JP2004034603A - Method for manufacturing organic coated steel member excellent in tenacious durability - Google Patents
Method for manufacturing organic coated steel member excellent in tenacious durability Download PDFInfo
- Publication number
- JP2004034603A JP2004034603A JP2002197408A JP2002197408A JP2004034603A JP 2004034603 A JP2004034603 A JP 2004034603A JP 2002197408 A JP2002197408 A JP 2002197408A JP 2002197408 A JP2002197408 A JP 2002197408A JP 2004034603 A JP2004034603 A JP 2004034603A
- Authority
- JP
- Japan
- Prior art keywords
- steel material
- organic
- treatment
- group
- agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
- Chemical Treatment Of Metals (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、屋外、海洋環境、ラインパイプなどの腐食の厳しい環境において長期間にわたり、安定的に防食性能(接着耐久性)を維持できる有機被覆鋼材の製造方法に関する。
【0002】
【従来の技術】
ガス、水道、電気配線用配管、光ケーブル保護管、ラインパイプなどの地中埋設管や、港湾、河川などの土木工事において使用される鋼管杭や鋼管矢板、鋼矢板または建築用屋根材、壁材などには、鋼材の防食を目的として塗装が施されている。塗装仕様は、要求される耐久性などにより様々であり、塗料の種類や膜厚なども多様である。また、鋼材の塗装のための下地処理にも、数多くの提案がなされている。例えば、鋼板表面の酸化被膜を除去する酸洗、ブラスト処理などの下地処理や、これらの下地処理を行った後に、さらにリン酸塩処理、クロメート処理、各種カップリング剤処理、陽極酸化処理などの下地処理を施す提案がなされている。
しかし、前記用途に使用される鋼材に期待される防食寿命は、ライフサイクルコストの観点から、益々伸びる傾向にある。特に社会的インフラに使用される埋設管や土木建材などは、数十年以上の防食寿命を有することが望まれる。
【0003】
塗装、ライニングなどを施した後の鋼材の防食性は、1)塗装、ライニング材料と下地との接着、2)塗装、ライニング材料自体の劣化の2点から評価される。下地との接着が良好であっても、材料自体が、屋外であれば、紫外線による耐候劣化や、埋設管などでも耐熱劣化などにより、腐食が早まり、予想より遥かに寿命が短縮される場合がままあった。逆に、材料自体が健全であっても、下地との接着力が低下し、鋼材の防食性の低下を抑制できないこともままあった。
【0004】
しかしながら、近年、劣化が少ない塗装、ライニング材料自体の開発が進んでおり、塗装、ライニング材料と下地との接着力が、鋼材の寿命を決定することが多くなっている。すなわち、下地との接着力の向上が、鋼材の防食性の改良につながるとの説が有力になっている。
また接着耐久性を向上させるのに有効なCr系やPb系顔料が、近年環境負荷物質に指定され、有機被覆剤に配合できないため、有機被覆剤の添加剤による接着耐久性の改善を図ることが難しくなりつつあり、下地処理剤への期待がより一層増しているのが現状である。
【0005】
具体的な鋼材用の塗装下地処理方法として、例えば、特開昭57−171668号公報には、鋼材表面に炭化水素基を有する有機窒素化合物からなる皮膜を形成し、その後、被覆層を形成する鋼材の下地処理方法が提案されている。該方法は、表面を洗浄した鋼材に、有機窒素化合物を溶媒を用いまたは用いずに塗布し、有機窒素化合物を鋼材に吸着させた後、溶媒を揮散させ、さらに被覆材料を塗布して、鋼材の腐食を抑制する方法である。
【0006】
しかし、該方法は、溶媒を単に揮散させる方法であるから、鋼材に吸着されない、溶媒より相当分子量の大きい2−ウンデシルイミダゾール、2−イソオクチルイミダゾリン、末端水酸基含有オレイン酸アミドなどの有機窒素化合物が、下地処理剤層の表面に相当多量に残存する。そして、残存有機窒素化合物が、被覆材料の下地処理剤層への接着を阻害する。結果として、良好な耐食性が長期間維持できない、すなわち接着耐久性が劣るという大きな問題があった。また、該方法で使用される有機窒素化合物は、リン酸系表面処理剤やチオ−ル系表面処理剤に比べ、鋼材表面に対する吸着力が劣る傾向があった。
