JP2004035423A - Method for purifying tetrafluoroethylene and method for purifying hexafluoropropylene - Google Patents

Method for purifying tetrafluoroethylene and method for purifying hexafluoropropylene Download PDF

Info

Publication number
JP2004035423A
JP2004035423A JP2002191791A JP2002191791A JP2004035423A JP 2004035423 A JP2004035423 A JP 2004035423A JP 2002191791 A JP2002191791 A JP 2002191791A JP 2002191791 A JP2002191791 A JP 2002191791A JP 2004035423 A JP2004035423 A JP 2004035423A
Authority
JP
Japan
Prior art keywords
gas
tetrafluoroethylene
tfe
purifying
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002191791A
Other languages
Japanese (ja)
Other versions
JP4113382B2 (en
Inventor
▲高▼橋 孝一
Koichi Takahashi
Shiro Yano
矢野 志朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unimatec Co Ltd
Original Assignee
Unimatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unimatec Co Ltd filed Critical Unimatec Co Ltd
Priority to JP2002191791A priority Critical patent/JP4113382B2/en
Publication of JP2004035423A publication Critical patent/JP2004035423A/en
Application granted granted Critical
Publication of JP4113382B2 publication Critical patent/JP4113382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently purify tetrafluoroethylene from a gas mixture containing carbon monoxide. <P>SOLUTION: A thermal decomposition product of chlorodifluoromethane is distilled under pressure and then introduced into a gas separation membrane module (module) 9 containing a hollow fiber membrane made of a polyimide. A gas discharged from the module 9 through a gas flow control valve 10 contains a component (tetrafluoroethylene, etc.) other than the carbon monoxide and is returned to a gas holder again. The tetrafluoroethylene in the gas discharged through the gas flow control valve 10 is concentrated by repeating a step from the gas holder 1 to the gas separation membrane module 9. The tetrafluoroethylene discharged through the gas flow control valve 10 is suitably collected from a sampling valve 14. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、クロロフルオロメタンの熱分解生成物からテトラフルオロエチレンを精製する際に、或いは、テトラフルオロエチレンの熱分解生成物からヘキサフルオロプロピレンを精製する際に、液化凝縮器の非凝縮性ガス抜き口、或いは、加圧蒸留塔の塔頂ガス抜き口等から一酸化炭素とともに排出されるテトラフルオロエチレン等を回収する方法に関する。
【0002】
【従来の技術】
一般に、テトラフルオロエチレン(以下、TFEと略す)は、クロロジフルオロメタン(以下、R22と略す)を熱分解し、その反応生成物を蒸留等により精製分離して製造する。また、ヘキサフルオロプロピレン(以下、HFPと略す)は、TFEを熱分解し、その反応生成物を蒸留等により精製分離して製造する。
【0003】
TFEやR22の熱分解はいずれも600〜900℃の高温で行われるため多くの副生成物が生成し、TFEやHFPの回収率を悪化させる。
【0004】
工業的には、この副生成物の生成を抑制するために、不活性ガス等の希釈剤を原料に混合して熱分解する方法により、収率を改善することが行われている。R22の熱分解反応が吸熱反応であるため、TFEは一般に、800〜1100℃の過熱水蒸気によってR22を希釈するとともに加熱分解をする。このとき、水蒸気はほとんど不活性であると考えられるが、水性ガス反応によりわずかな一酸化炭素(以下、COと略す)が副生成する。
【0005】
TFE熱分解反応が発熱反応であることから、HFPを生成するためには、TFE製造の際に副生成するCOや高沸点副生成物等を原料として、TFEの過分解による副生成物の増加を抑制しつつ、外部から加熱を行うことによりTFEの加熱分解を行うのが一般的である。
【0006】
【発明が解決しようとする課題】
ところで、副生物としてのCOや、原料中に含まれるCOは、反応生成物を精製する際に、液化凝縮器の非凝縮性ガス抜き口、或いは、加圧蒸留塔の塔頂ガス抜き口等から排出される。このようなCOの排出に伴い、製造されたTFEや未反応のTFEの3〜7%がCOに同伴されて系外に排出され、TFEやHFPの製造原価を悪化させると共に、地球温暖化やオゾン層破壊等、環境保全上も由々しき問題となっている。
【0007】
また、近年、TFEとR22は、人の健康を損なうおそれ又は動植物の生息、生育に支障を及ぼすおそれがあるものとして、「特定化学物質の環境への排出量の把握等及び管理の改善促進に関する法律」(PRTR)の第1種指定化学物質に指定され、「平成12年度PRTRパイロット事業報告書」には、特に、TFEの排出量は1,720トン/年で、排出量上位物質の第10に挙げられている。
【0008】
