H, m), 2.76 (1H, dd, J = 8.1, 14.6 Hz), 2.86 (1H, dd, J = 3.7, 14.6 Hz), 3.20 (1H, dd, J = 4.5, 11.4 Hz), 3.50 (3H, s), 4.82 (1H, d, J = 1.1 Hz), 4. 89 (1 , S), 5.04 (1H, d, J = 1.1 Hz), 5.17 (1H, d, J = 6.6 Hz), 5.20 (1H, d, J = 6.6 Hz), 6 .43 (1H, dd, J = 0.8, 8.2 Hz), 6.66 (1H, dd, J = 0.8, 8.2 Hz), 6.98 (1H, dd, J = 8.2) , 8.2 Hz).
FT-IR (neat, cm -1 ): 3420, 2936, 2855, 1719, 1647, 1595, 1466, 1385, 1254, 1194, 1154, 1094, 1044, 941, 887, 835, 774, 731 and 664. EI-MS (m / z): 488 (57, M + ), 431 (18), 45 (100).
[0058]
Example 4
[0059]
Embedded image
Figure 2004035497
[0060]
Under an argon atmosphere, (1 S , 4a R , 6 S , 8a R ) -2- [6β- tert -Butyldimethylsiloxy-5,5,8aβ-trimethyl-2-methylene-1,2,3,4,4a, 5,6,7,8,8a-decahydronaphthalen-1β-ylmethyl] -3-methoxymethoxy A solution of phenol (11.4 mg, 23 μmol) in dehydrated methylene chloride (0.80 ml) was cooled to −78 ° C. N -(Phenylseleno) phthalimide (8.60 mg, 28 μmol) in dehydrated methylene chloride (1.0 ml) and tin tetrachloride (1.0 Min CH 2 2 Cl 2 , 25 μl, 25 μmol) and reacted at the same temperature for 1 hour. Thereafter, the solvent was distilled off under reduced pressure, and the residue was separated and purified by column chromatography (hexane: ethyl acetate = 20: 1). S , 4a R , 6a S , 12a R , 12b S ) -3β- tert -Butyldimethylsiloxy-11-methoxymethoxy-4,4,12bβ-trimethyl-6aα-phenylselenylmethyl-1,3,4,4aα, 5,6,6a, 12,12aα, 12b-decahydro-2 H -Benzo [ a Xanthen (11.9 mg, 79%) was obtained as a yellow oil.
1 H-NMR (500 MHz, CDCl 3 ): Δ 0.04 (3H, s), 0.05 (3H, s), 0.69 (3H, s), 0.74 (3H, s), 0.88 (9H, s), 0. 89-0.92 (1H, m), 0.94 (3H, s), 1.01-1.12 (1H, m), 1.45-1.53 (1H, m), 1.55- 1.61 (2H, m), 1.61-1.75 (2H, m), 1.75-1.88
(2H, m), 2.15 to 2.24 (1H, m), 2.44 (1H, dd, J = 8.4, 18.7 Hz), 2.73 (1H, d, J = 18. 7 Hz), 3.09 (2H, m), 3.23 (1H, dd, J = 4.7, 11.3 Hz), 3.45 (3H, s), 5.17 (2H, d, J = 1.6 Hz), 6.43 (1H, dd, J = 0.8, 8.2 Hz), 6.56 (1H, dd, J = 0.8,
8.2 Hz), 6.98 (1H, dd, J = 8.2, 8.2 Hz), 7.14-7.23 (3H, m), 7.40-7.47 (2H, m). EI-MS (m / z): 643 (5, M + ), 488 (2), 473 (100), 45 (42).