【0007】
【発明が解決しようとする課題】
有機被膜による鋼板の防食においては、下地との接着不良による不具合は、例えば被膜端面からの剥離、または被膜の全体的な接着強度の低下、被膜のふくれなどの現象として現れる。このため、有機被膜においては、補修または塗り直しといった維持・管理が必要になる。これらには莫大な費用を要し、特に社会的インフラの場合には、社会的コスト負担も大きい。したがって、できる限り有機被膜の下地との接着耐久性を伸ばし、補修や塗り替えなどを極力回避することが重要である。
有機被膜の接着劣化には、もちろん有機被膜の環境遮断性のほかに、接着界面の接着特性および電気化学的な特性が密接に関係している。要するに、鋼材の長期間の使用に直結する優れた鋼材の下地処理方法の開発が望まれている。
【0008】
【課題を解決するための手段】
本発明は、鋼材表面を下地処理した後、有機被覆処理を施す有機被覆鋼材の製造方法において、前記下地処理が、鋼材表面に、溶媒に溶解させた表面処理剤を吸着させた後、未吸着成分を除去し、さらに溶媒を除去する処理であることを特徴とする接着耐久性に優れた有機被覆鋼材の製造方法である。
【0009】
前記有機被覆鋼材の製造方法において、前記表面処理剤が、エチレン基および/またはフェニレン基を繰返し単位とする骨格の、一方の末端に鋼材表面に吸着する官能基を有し、他方の末端に接着剤または有機被覆剤と反応する官能基を有する化合物であることが好ましい。
【0010】
前記化合物の鋼材表面に吸着する官能基は、メルカプト基、スルフェノ基、フォスフォノ基およびフォスフェノ基から選ばれた少なくとも1種であるのが好ましい。
【0011】
また前記化合物の接着剤または有機被覆剤と反応する官能基は、アミノ基、カルボキシル基、エポキシ基およびビニル基から選ばれた少なくとも1種であるのが好ましい。
【0012】
また前記化合物の骨格は、エチレン基および/またはフェニレン基の繰返し単位を1〜20単位有し、直鎖状であるのが好ましい。
【0013】
前記有機被覆処理が、下地処理した後、有機被覆剤を被覆する処理であることが好ましい。
【0014】
前記有機被覆処理が、下地処理した後、接着剤を塗布し、接着剤層の上に有機被覆剤を被覆する処理であることが好ましい。
【0015】
前記接着剤は、エポキシ樹脂、ポリウレタン樹脂、アクリル樹脂、またはポリエステル樹脂であるのが好ましい。
【0016】
【発明の実施の形態】
屋外で使用される有機被覆鋼材の腐食劣化の主な原因は、鋼材と有機被膜との界面の接着劣化である。接着劣化は、酸素、水、イオンなどが、外界から有機被膜に侵入して該被膜を拡散し、該界面に到達し、該界面での接着結合が破壊されるためと推定される。腐食反応を防止するためには、水などの侵入を抑制する接着結合のエネルギーが高い結合を、鋼材と有機被膜との界面に形成することが有効であると考えられる。しかし、実際の鋼材と有機被膜との界面の接着は、主に結合エネルギーの小さなファンデア・ワールス力や水素結合などの結合に基づいており、有機被膜には本質的に接着劣化の懸念がある。
【0017】
ところで、従来、例えば、前記した表面処理剤の2−ウンデシルイミダゾールなどのウンデシル基は、エチレン基を繰返し単位とする直鎖状炭化水素基であるから、鋼材や有機被覆剤との相互作用をほとんど示さないものと認識されていた。しかし、本発明者は、エチレン基および/またはフェニレン基を繰返し単位とする炭化水素基であっても、異なる作用を示す2グループの官能基と組合わされると、鋼材や有機被覆剤との相互作用に寄与することを見出し、本発明を完成した。
【0018】
まず、本発明の有機被覆鋼材の製造方法に使用される材料について説明する。本発明に使用される表面処理剤は、Aグループに属すエチレン基および/またはフェニレン基を繰返し単位として好ましくは1〜20単位有する骨格の、一方の末端に、Bグループに属す少なくとも1種の官能基を、また他方の末端に、Cグループに属す少なくとも1種の官能基を有する化合物である。
本発明の表面処理剤のBグループの官能基は鋼材表面に吸着し、鋼材と表面処理剤との結合に寄与し、他方、Cグループの官能基は接着剤または有機被覆剤と反応し、主に有機被覆剤層と鋼材との結合に寄与する。
【0019】
【化1】
【化2】
【化3】
【0020】
Bグループ: メルカプト基、スルフェノ基、フォスフォノ基、およびフ
ォスフェノ基。
Cグループ: アミノ基、カルボキシル基、エポキシ基、およびビニル基。
【0021】