このような問題に対し、TFEを回収するために種々の方法が提案されている。その代表的なものとしては、パーハロゲン化炭水化物を用いた吸収法(特公昭48−10444号)や、TFE加熱によるオクタフルオロシクロブタン(以下、C318と略す)転化法(特公昭62−7175号公報)が知られている。
【0009】
ところが、これらの方法は、いずれも設備コストと運転コストが高く、TFEとHFPの製造原価が割高になるため、環境保全に自主的・積極的に取り組むという製造者等の意欲を減退させる懸念がある。
【0010】
本発明は、このような実情に鑑みてなされたものであって、その目的とするところは、一酸化炭素を含んだガス混合物からテトラフルオロエチレンを効率的に精製することにある。
また、一酸化炭素を含んだガス混合物からヘキサフルオロプロピレンを効率的に精製することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、(1)第1の発明は、クロロフルオロメタンの熱分解生成物、とくにクロロジフルオロメタンの熱分解生成物からテトラフルオロエチレンを精製する方法であって、クロロフルオロメタンを熱分解して得られたガス混合物を液化凝縮または加圧蒸留する工程と、前記液化凝縮によって得られた非凝縮性成分または前記加圧蒸留によって得られた蒸留成分をポリイミド製中空糸膜を通過させ、テトラフルオロエチレンを含む成分と一酸化炭素とを分離する工程と、を含むことを要旨とする。
【0012】
また、上記の精製方法において、前記液化凝縮によって得られる非凝縮性成分または前記加圧蒸留によって得られた蒸留成分をポリイミド製中空糸膜を通過させるに先立ち、前記非凝縮成分又は前記蒸留成分を30〜100℃に予熱する工程を含むのが好ましい。
【0013】
上記構成によれば、ポリイミド製中空糸膜を用いたガス分離工程を通じて、一酸化炭素を含んだテトラフルオロエチレンのガス混合物からテトラフルオロエチレンを精製する作業工程全体の効率を高められるばかりでなく、副生成物である一酸化炭素の除去も確実に行われるようになる。
【0014】
(2)また、第2の発明は、テトラフルオロエチレンの熱分解生成物からヘキサフルオロプロピレンを精製する方法であって、テトラフルオロエチレンを熱分解して得られたガス混合物を液化凝縮または加圧蒸留する工程と、前記液化凝縮によって得られた非凝縮性成分または前記加圧蒸留によって得られた蒸留成分をポリイミド製中空糸膜を通過させ、ヘキサフルオロプロピレンを含む成分と一酸化炭素とを分離する工程と、を含むことを要旨とする。
【0015】
また、上記の精製方法において、前記液化凝縮によって得られる非凝縮性成分または前記加圧蒸留によって得られた蒸留成分をポリイミド製中空糸膜を通過させるに先立ち、前記非凝縮成分又は前記蒸留成分を30〜100℃に予熱する工程を含むのが好ましい。
【0016】
上記構成によれば、ポリイミド製中空糸膜を用いたガス分離工程を通じて、一酸化炭素を含んだヘキサフルオロプロピレンのガス混合物からヘキサフルオロプロピレンを精製する作業工程全体の効率を高められるばかりでなく、副生成物である一酸化炭素の除去も確実に行われるようになる。
【0017】
なお、上記各構成は、可能な限り組み合わせることができる。例えば、クロロフルオロメタンの熱分解生成物が、テトラフルオロエチレンとヘキサフルオロプロピレンを含む場合、上記第1の発明にかかる精製方法によって一酸化炭素と分離されるガスには、テトラフルオロエチレンとヘキサフルオロプロピレンとが含まれることになる。これを熱分解することによって得られたガス混合物を第2の発明にかかる精製方法に供して、ヘキサフルオロプロピレンを精製するようにしてもよい。
【0018】
【発明の実施の形態】
以下、本発明を具体化した一実施の形態について説明する。
【0019】
図1には、クロロジフルオロメタンの熱分解生成物からテトラフルオロエチレン(TFE)を精製する方法として、一連の作業工程を実行する上で必要な設備を示す略図である。
【0020】
本作業工程において、熱分解生成ガスは、吸収(脱酸)・吸着(乾燥)の工程を経てガスホルダ1に一時貯蔵し、圧縮機2によって加圧した後、周知の液化凝縮器3又は加圧蒸留器4に送って精製する。
【0021】
液化凝縮器3又は加圧蒸留塔4の上部に溜まった一酸化炭素(CO)は、間欠的、半連続的、或いは連続的に、液化凝縮器3の非凝縮性ガス抜き口3a、或いは加圧蒸留塔4の塔頂ガス抜き口4aから外部に排出する。
【0022】
排出されたCOは、プレフィルタ5によって除塵され、さらにプレヒータ6によって予熱された後に、ポリイミド製の中空糸膜を内蔵したガス分離膜モジュール(以下、モジュールと略す)9に導入される。プレヒータ6からモジュール9に至る経路途中には、モジュール9に導入されるガスの圧力をモニタするための圧力計7と、同じくモジュール9に導入されるガスの温度をモニタするための温度計8とが設けられる。
【0023】
モジュール9には、内部の中空糸膜(図示略)を透過せずに排出されるガス(非透過ガス)の出口(非透過側出口)9aと、内部の中空糸膜を透過して排出されるガス(透過ガス)の出口(透過側出口)9bとが設けられる。
【0024】
非透過側出口9a及び透過側出口9bには、各々ガス流量制御弁10及びガス流量制御弁11が設けられ、モジュール9に導入されたガスのモジュール9内滞留時間を調節する。ガス流量計12,13は、各々のガス流量制御弁10,11を介して排出されるガスの流量をモニタするために用いられる。
【0025】
ガス流量制御弁10を介して排出されるガスはCO以外の成分(TFE等)を含んでおり、ガスホルダ1に再度戻されることになる。なお、ガスホルダ1〜モジュール9に至る工程を繰り返すほどに、ガス流量制御弁10を介して排出されるガス中のTFE等は濃縮されることになる。ガス流量制御弁10を介して排出されるガス(TFE等)は、適宜サンプリング弁14から採取される。
【0026】
一方、ガス流量制御弁11を介して排出されるガスは、モジュール9内で濃縮されたCOを含む。ガス流量制御弁11を介して排出されるガスは、図示しない除害設備に送られ、最終的には大気中に放出される。
【0027】
なお、非透過側出口9aや透過側出口9bの下流にさらなるガス分離膜モジュールを設置し、COやTFE等の濃縮にかかる効率を一層高めるようにしてもよい。
【0028】
(ガス分離膜モジュール)
本実施の形態において、ガス分離膜モジュール9としては、市販のN2セパレータ(NM−C05A:宇部興産(株)製)を用いた。以下に、同モジュール9に使用されるポリイミド分離膜を透過する各種ガスの相対的な透過速度を示す。
【0029】
(速い) HO(1.1×10−9)>H(1.1×10−7)>He(9×10−8)>CO(10−8)>O(4.2×10−9)>Ar(1.5×10−9)>CO(1.1×10−9)>N(6×10−10)>炭化水素類C(5×10−10),CH(4×10−10),C(1.1×10−10) (遅い)
ただし、カッコ内の数値は、A型膜の60℃透過速度データとしての単位(Nm/m・秒・mmHg)を意味する(出典:ポリイミド製ガス分離膜カタログ 宇部興産(株))。
【0030】
表1には、モジュール9を通過するガスの温度、圧力、流量の設定条件を変更して上記作業工程を行った各実施例1〜7について、各設定条件、各設定条件に対応するTFE回収率、CO除去率を併せて示す。
【0031】
【表1】