(3) obtained above S , 4a R , 6a S , 12a R , 12b S ) -3β- tert -Butyldimethylsiloxy-11-methoxymethoxy-4,4,12bβ-trimethyl-6aα-phenylselenylmethyl-1,3,4,4aα, 5,6,6a, 12,12aα, 12b-decahydro-2 H -Benzo [ a Hydrogenation of xanthene (79.1 mg, 0.12 mmol) in dehydrated toluene solution (3.00 ml) under an argon atmosphere n -Tributyltin (68.0 μl, 0.25 mmol) and 2,2′-azobisisobutyronitrile (AIBN) (1.00 mg, 6.0 μmol) were added. The reaction mixture was frozen with liquid nitrogen and degassed by reducing the pressure. Thereafter, the temperature was raised to room temperature to defrost the solvent, and the mixture was heated under reflux for 6 hours. Return the reaction vessel to room temperature and hydrogenate again. n -Tributyltin (34.0 μl, 23 μmol) and 2,2′-azobisisobutyronitrile (AIBN) (1.00 mg, 6.0 μmol) were added, and the mixture was heated under reflux for 1 hour. After the reaction mixture was cooled to room temperature, the solvent was distilled off under reduced pressure, and the residue was separated and purified by column chromatography (hexane: ethyl acetate = 50: 1 → 20: 1). S , 4a R , 6a S , 12a R , 12b S ) -3β- tert -Butyldimethylsiloxy-11-methoxymethoxy-4,4,6aα, 12bβ-tetramethyl-1,3,4,4aα, 5,6,6a, 12,12aα, 12b-decahydro-2 H -Benzo [ a ] Xanthene (47.0 mg, 78%) was obtained as a colorless oil.
1 H-NMR (500 MHz, CDCl 3 ): Δ 0.04 (6H, s), 0.69 (3H, s), 0.74 (3H, s), 0.84-0.91 (1H, m), 0.88 (9H, s) ), 0.93 (3H, s), 0.97-1.10 (1H, m), 1.16 (3H, s), 1.32 (1H, d, J = 8.2 Hz), 45-1.63 (4H, m), 1.64-1.74 (1H, m), 1.80-1.89 (1H, m), 2.11-2.21 (1H, m), 2.63 (1H, dd, J = 8.2, 18.5 Hz), 2.80 (1H, d, J = 18.5 Hz), 3.20 (1H, dd, J = 4.6, 11). 4 Hz), 3.49 (3H, s), 5.20 (2H, s), 6.44 (1H, d, J = 8.2 Hz), 6.56 (1H, d, J = 8.2 Hz) , 6.9 (1H, dd, J = 8.2, 8.2Hz). EI-MS (m / z): 488 (100, M + ), 473 (5), 431 (35), 45 (67).
[0061]
Example 5
[0062]
Embedded image
Figure 2004035497
[0063]
(3 S , 4a R , 6a S , 12a R , 12b S ) -3β- tert -Butyldimethylsiloxy-11-methoxymethoxy-4,4,6aα, 12bβ-tetramethyl-1,3,4,4aα, 5,6,6a, 12,12aα, 12b-decahydro-2 H -Benzo [ a ] To a methanol (4.00 ml) of xanthene (106 mg, 0.22 mmol) was added a 6 M aqueous hydrochloric acid solution (0.36 ml), and the mixture was reacted at 50 ° C for 3 hours. A saturated saline solution (3.00 ml) was added to the reaction mixture, and the mixture was extracted three times with ethyl acetate (10.0 ml), and the organic layer was dried over anhydrous sodium sulfate. After the anhydrous sodium sulfate was filtered and the solvent was distilled off under reduced pressure, the residue was separated and purified by column chromatography (hexane: ethyl acetate = 4: 1). S , 4a R , 6a S , 12a R , 12b S ) -4,4,6aα, 12bβ-Tetramethyl-1,3,4,4aα, 5,6,6a, 12,12aα, 12b-decahydro-2 H -Benzo [ a Xanthen-3β, 11-diol (60.6 mg, 85%) was obtained as a white solid.
1 H-NMR (500 MHz, CDCl 3 ): Δ 0.71 (3H, s), 0.79 (3H, s), 0.89-0.95 (1H, m), 1.03 (3H, s), 1.04-1.12 (1H, m), 1.17 (3H, s), 1.37 (1H, d, J = 7.8 Hz), 1.55-1.62 (3H, m), 1.62-1.75 (2H, m), 1.92 (1H, ddd, J = 3.6, 3.6, 13.0 Hz), 2.14-2.21 (1H, m), 2.17 (1H, s) 3.65 (1H, dd, J = 7.7, 17.8 Hz), 2.73 (1H, d, J = 17.8 Hz), 3.21-3.27 (1H, m), 63 (1H, s), 6.30 (1H, dd, J = 1.0, 8.1 Hz), 6.37 (1H, dd, J = 1.0, 8.1 Hz), 6.92 (1H) , Dd J = 8.1, 8.1Hz).