Aグループの骨格は、エチレン基および/またはフェニレン基を繰返し単位として1〜20単位有するのが好ましく、1〜10単位有するのが特に好ましい。20単位を超えると、表面処理剤を形成する化合物が大きくなり、表面処理剤が鋼材表面に吸着された場合に、立体障害を起こしやすく、表面処理剤の吸着密度が低下する。一方、同繰返し単位がない場合には、表面処理剤を形成する化合物の大きさが小さいので、前記接着剤層との反応が十分でなく、接着耐久性の向上に寄与しない。
【0022】
BおよびCグループに属す官能基が、ともに鋼材と接着剤層または有機被覆層との界面で、共有結合または酸―塩基結合のようなエネルギーの非常に高い接着結合を示すので、これとAグループに属す炭化水素基と相まって、鋼材と有機被覆剤との間の接着の橋渡しに寄与し、接着劣化を起こしにくく、結果として腐食反応が生起しにくい有機被覆鋼材、すなわち接着耐久性に優れた有機被覆鋼材を与えるのである。
【0023】
表面処理剤の好適例は、下記式で示される化合物A〜Iである。
【0024】
【化4】
【0025】
本発明の表面処理剤は溶剤に溶解させて液状物として使用される。表面処理剤の濃度は、攪拌混合、塗布が円滑に実行できるのであれば、特に限定されない。本発明の表面処理剤を溶解するために使用される溶媒は、鋼材用表面処理剤の溶媒として一般的に知られている有機溶媒および無機溶媒であるが、有機溶媒が好ましい。好適溶媒としては、トルエン、キシレンのような芳香族炭化水素溶媒が例示される。もちろん、水性溶媒を使用することもできる。
【0026】
本発明に使用される有機被覆剤は、鋼材の有機被覆層の形成に使用されることが知られるものならば特に限定されないが、エポキシ樹脂、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリオレフィン樹脂、フッ素樹脂などが好適である。これらは適当な溶媒に溶解して使用されるか、または温度を上げて溶融して使用される。
【0027】
本発明に使用される接着剤としては、エポキシ樹脂、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂が好ましい。
【0028】
本発明が適用される鋼材は、鋼板、鋼管などであり、その形状、形態には特に拘らないが、鋼板への適用が好ましい。
鋼板としては、冷延鋼板、熱延鋼板、電気亜鉛めっき鋼板、電気亜鉛―ニッケルめっき鋼板、溶融亜鉛めっき鋼板、亜鉛―アルミ溶融亜鉛めっき鋼板などの亜鉛めっき鋼板、熱延鋼板、冷延鋼板、ステンレス鋼板、銅めっき鋼板、溶融スズ―亜鉛めっき鋼板などが挙げられる。特に好ましいのは、冷延鋼板および亜鉛系めっき鋼板である。鋼板の厚さには特に拘らない。
【0029】
次に、本発明の有機被覆鋼材の製造方法について説明する。
(鋼材の予備洗浄)
鋼材は、本発明の下地処理を施す前に、表面の汚れや汚染物質をできる限り除去されるのが好ましい。予備洗浄の手段は特に限定されないが、一般的なブラスト処理や、酸洗などによるスケール落とし処理で差し支えない。
【0030】
(下地処理)
下地処理は、表面処理剤(化合物)の吸着密度を最大にするために、通常、表面処理剤を溶媒に溶解してなる溶液に鋼材を浸漬するか、該溶液を鋼材表面に塗布する方法によるのが好ましい。ただし、鋼材表面に表面処理剤が吸着されるまでに、数十秒〜数十分の時間を要するので、前記浸漬または塗布後の鋼材を、相当時間室温以上の温度に加熱乾燥するのが好ましい。
【0031】
下地処理後は鋼材表面を洗浄して、吸着されなかった表面処理剤を除去する。これにより、接着剤または有機被覆剤を塗布して、接着剤などと表面処理剤とを反応させて有機被膜を形成する際に、弱い接着耐久性を示す原因になる、鋼材に吸着されなかった表面処理剤が、鋼材表面から除去される。すなわち、本発明の下地処理により、表面処理剤が鋼材表面に吸着され、鋼材表面に強固に密着した表面処理層が形成される。洗浄は、表面処理剤の溶解に使用された溶媒、水などの溶媒に鋼材を浸漬する、該溶媒を鋼材表面に噴射するなどの方法により実施される。洗浄用溶剤としてはトルエン、キシレン、水などが好適である。
【0032】
表面処理剤を除去するための洗浄を行った後、表面処理剤を溶解していた溶媒および表面処理剤の除去に使用した洗浄剤(溶媒)を除去することが重要である。このため洗浄後の鋼材を加熱し、溶媒を揮発させる。
【0033】
(接着剤処理)
接着剤処理は、液状または溶媒に溶解した接着性樹脂をバーコーター、刷毛、スピンコーター、スプレーなどで、下地処理面に塗布する。塗布後は、接着剤の特性にもよるが、室温〜200℃で1分〜30分程度焼付ける。その後、常温に冷却して接着剤層とする。厚さは20μm〜2mm程度である。
【0034】
(有機被覆剤処理)