Figure 2004035423
【0032】
但し、表中において、
濃度(%):
ガスクロマトグラフィによる測定濃度
入口濃度:
モジュール9に流入するガス中の濃度
TFE回収率(%):
100×非透過側ガス流量×TFE濃度/(非透過側ガス流量×TFE濃度+透過側ガス流量×TFE濃度)
CO除去率(%):
100×透過側ガス流量×CO濃度/(非透過側ガス流量×CO濃度+透過側ガス流量×CO濃度)
TFE入口濃度(%):
(非透過側ガス流量×TFE濃度+透過側ガス流量×TFE濃度)/(非透過側ガス流量+透過側ガス流量)
CO入口濃度(%):
(非透過側ガス流量×CO濃度+透過側ガス流量×CO濃度)/(非透過側ガス流量+透過側ガス流量)
CO残留分率(%):
「Y=1−(CO除去率/100)」とすると、
リサイクルn回目の入口CO残留率(%)=100×Y
TFEロス分率=1−(TFE回収率/100)であるから、
リサイクルn回目のTFEロス率(%)=100×(TFE入口濃度/CO入口濃度)×[1−(TFE回収率/100)]×Y
リサイクルn回目のTFE回収率(%)=TFE回収率−100×(TFE入口濃度/CO入口濃度)×(1−TFE回収率/100)×ΣY (ここで、k=1〜n)
ΣY=[Y−Yn+1]となり、
0<Y<1だから、n→∞のとき、limYn+1=0となる。
故に、
n→∞のとき、limY=Y/(1−Y)=[1−(CO除去率/100)]/(CO除去率/100)
である。
【0033】
すなわち、n→∞のとき、リサイクルn回目のTFE回収率(%)=TFE回収率−100×(TFE入口濃度/CO入口濃度)×[1−(TFE回収率/100)]×[1−(CO除去率/100)]/(CO除去率/100)となる。
【0034】
とくに、表中における実施例4の条件を採用した場合、ポリイミド製中空糸膜を採用しない従来の精製工程に比べ約半分のCO排出量に対して、90%以上のTFE回収率が得られることが、発明者らによって確認された。このように、本実施の形態にかかる精製方法を採用することで、製造原価の低減や、環境保全といった観点において極めて高い効果を奏することができる。
【0035】
とくに、既存設備の大幅な変更を伴うことなく、簡易且つ安価な方法で、既存設備から排出されるテトラフルオロエチレンを効率的に回収し、且つ、一酸化炭素を外部に排出することなく確実に除害設備に送ることができる。
【0036】
なお、クロロジフルオロメタンの熱分解生成物(ガス)をガスホルダ1に貯蔵する工程に替え、テトラフルオロエチレンの熱分解生成物(ガス)をガスホルダ1に貯蔵し、図1にかかる作業工程と同様の作業工程を実行してもよい。これにより、本実施の形態と同等に、若しくはこれに準じて、ヘキサフルオロプロピレンを主成分とするテトラフルオロエチレンの熱分解生成物から、効率的にヘキサフルオロプロピレンを回収し、且つ、一酸化炭素を外部に排出することなく確実に除害設備に送ることができる。
【0037】
また、本実施の形態において、モジュール9を通過するガスをプレヒータ6により予熱することとした。このような予熱を行わなくとも、テトラフルオロエチレンやヘキサフルオロプロピレンを一酸化炭素と分離する上で十分な効果を得ることはできるが、30〜100℃に予熱を行うことでポリイミド中空糸膜の分離性能を最適化できることが、本発明者らによって確認されている。
【0038】
また、モジュール9に内蔵される膜構造としては、ポリイミドを主成分とする種々の中空糸膜を適用することができる。
【0039】
【発明の効果】
以上説明したように、第1の発明によれば、簡易且つ安価な方法により、一酸化炭素を含んだテトラフルオロエチレンのガス混合物からテトラフルオロエチレンを効率的に精製することができる。
第2の発明によれば、簡易且つ安価な方法により、一酸化炭素を含んだヘキサフルオロプロピレンのガス混合物からヘキサフルオロプロピレンを効率的に精製することができる。
【0040】
【図面の簡単な説明】
【図1】クロロジフルオロメタンの熱分解生成物からテトラフルオロエチレンを精製する方法として、一連の作業工程を実行する上で必要な設備を示す略図。
【符号の説明】
1   ガスホルダ
2   圧縮機
3   液化凝縮器
3a   非凝縮性ガス抜き口
4   加圧蒸留塔
4a   塔頂ガス抜き口
5   プレフィルタ
6   プレヒータ
7   圧力計
8   温度計
9   ガス分離膜モジュール
9a   非透過側出口
9b   透過側出口
10,11   ガス流量制御弁
12,13   ガス流量計
14   サンプリング弁[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for purifying tetrafluoroethylene from a thermal decomposition product of chlorofluoromethane, or a method of purifying hexafluoropropylene from a thermal decomposition product of tetrafluoroethylene, the method comprising the steps of: The present invention relates to a method for recovering tetrafluoroethylene and the like discharged together with carbon monoxide from a vent or a vent at the top of a pressure distillation column.
[0002]
[Prior art]
Generally, tetrafluoroethylene (hereinafter abbreviated as TFE) is produced by thermally decomposing chlorodifluoromethane (hereinafter abbreviated as R22), and purifying and separating the reaction product by distillation or the like. Hexafluoropropylene (hereinafter abbreviated as HFP) is produced by thermally decomposing TFE and purifying and separating the reaction product by distillation or the like.
[0003]
Since the thermal decomposition of TFE and R22 is performed at a high temperature of 600 to 900 ° C., many by-products are generated, and the recovery of TFE and HFP is deteriorated.
[0004]
Industrially, in order to suppress the generation of this by-product, the yield is improved by a method of mixing a raw material with a diluent such as an inert gas and subjecting it to thermal decomposition. Since the thermal decomposition reaction of R22 is an endothermic reaction, TFE generally dilutes R22 with superheated steam at 800 to 1100 ° C. and performs thermal decomposition. At this time, the water vapor is considered to be almost inert, but a small amount of carbon monoxide (hereinafter abbreviated as CO) is by-produced by the water gas reaction.
[0005]
Since the TFE pyrolysis reaction is an exothermic reaction, in order to generate HFP, an increase in by-products due to the over-decomposition of TFE using CO, a high-boiling by-product, and the like, which are by-produced in the production of TFE as raw materials. In general, TFE is thermally decomposed by externally heating while suppressing the temperature.
[0006]
[Problems to be solved by the invention]
By the way, CO as a by-product or CO contained in a raw material is used to purify a reaction product when a non-condensable gas vent of a liquefied condenser or a gas vent at the top of a pressure distillation column. Is discharged from With the emission of CO, 3 to 7% of the produced TFE and unreacted TFE are emitted to the outside of the system accompanying the CO, which deteriorates the production cost of TFE and HFP, and reduces global warming and the like. Environmental protection, such as depletion of the ozone layer, is also a serious problem.