13 C-NMR (125 MHz, CDCl 3 ): Δ 14.0, 14.1, 15.6, 17.4, 17.9, 26.9, 27.0, 28.5, 38.1, 38.2, 38.8, 40.6 , 48.8, 54.3, 75.0, 79.1, 106.2, 109.5, 126.5, 153.5, 155.8.
FT-IR (KBr, cm -1 ): 3439, 2928, 1616, 1593, 1466, 1370, 1273, 1169, 1134, 1026, 903, 775.
[0064]
Example 6
[0065]
Embedded image
Figure 2004035497
[0066]
Under an argon atmosphere, (3 S , 4a R , 6a S , 12a R , 12b S ) -4,4,6aα, 12bβ-Tetramethyl-1,3,4,4aα, 5,6,6a, 12,12aα, 12b-decahydro-2 H -Benzo [ a Xanthene-3β, 11-diol (60.4 mg, 0.18 mmol) in acetic anhydride (0.17 ml, 1.83 mmol), pyridine (1.00 ml) and 4-dimethylaminopyridine (11.0 mg, 0.092 mmol) ) Was added and reacted at room temperature for 18 hours. The reaction mixture was diluted with ethyl acetate (15.0 ml), and the organic layer was washed successively with a 2% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution and a saturated saline solution, and dried over anhydrous sodium sulfate. After the anhydrous sodium sulfate was filtered and the solvent was distilled off under reduced pressure, the residue was separated and purified by column chromatography (hexane: ethyl acetate = 10: 1). S , 4a R , 6a S , 12a R , 12b S ) -3β, 11-Bisacetoxy-4,4,6aα, 12bβ-tetramethyl-1,3,4,4aα, 5,6,6a, 12,12aα, 12b-decahydro-2 H -Benzo [ a Xanthen (61.9 mg, 81%) was obtained as a white solid.
1 H-NMR (500 MHz, CDCl 3 ): Δ 0.72 (3H, s), 0.85 (3H, s), 0.90 (3H, s), 0.96-1.01 (1H, m), 1.07-1.15 (1H, m), 1.17 (3H, s), 1.33 (1H, d, J = 7.8 Hz), 1.54-1.63 (2H, m), 1.63-1.77 (3H, m), 1.83 (1H, ddd, J = 3.6, 3.6, 13.1 Hz), 2.05 (3H, s), 2.14-2.21 (1H, m) , 2.32 (3H, s), 2.56 (1H, d, J = 18.1 Hz), 2.63 (1H, dd, J = 7.8, 18.1 Hz), 4.49 (1H, dd, J = 4.8, 11.6 Hz), 6.56 (1H, dd, J = 1.0, 8.1 Hz), 6.65 (1H, dd, J = 1.0, 8.1 Hz) , 7 07 (1H, dd, J = 8.1, 8.1Hz).
13 C-NMR (125 MHz, CDCl 3 ): Δ 14.1, 16.8, 17.7, 17.8, 20.8, 21.3, 23.4, 26.8, 28.4, 37.7, 37.8, 37.9 , 40.4, 48.6, 54.4, 75.3, 80.7, 113.1, 114.8, 115.7, 126.7, 148.9, 155.7, 169.1, 171 0.0.
FT-IR (KBr, cm -1 ): 2971, 2932, 2886, 1753, 1723, 1615, 1584, 1466, 1372, 1318, 1252, 1209, 1165, 1136, 1086, 1030, 1009, 974, 916, 893, 876, 849, 804, 785. 725, 706, 658, 598, 557, 527.