有機被覆剤処理は、下地処理した鋼材に、直接または前述する接着剤処理後に、有機被覆剤を溶媒に溶解して、バーコーター、刷毛、スピンコーター、スプレーなどで塗布し、焼付けを行う。熱可塑性樹脂の場合には、溶媒に溶解して前記と同様の処理をしてもよいが、加熱溶融して、流動したものを巻きつける、押し付けるなどの処理をしてもよい。厚さは20μm〜2mm程度が好ましい。
【0035】
【実施例】
以下、本発明を実施例により詳細に説明する。本発明は、実施例に限定されるものではない。
(実施例1〜14、比較例1〜4)
軟鋼板(厚さ6mm)をブラスト処理し、表面汚染物質および酸化層を除去した。該処理後の軟鋼板に、下記に示す表面処理剤の被覆から溶媒・表面処理剤の除去に至る下地処理を、表1に示す条件で行い、ついで、下記に示す有機被覆剤を表1に示す条件でスプレー塗布するか、または下記に示す接着剤を表1に示す条件で塗布した後、低密度ポリエチレン(厚さ1.5mm)をホットプレスにより圧着して有機被膜を形成した。下地処理液は、下記の式で示される表面処理剤A〜Iのそれぞれを0.1モルづつトルエンに溶解して調製した。
【0036】
【化5】
【0037】
下地処理は、(1)軟鋼板表面に、下地処理液をナイロン製の刷毛で塗布し、3分後に、トルエンで5秒間洗浄した。その後、200℃の雰囲気で、約3分間乾燥を行った。(2)下地処理液に、軟鋼板を3分間浸漬した。ついで取出した軟鋼板を、トルエンで5秒間洗浄した後、200℃の雰囲気で、約3分間乾燥を行った。なお、前記(1)および(2)の下地処理において、トルエン洗浄を省略した場合を比較例とした。
なお下地処理剤の軟鋼板への吸着は、XPS(X線光電子分光)におけるNiS、S2 p3 、P2 p3 のピークシフトが0.5〜2eV高くずれると吸着状態であるものとした。
【0038】
塗布またはライニング(ホットプレスによる圧着)により得た有機被膜軟鋼板について、下記の方法で接着強度を測定した。結果を表1に示した。
(1)スプレー塗布で得た有機被覆軟鋼板から切出した試験片(10×10cm)の中央部に5×5cm(幅1mm)のクロスカットを入れた。該試験片を塩水噴霧試験機に90日間入れ、取出した試験片のクロスカット部からの片側剥離幅を調査した。また、
(2)該試験片の端部を2mm程度研削し、端部を揃えた後、温塩水(3mass%食塩水、60℃)に、1000時間浸漬した。取出した試験片の接着強度および端部からの剥離距離を測定した。該試験片の初期の試験片の接着強度に対する割合を保持率とした。保持率は40%以上であるのが好ましい。ここで接着強度は、有機被覆処理にエポキシ樹脂を用いる場合は、pull−off法(剥離面積1cm2 ) により測定した。ポリエチレン樹脂を用いた場合は、90度剥離強度(10mm幅)を測定した。
【0039】
(3)ライニングで得た有機被覆軟鋼板から切出した試験片(10×10cm)の中央部に直径5mmの人工欠陥を形成し、その上に直径70mmの円筒を立て、中に温塩水(3%食塩水、60℃)を満たした。そして、対極を白金電極として、試験片の表面を参照電極(SCE)に対して―1.5Vに保持して、60℃の電気炉で30日間曝露した。回収した該試験片の欠陥部周辺の剥離距離を調査した。
【0040】
【表1】
【0041】
【発明の効果】
本発明の有機被覆鋼材は、接着劣化がなく、長期間の接着耐久性を有するので、腐食性の高い環境においても、十分な長年月の使用に耐えることができる。そのため、本発明の有機被覆鋼材を使用した建造物、配管などは、腐食および塗装劣化による社会的損失、経済的損失を回避することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an organic-coated steel material capable of stably maintaining corrosion protection performance (bonding durability) for a long period of time in a severely corrosive environment such as an outdoor environment, a marine environment, and a line pipe.
[0002]
[Prior art]