[0007]
In recent years, TFE and R22 have been described as those that may impair human health or hinder the inhabitation and growth of animals and plants. Designated as a Class 1 Designated Chemical Substance under the Law (PRTR), the 2000 PRTR Pilot Project Report states that TFE emissions are 1,720 tons / year, No. 10.
[0008]
To solve such a problem, various methods have been proposed for recovering TFE. Typical examples thereof include an absorption method using a perhalogenated carbohydrate (Japanese Patent Publication No. 48-10444) and an octafluorocyclobutane (hereinafter abbreviated as C318) conversion method by heating TFE (Japanese Patent Publication No. 62-7175). )It has been known.
[0009]
However, all of these methods have high equipment costs and operating costs, and the production costs of TFE and HFP are relatively high. Therefore, there is a concern that the desire of manufacturers, etc. to voluntarily and proactively engage in environmental conservation will decrease. is there.
[0010]
The present invention has been made in view of such circumstances, and an object thereof is to efficiently purify tetrafluoroethylene from a gas mixture containing carbon monoxide.
Another object of the present invention is to efficiently purify hexafluoropropylene from a gas mixture containing carbon monoxide.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, (1) a first invention is a method for purifying tetrafluoroethylene from a thermal decomposition product of chlorofluoromethane, especially a thermal decomposition product of chlorodifluoromethane, comprising: Liquefaction condensation or pressure distillation of the gas mixture obtained by thermally decomposing the non-condensable component obtained by the liquefaction condensation or the distillation component obtained by the pressure distillation to a polyimide hollow fiber membrane. And separating carbon monoxide from the component containing tetrafluoroethylene.
[0012]
Further, in the above purification method, prior to passing the non-condensable component obtained by the liquefaction condensation or the distillation component obtained by the pressure distillation through the hollow fiber membrane made of polyimide, the non-condensable component or the distillation component is removed. It is preferable to include a step of preheating to 30 to 100 ° C.
[0013]
According to the above configuration, not only can the efficiency of the entire operation step of purifying tetrafluoroethylene from a gas mixture of tetrafluoroethylene containing carbon monoxide be improved through a gas separation step using a hollow fiber membrane made of polyimide, Carbon monoxide as a by-product is also reliably removed.
[0014]
(2) A second invention is a method for purifying hexafluoropropylene from a pyrolysis product of tetrafluoroethylene, wherein a gas mixture obtained by pyrolyzing tetrafluoroethylene is liquefied or condensed or pressurized. A step of distillation, and a non-condensable component obtained by the liquefaction condensation or a distillation component obtained by the pressure distillation is passed through a polyimide hollow fiber membrane to separate a component containing hexafluoropropylene and carbon monoxide. And a step of performing the above.
[0015]
Further, in the above purification method, prior to passing the non-condensable component obtained by the liquefaction condensation or the distillation component obtained by the pressure distillation through the hollow fiber membrane made of polyimide, the non-condensable component or the distillation component is removed. It is preferable to include a step of preheating to 30 to 100 ° C.
[0016]
According to the above configuration, not only can the efficiency of the entire working process of purifying hexafluoropropylene from a gas mixture of hexafluoropropylene containing carbon monoxide be increased through a gas separation process using a hollow fiber membrane made of polyimide, Carbon monoxide as a by-product is also reliably removed.
[0017]
Note that the above configurations can be combined as much as possible. For example, when the thermal decomposition product of chlorofluoromethane contains tetrafluoroethylene and hexafluoropropylene, the gas separated from carbon monoxide by the purification method according to the first invention includes tetrafluoroethylene and hexafluoropropylene. And propylene. The gas mixture obtained by pyrolyzing this may be subjected to the purification method according to the second invention to purify hexafluoropropylene.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described.