[0067]
Example 7
[0068]
Embedded image
Figure 2004035497
[0069]
Under an argon atmosphere, (3 S , 4a R , 6a S , 12a R , 12b S ) -3β, 11-Bisacetoxy-4,4,6aα, 12bβ-tetramethyl-1,3,4,4aα, 5,6,6a, 12,12aα, 12b-decahydro-2 H -Benzo [ a ] Xanthene (61.9 mg, 0.149 mol) in tetrahydrofuran: tert- To a mixed solution (3.00 ml) of butyl alcohol (5: 1) tert- Butoxy potassium (51.7 mg, 0.48 mmol) was added and reacted at room temperature for 20 minutes. A saturated aqueous ammonium chloride solution (4.00 ml) was added to the reaction mixture, which was then extracted twice with ethyl acetate (15.0 ml). The organic layer was washed with a 2% aqueous hydrochloric acid solution and dried over anhydrous sodium sulfate. After the anhydrous sodium sulfate was filtered and the solvent was distilled off under reduced pressure, the residue was separated and purified by column chromatography (hexane: ethyl acetate = 10: 1 → 2: 1) to obtain (3S, 4aR, 6aS, 12aR, 12bS). ) -3β-acetoxy-11-hydroxy-4,4,6aα, 12bβ-tetramethyl-1,3,4,4aα, 5,6,6a, 12,12aα, 12b-decahydro-2 H -Benzo [ a ] Xanthene (34.5 mg, 62%) was obtained as a white solid.
1 H-NMR (500 MHz, CDCl 3 ): Δ 0.74 (3H, s), 0.86 (3H, s), 0.90 (3H, s), 0.97-1.03 (1H, m), 1.09-1.21 (1H, m), 1.18 (3H, s), 1.38 (1H, d, J = 7.5 Hz), 1.49-1.77 (5H, m), 1.91 (1H, ddd) , J = 3.5, 3.5, 13.2 Hz), 2.05 (3H, s), 2.12-2.21 (1H, m), 2.66 (1H, dd, J = 7. 5, 17.9 Hz), 2.72 (1H, d, J = 17.9 Hz), 4.50 (1H, dd, J = 4.7, 11.7 Hz), 4.77 (1H, s), 6.30 (1H, dd, J = 0.8, 8.0 Hz), 6.37 (1H, d, J = 8.0 Hz), 6.92 (1H, dd, J = 8.0, 8. 0Hz ).
13 C-NMR (125 MHz, CDCl 3 ): Δ 14.2, 16.8, 17.4, 17.8, 21.3, 23.4, 26.8, 28.4, 37.7, 37.8, 38.0, 40.5 , 48.7, 54.4, 75.0, 81.1, 106.2, 109.5, 109.8, 126.6, 153.5, 155.8, 171.4.
FT-IR (KBr, cm -1 ): 3447, 2946, 2361, 1699, 1616, 1595, 1468, 1377, 1277, 1169, 1136, 1084, 1030, 972, 905, 777, 561.
EI-MS (m / z): 372 (100, M + ), 312 (6), 297 (13), 43 (58).
[0070]
[Reference example]
[0071]
Reference Example 1
[0072]
Embedded image
Figure 2004035497
[0073]
Under an argon atmosphere, diisopropylethylamine (0.37 ml, 2.12 mmol) and chloromethyl methyl ether (0.16 ml, 2-bromoresorcinol (400 mg, 2.12 mmol) in dehydrated methylene chloride solution (7.00 ml) were added. 2.12 mmol) and reacted at room temperature for 1 hour. Thereafter, a 2% aqueous hydrochloric acid solution was added to the reaction mixture to make it weakly acidic. Then, the reaction mixture was extracted twice with ethyl acetate (30.0 ml), and the organic layer was washed with saturated saline and dried over anhydrous sodium sulfate. After the anhydrous sodium sulfate was filtered and the solvent was distilled off under reduced pressure, the residue was separated and purified by column chromatography (hexane: ethyl acetate = 10: 1) to give 2-bromo-3-methoxymethoxyphenol (215 mg, 44%). ) Was obtained as a white solid.
1 H-NMR (500 MHz, CDCl 3 ): Δ 3.52 (3H, s), 5.25 (2H, s), 5.62 (1H, s), 6.69-6.74 (2H, m), 7.15 (1H, dd) , J = 8.3, 8.3 Hz).
FT-IR (KBr, cm -1 ): 3426, 2932, 1593, 1466, 1385, 1321, 1260, 1190, 1154, 1088, 1034, 926, 772, 581.
EI-MS (m / z): 234 (57, M + +1), 233 (5, M +), 232 (57), 45 (100).