Underground pipes such as gas, water and electric wiring pipes, optical cable protection pipes and line pipes, and steel pipe piles, steel pipe sheet piles, steel sheet piles or roofing materials and wall materials used in civil engineering works such as harbors and rivers Are painted for the purpose of corrosion protection of steel. The coating specifications vary depending on the required durability and the like, and the types and thicknesses of the paints also vary. Also, many proposals have been made for a base treatment for painting a steel material. For example, pickling to remove the oxide film on the surface of the steel sheet, a base treatment such as blasting, and after performing these base treatments, further phosphate treatment, chromate treatment, various coupling agent treatment, anodizing treatment and the like Proposals have been made to apply a base treatment.
However, the anticorrosion life expected of a steel material used for the above application tends to be further increased from the viewpoint of life cycle cost. In particular, it is desired that buried pipes and civil engineering materials used for social infrastructure have a corrosion prevention life of several decades or more.
[0003]
The corrosion resistance of a steel material after being subjected to painting, lining, etc. is evaluated from the following two points: 1) painting, adhesion between a lining material and a base, 2) painting, and deterioration of the lining material itself. Even if the adhesion to the base is good, if the material itself is outdoors, weathering deterioration due to ultraviolet rays, heat deterioration even in buried pipes etc. will accelerate corrosion, and the life will be much shorter than expected. Was left. On the other hand, even if the material itself is sound, the adhesive strength with the base material is reduced, and the deterioration of the corrosion resistance of the steel material cannot be suppressed.
[0004]
However, in recent years, the development of the coating and the lining material itself with little deterioration is progressing, and the adhesion between the coating and the lining material and the base often determines the life of the steel material. That is, it has been inferred that an improvement in the adhesive strength to the base leads to an improvement in the corrosion resistance of the steel material.