[0019]
FIG. 1 is a schematic diagram showing equipment required for performing a series of operation steps as a method for purifying tetrafluoroethylene (TFE) from a thermal decomposition product of chlorodifluoromethane.
[0020]
In this work process, the pyrolysis gas is temporarily stored in a gas holder 1 through an absorption (deoxidation) / adsorption (drying) process, and is pressurized by a compressor 2, and then is pressurized by a well-known liquefied condenser 3 or pressurization. It is sent to the still 4 for purification.
[0021]
The carbon monoxide (CO) accumulated in the upper portion of the liquefied condenser 3 or the pressure distillation column 4 is intermittently, semi-continuously or continuously mixed with the non-condensable gas vent 3a of the liquefied condenser 3 or the heat exchanger. It is discharged to the outside from the top gas vent 4a of the pressure distillation column 4.
[0022]
The discharged CO is removed by a pre-filter 5 and further pre-heated by a pre-heater 6, and then introduced into a gas separation membrane module (hereinafter abbreviated as a module) 9 containing a polyimide hollow fiber membrane. A pressure gauge 7 for monitoring the pressure of the gas introduced into the module 9 and a thermometer 8 for monitoring the temperature of the gas also introduced into the module 9 are provided on the way from the preheater 6 to the module 9. Is provided.
[0023]
The module 9 has an outlet (non-permeate side outlet) 9a for gas (non-permeate gas) discharged without permeating through the internal hollow fiber membrane (not shown) and a gas permeating and discharging through the internal hollow fiber membrane. Outlet (permeate side outlet) 9b for the gas (permeate gas).
[0024]
A gas flow control valve 10 and a gas flow control valve 11 are provided at the non-permeate-side outlet 9a and the permeate-side outlet 9b, respectively, to adjust the residence time of the gas introduced into the module 9 in the module 9. The gas flow meters 12 and 13 are used to monitor the flow rate of gas discharged through the respective gas flow control valves 10 and 11.
[0025]
The gas discharged through the gas flow control valve 10 contains components other than CO (such as TFE) and is returned to the gas holder 1 again. The more the process from the gas holder 1 to the module 9 is repeated, the more the TFE and the like in the gas discharged through the gas flow control valve 10 are concentrated. Gas (such as TFE) discharged through the gas flow control valve 10 is sampled from the sampling valve 14 as appropriate.
[0026]
On the other hand, the gas discharged through the gas flow control valve 11 contains CO concentrated in the module 9. The gas discharged through the gas flow control valve 11 is sent to an abatement equipment (not shown), and is finally discharged into the atmosphere.
[0027]
In addition, a further gas separation membrane module may be installed downstream of the non-permeate side outlet 9a and the permeate side outlet 9b to further enhance the efficiency of the concentration of CO, TFE and the like.
[0028]
(Gas separation membrane module)
In the present embodiment, a commercially available N2 separator (NM-C05A: manufactured by Ube Industries, Ltd.) was used as the gas separation membrane module 9. The relative permeation speed of various gases permeating the polyimide separation membrane used in the module 9 is shown below.
[0029]
(Fast) H 2 O (1.1 × 10 −9 )> H 2 (1.1 × 10 −7 )> He (9 × 10 −8 )> CO 2 (10 −8 )> O 2 (4. 2 × 10 −9 )> Ar (1.5 × 10 −9 )> CO (1.1 × 10 −9 )> N 2 (6 × 10 −10 )> Hydrocarbons C 2 H 4 (5 × 10 −9 ) −10 ), CH 4 (4 × 10 −10 ), C 2 H 6 (1.1 × 10 −10 ) (slow)
However, the numerical value in parentheses means a unit (Nm 3 / m 2 · sec · mmHg) as the transmission rate data at 60 ° C. of the A-type membrane (Source: Catalog of polyimide gas separation membrane Ube Industries, Ltd.).
[0030]
Table 1 shows that each of the working examples 1 to 7 in which the setting conditions of the temperature, the pressure, and the flow rate of the gas passing through the module 9 were changed and the above-described working steps were performed, the respective setting conditions, and the TFE collection corresponding to the respective setting conditions. The rate and the CO removal rate are also shown.
[0031]
[Table 1]
Figure 2004035423
[0032]
However, in the table,
concentration(%):
Inlet concentration measured by gas chromatography:
Concentration TFE recovery rate (%) in gas flowing into module 9:
100 × non-permeate gas flow rate × TFE concentration / (non-permeate gas flow rate × TFE concentration + permeate gas flow rate × TFE concentration)
CO removal rate (%):
100 × permeate gas flow rate × CO concentration / (non-permeate gas flow rate × CO concentration + permeate gas flow rate × CO concentration)
TFE inlet concentration (%):
(Non-permeate gas flow rate x TFE concentration + permeate gas flow rate x TFE concentration) / (non-permeate gas flow + permeate gas flow)
CO inlet concentration (%):
(Non-permeate gas flow rate × CO concentration + permeate gas flow rate × CO concentration) / (non-permeate gas flow + permeate gas flow)
CO residual fraction (%):
When “Y = 1− (CO removal rate / 100)”,
N-th inlet CO residual ratio (%) = 100 × Y n ,
Since TFE loss fraction = 1− (TFE recovery rate / 100),
TFE loss rate (%) at the n-th recycling = 100 × (TFE inlet concentration / CO inlet concentration) × [1- (TFE recovery rate / 100)] × Y n
TFE recovery rate (%) at the n-th recycling = TFE recovery rate−100 × (TFE inlet concentration / CO inlet concentration) × (1−TFE recovery rate / 100) × ΣY k (where k = 1 to n)
ΣY k = [Y−Y n + 1 ], and
Since 0 <Y <1, limY n + 1 = 0 when n → ∞.
Therefore,
When n → ∞, limY k = Y / (1-Y) = [1- (CO removal rate / 100)] / (CO removal rate / 100)
It is.
[0033]
That is, when n → ∞, the TFE recovery rate (%) at the n-th recycling = TFE recovery rate−100 × (TFE inlet concentration / CO inlet concentration) × [1- (TFE recovery rate / 100)] × [1- (CO removal rate / 100)] / (CO removal rate / 100).
[0034]
In particular, when the conditions of Example 4 in the table are adopted, a TFE recovery rate of 90% or more can be obtained for about half of the CO emission compared to the conventional purification step that does not employ the hollow fiber membrane made of polyimide. Was confirmed by the inventors. As described above, by employing the purification method according to the present embodiment, it is possible to achieve extremely high effects in terms of reduction of manufacturing cost and environmental conservation.
[0035]
In particular, it is possible to efficiently recover tetrafluoroethylene discharged from existing equipment without a significant change in existing equipment, and to reliably recover carbon monoxide without discharging carbon monoxide to the outside. Can be sent to abatement equipment.
[0036]
In addition, instead of the step of storing the pyrolysis product (gas) of chlorodifluoromethane in the gas holder 1, the pyrolysis product (gas) of tetrafluoroethylene is stored in the gas holder 1, and the same as the operation process according to FIG. Work steps may be performed. Thereby, hexafluoropropylene is efficiently recovered from the pyrolysis product of tetrafluoroethylene containing hexafluoropropylene as a main component, and carbon monoxide is equivalent to or similar to this embodiment. Can be reliably sent to the abatement equipment without discharging to the outside.
[0037]
In the present embodiment, the gas passing through the module 9 is preheated by the preheater 6. Even without performing such preheating, a sufficient effect can be obtained in separating tetrafluoroethylene and hexafluoropropylene from carbon monoxide.However, by performing preheating at 30 to 100 ° C., the polyimide hollow fiber membrane can be obtained. It has been confirmed by the present inventors that the separation performance can be optimized.
[0038]
Further, as the membrane structure incorporated in the module 9, various hollow fiber membranes containing polyimide as a main component can be applied.
[0039]
【The invention's effect】
As described above, according to the first invention, tetrafluoroethylene can be efficiently purified from a gas mixture of tetrafluoroethylene containing carbon monoxide by a simple and inexpensive method.
According to the second invention, hexafluoropropylene can be efficiently purified from a gas mixture of hexafluoropropylene containing carbon monoxide by a simple and inexpensive method.
[0040]
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing equipment required for performing a series of operation steps as a method for purifying tetrafluoroethylene from a thermal decomposition product of chlorodifluoromethane.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas holder 2 Compressor 3 Liquefied condenser 3a Non-condensable gas vent 4 Pressurized distillation column 4a Top gas vent 5 Prefilter 6 Preheater 7 Pressure gauge 8 Thermometer 9 Gas separation membrane module 9a Non-permeate side outlet 9b Permeation Side outlet 10, 11 Gas flow control valve 12, 13 Gas flow meter 14 Sampling valve