[0074]
Reference Example 2
[0075]
Embedded image
Figure 2004035497
[0076]
Under an argon atmosphere, diisopropylethylamine (0.27 ml, 1.57 mmol) and benzylchloromethyl ether (0.27 ml, 1.57 mmol) were added to a solution of 2-bromo-3-methoxymethoxyphenol (215 mg, 0.92 mmol) in dehydrated methylene chloride (4.0 ml). (0.21 ml, 1.38 mmol) and reacted at room temperature for 1 hour. Then, a saturated aqueous ammonium chloride solution (4.0 ml) was added to the reaction mixture, and the organic matter was extracted twice with ethyl acetate (30.0 ml). The organic layer was extracted with a 2% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution and saturated saline. Washed and dried over anhydrous sodium sulfate. After the anhydrous sodium sulfate was filtered and the solvent was distilled off under reduced pressure, the residue was separated and purified by column chromatography (hexane: ethyl acetate = 10: 1) to give 2-benzyloxymethoxy-6-methoxymethoxybromobenzene (283 mg). , 87%) as a white solid.
1 H-NMR (500 MHz, CDCl 3 ): Δ 3.53 (3H, s), 4.77 (2H, s), 5.26 (2H, s), 5.37 (2H, s), 6.85 (1H, dd, J = 1) .2, 8.3 Hz), 6.91 (1H, dd, J = 1.2, 8.3 Hz), 7.19 (1H, dd, J = 8.3, 8.3 Hz), 7.33- 7.40 (5H, m).
FT-IR (KBr, cm -1 ): 2905, 1721, 1593, 1466, 1385, 1246, 1206, 1155, 1086, 1042, 891, 772, 739, 698, 606.
EI-MS (m / z): 354 (1, M + +1), 352 (1), 322 (10), 91 (100), 45 (23).

Claims (4)

一般式(1)
Figure 2004035497
(式中、RおよびRは同一または異なって水素原子、または水酸基の保護基を表す。)で示されるデカヒドロ−3,11−ジオキシ−2H−ベンゾ[a]キサンテン−3,11−ジオール誘導体。
General formula (1)
Figure 2004035497
(Wherein, R 1 and R 2 are the same or different and each represent a hydrogen atom or a hydroxyl-protecting group.) Decahydro-3,11-dioxy-2H-benzo [a] xanthen-3,11-diol Derivatives.
一般式(2)
Figure 2004035497
(式中、R、R、Rは同一または異なって水素原子、または水酸基の保護基を表す。)で示される5−(2,6−ジオキシベンジル)−1,1,4a−トリメチル−6−メチレン−2−オキシ−デカヒドロナフタレン誘導体。
General formula (2)
Figure 2004035497
(Wherein R 1 , R 2 and R 3 are the same or different and each represent a hydrogen atom or a hydroxyl-protecting group). 5- (2,6-dioxybenzyl) -1,1,4a- Trimethyl-6-methylene-2-oxy-decahydronaphthalene derivative.
一般式(3)
Figure 2004035497
(式中、R、R、Rは同一または異なって水酸基の保護基を表す。)で示される1−(2,6−ジオキシベンジル)−5,5,8a−トリメチル−6−オキシ−オクタヒドロナフタレン−2−オン誘導体。
General formula (3)
Figure 2004035497
(Wherein R 1 , R 2 , and R 3 are the same or different and each represents a hydroxyl-protecting group.) 1- (2,6-dioxybenzyl) -5,5,8a-trimethyl-6- Oxy-octahydronaphthalen-2-one derivatives.
一般式(4)
Figure 2004035497
(式中、Rは水酸基の保護基を表す。)で示される5,5,8a−トリメチル−1−メチレン−6−オキシ−オクタヒドロナフタレン−2−オン誘導体と、一般式(5)
Figure 2004035497
(式中、RおよびRは同一または異なって水酸基の保護基を表す。)で示される2−ブロモレゾルシノール誘導体を反応させることを特徴とする、一般式(3a)
Figure 2004035497
(式中、R、R、Rは同一または異なって水酸基の保護基を表す。)で示される1−(2,6−ジオキシベンジル)−5,5,8a−トリメチル−6−オキシ−オクタヒドロナフタレン−2−オン誘導体の製造方法。
General formula (4)
Figure 2004035497
(Wherein, R 1 represents a protecting group for a hydroxyl group) represented by the following general formula (5): 5,5,8a-trimethyl-1-methylene-6-oxy-octahydronaphthalen-2-one derivative
Figure 2004035497
(Wherein, R 2 and R 3 are the same or different and each represents a hydroxyl-protecting group.) A general formula (3a) characterized by reacting a 2-bromoresorcinol derivative represented by the formula:
Figure 2004035497
(Wherein R 1 , R 2 , and R 3 are the same or different and each represents a hydroxyl-protecting group.) 1- (2,6-dioxybenzyl) -5,5,8a-trimethyl-6- A method for producing an oxy-octahydronaphthalen-2-one derivative.