Claims (4)

クロロフルオロメタンの熱分解生成物からテトラフルオロエチレンを精製する方法であって、
クロロフルオロメタンを熱分解して得られたガス混合物を液化凝縮または加圧蒸留する工程と、
前記液化凝縮によって得られる非凝縮性成分または前記加圧蒸留によって得られた蒸留成分をポリイミド製中空糸膜を通過させ、テトラフルオロエチレンを含む成分と一酸化炭素とを分離する工程と、
を含むテトラフルオロエチレンの精製方法。
A method for purifying tetrafluoroethylene from a pyrolysis product of chlorofluoromethane,
Liquefaction condensation or pressure distillation of a gas mixture obtained by pyrolyzing chlorofluoromethane, and
Passing a non-condensable component obtained by the liquefaction condensation or a distillation component obtained by the pressure distillation through a polyimide hollow fiber membrane, and separating a component containing tetrafluoroethylene and carbon monoxide,
And a method for purifying tetrafluoroethylene.
前記液化凝縮によって得られた非凝縮性成分または前記加圧蒸留によって得られた蒸留成分をポリイミド製中空糸膜を通過させるに先立ち、前記非凝縮成分又は前記蒸留成分を30〜100℃に予熱する工程を含む請求項1記載のテトラフルオロエチレンの精製方法。Prior to passing the non-condensable component obtained by liquefaction condensation or the distillation component obtained by pressure distillation through a polyimide hollow fiber membrane, the non-condensable component or the distillation component is preheated to 30 to 100 ° C. The method for purifying tetrafluoroethylene according to claim 1, comprising a step. テトラフルオロエチレンの熱分解生成物からヘキサフルオロプロピレンを精製する方法であって、
テトラフルオロエチレンを熱分解して得られたガス混合物を液化凝縮または加圧蒸留する工程と、
前記液化凝縮によって得られた非凝縮性成分または前記加圧蒸留によって得られた蒸留成分をポリイミド製中空糸膜を通過させ、ヘキサフルオロプロピレンを含む成分と一酸化炭素とを分離する工程と、
を含むヘキサフルオロプロピレンの精製方法。
A method for purifying hexafluoropropylene from a pyrolysis product of tetrafluoroethylene,
Liquefaction condensation or pressure distillation of the gas mixture obtained by pyrolysis of tetrafluoroethylene, and
Passing a non-condensable component obtained by the liquefaction condensation or a distillation component obtained by the pressure distillation through a polyimide hollow fiber membrane, and separating a component containing hexafluoropropylene and carbon monoxide,
A method for purifying hexafluoropropylene comprising:
前記液化凝縮によって得られた非凝縮性成分または前記加圧蒸留によって得られた蒸留成分をポリイミド製中空糸膜を通過させるに先立ち、前記非凝縮成分又は前記蒸留成分を30〜100℃に予熱する工程を含む請求項3記載のヘキサフルオロプロピレンの精製方法。Prior to passing the non-condensable component obtained by liquefaction condensation or the distillation component obtained by pressure distillation through a polyimide hollow fiber membrane, the non-condensable component or the distillation component is preheated to 30 to 100 ° C. The method for purifying hexafluoropropylene according to claim 3, comprising a step.
JP2002191791A 2002-07-01 2002-07-01 Tetrafluoroethylene purification method and hexafluoropropylene purification method Expired - Lifetime JP4113382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191791A JP4113382B2 (en) 2002-07-01 2002-07-01 Tetrafluoroethylene purification method and hexafluoropropylene purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191791A JP4113382B2 (en) 2002-07-01 2002-07-01 Tetrafluoroethylene purification method and hexafluoropropylene purification method

Publications (2)

Publication Number Publication Date
JP2004035423A true JP2004035423A (en) 2004-02-05
JP4113382B2 JP4113382B2 (en) 2008-07-09

Family

ID=31701256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191791A Expired - Lifetime JP4113382B2 (en) 2002-07-01 2002-07-01 Tetrafluoroethylene purification method and hexafluoropropylene purification method

Country Status (1)

Country Link
JP (1) JP4113382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236227A (en) * 2004-04-29 2011-11-24 Honeywell Internatl Inc Process for synthesis of 1,3,3,3-tetrafluoropropene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236227A (en) * 2004-04-29 2011-11-24 Honeywell Internatl Inc Process for synthesis of 1,3,3,3-tetrafluoropropene

Also Published As

Publication number Publication date
JP4113382B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
KR101518726B1 (en) Removal of carbon dioxide from a feed gas
AU2001297607B2 (en) Improved hydrogen and carbon dioxide coproduction
CN112638849B (en) Process for the production of methanol from synthesis gas without carbon dioxide removal
TWI387558B (en) Enhanced process for the purification of anyhydrous hydrogen chloride gas
EP2995364B1 (en) Process for recovering olefins in polyolefin plants
US9073808B1 (en) Process for recovering olefins in polyolefin plants
AU2001297607A1 (en) Improved hydrogen and carbon dioxide coproduction
CN108698985B (en) Process for supplying carbon dioxide for the synthesis of urea
RU2506118C2 (en) METHOD AND PLANT FOR PRODUCTION OF UREA SOLUTION USED IN SELECTIVE CATALYTIC REDUCTION OF NOx
KR970075809A (en) Method for Recovering Olefin from Olefin-Hydrogen Mixture
US10017434B2 (en) Membrane-based gas separation processes to separate dehydrogenation reaction products
JP6153525B2 (en) Method for separating phosgene and hydrogen chloride from a fluid stream containing phosgene and hydrogen chloride
JP5344114B2 (en) Hydrogen purification recovery method and hydrogen purification recovery equipment
JP2002114752A (en) Integrated method for producing ammonia and urea
JP4113382B2 (en) Tetrafluoroethylene purification method and hexafluoropropylene purification method
JP2019059650A (en) Oxygen isotope substitution method and oxygen isotope substitution device
JP6965345B2 (en) Methods for producing ammonia and urea in common equipment
US6667409B2 (en) Process and apparatus for integrating an alkene derivative process with an ethylene process
JP6935282B2 (en) Oxygen isotope substitution method and oxygen isotope substitution device
US5817841A (en) Membrane process for argon purging from ethylene oxide reactors
US20240140788A1 (en) Conversion of ammonia to hydrogen and nitrogen using ammonia as a sweep gas
US20220242728A1 (en) System and method for obtaining potable water from fossil fuels
WO2022045328A1 (en) Method for producing methanol
KR20080103987A (en) Butane absorption system for vent control and ethylene purification
JPH04368344A (en) Separation and purification of methyl chloride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080411

R150 Certificate of patent or registration of utility model

Ref document number: 4113382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term