JP2002196384A 2002-07-04 2002-07-04 DECAHYDRO-2H-BENZO[a]XANTHENE-3,11-DIOL DERIVATIVE AND PRODUCTION INTERMEDIATE Pending JP2004035497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196384A JP2004035497A (en) 2002-07-04 2002-07-04 DECAHYDRO-2H-BENZO[a]XANTHENE-3,11-DIOL DERIVATIVE AND PRODUCTION INTERMEDIATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196384A JP2004035497A (en) 2002-07-04 2002-07-04 DECAHYDRO-2H-BENZO[a]XANTHENE-3,11-DIOL DERIVATIVE AND PRODUCTION INTERMEDIATE

Publications (1)

Publication Number Publication Date
JP2004035497A true JP2004035497A (en) 2004-02-05

Family

ID=31704494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196384A Pending JP2004035497A (en) 2002-07-04 2002-07-04 DECAHYDRO-2H-BENZO[a]XANTHENE-3,11-DIOL DERIVATIVE AND PRODUCTION INTERMEDIATE

Country Status (1)

Country Link
JP (1) JP2004035497A (en)

Similar Documents

Publication Publication Date Title
Guindon et al. Regiocontrolled opening of cyclic ethers using dimethylboron bromide
CN101821272B (en) Process for producing pyripyropene derivatives and intermediates for production thereof
US7582779B2 (en) Processes and intermediates for the preparations of prostaglandins
JP6105467B2 (en) Method for synthesizing entecavir and intermediate compound thereof
JPH07504664A (en) Halichondrins and related compounds
JPH06329650A (en) 2-debenzoyl-2-acyltaxol derivatives and their production
EP0331524B1 (en) Synthesis of trichostatins
Yaragorla et al. Formal total synthesis of (−)-balanol: a potent PKC inhibitor
JPH10504845A (en) Process for preparing compounds containing β-hydroxy-δ-lactone groups, analogs of (+)-compactin and (+)-mevinolin
KR900004129B1 (en) Intermediates for the production of phdophyllotoxin and related compounds and processes for the preparation
Pal et al. Benzoxazole alkaloids: occurrence, chemistry, and biology
TWI675842B (en) Intermediates of eribulin and their preparation methods
JP6212429B2 (en) Process for producing 1,3,4,5-tetracaffeoylquinic acid and intermediate compounds
TWI623521B (en) Intermediates of limaprost, their preparation methods and methods for preparation of limaprost via them
Monleón et al. Radical cyclisation of epoxynitrile-2-azetidinones mediated by Cp2TiCl
JP3423002B2 (en) Taxane derivatives, their preparation, and formulations containing them
JP5960130B2 (en) Preparation of tesetaxel and related compounds and corresponding synthetic intermediates
JP2004035497A (en) DECAHYDRO-2H-BENZO[a]XANTHENE-3,11-DIOL DERIVATIVE AND PRODUCTION INTERMEDIATE
WO2014094511A1 (en) Intermediates for synthesizing treprostinil and preparation method thereof as well as the preparation method of treprostinil thereby
KR20090105309A (en) Process for the preparation of optically active 5-hydroxy-3-oxoheptanoate derivatives
Klein et al. Total synthesis of (.+-.)-dimethyl jaconate
Raczko From furan to open-chain systems. Synthesis of C1–C9 fragment of tylonolide
AU2001293726B2 (en) Process for preparing discodermolide and analogues thereof
JPH08505856A (en) Process for producing 10-desacetoxybaccatin III
WO2018108130A1 (en) Process for preparation of novel androgen receptor antagonist