In addition, Cr-based and Pb-based pigments, which are effective for improving the bonding durability, have recently been designated as environmentally hazardous substances and cannot be blended with organic coating agents. Is becoming more difficult, and the expectation for the undercoating agent is further increasing.
[0005]
As a specific coating undercoating treatment method for steel, for example, Japanese Patent Application Laid-Open No. 57-171668 discloses a method of forming a film made of an organic nitrogen compound having a hydrocarbon group on the surface of a steel material, and then forming a coating layer. There has been proposed a method for preparing a steel substrate. The method includes applying an organic nitrogen compound to a steel material having a cleaned surface with or without a solvent, adsorbing the organic nitrogen compound to the steel material, volatilizing the solvent, and further applying a coating material to the steel material. This is a method of suppressing corrosion of steel.
[0006]
However, since this method is a method of simply volatilizing a solvent, organic nitrogen compounds such as 2-undecylimidazole, 2-isooctylimidazoline, and oleic acid amide containing a terminal hydroxyl group, which are not adsorbed on steel and have a considerably higher molecular weight than the solvent, are not adsorbed. However, a considerable amount remains on the surface of the undercoating agent layer. And the residual organic nitrogen compound inhibits the adhesion of the coating material to the undercoating agent layer. As a result, there is a major problem that good corrosion resistance cannot be maintained for a long period of time, that is, adhesion durability is poor. Further, the organic nitrogen compound used in the method tends to be inferior in adsorption power to the steel material surface as compared with the phosphoric acid surface treatment agent and the thiol surface treatment agent.
[0007]
[Problems to be solved by the invention]
In the corrosion prevention of a steel sheet by an organic coating, a defect due to poor adhesion to a base material appears as, for example, a phenomenon such as peeling from a coating end face, a decrease in overall bonding strength of the coating, and a blister of the coating. For this reason, maintenance and management, such as repair or repainting, are required for the organic coating. These require enormous costs, and in the case of social infrastructure, social costs are also large. Therefore, it is important to extend the durability of the organic coating to the base as much as possible and to avoid repairing or repainting as much as possible.
Of course, in addition to the environmental barrier properties of the organic coating, the adhesive properties and electrochemical properties of the bonding interface are closely related to the adhesion deterioration of the organic coating. In short, there is a demand for the development of an excellent method of treating a steel material that is directly linked to long-term use of the steel material.
[0008]
[Means for Solving the Problems]
The present invention relates to a method for producing an organic-coated steel material in which a steel material surface is subjected to an undercoating treatment and then subjected to an organic coating treatment, wherein the undercoating treatment comprises: adsorbing a surface treating agent dissolved in a solvent to the steel material surface; This is a method for producing an organic-coated steel material having excellent adhesion durability, which is a treatment for removing components and further removing a solvent.
[0009]
In the method for producing an organic-coated steel material, the surface treatment agent has a functional group adsorbed on the steel material surface at one end of a skeleton having an ethylene group and / or a phenylene group as a repeating unit, and is bonded to the other end. It is preferable that the compound has a functional group that reacts with the agent or the organic coating agent.
[0010]
The functional group of the compound adsorbed on the surface of the steel material is preferably at least one selected from a mercapto group, a sulfeno group, a phosphono group and a phospheno group.
[0011]
The functional group which reacts with the adhesive or the organic coating agent of the compound is preferably at least one selected from an amino group, a carboxyl group, an epoxy group and a vinyl group.
[0012]
The skeleton of the compound preferably has 1 to 20 repeating units of an ethylene group and / or a phenylene group, and is preferably linear.
[0013]
It is preferable that the organic coating treatment is a treatment of coating an organic coating agent after a base treatment.
[0014]
It is preferable that the organic coating treatment is a treatment of applying an adhesive after the base treatment and coating the organic coating agent on the adhesive layer.
[0015]
The adhesive is preferably an epoxy resin, a polyurethane resin, an acrylic resin, or a polyester resin.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The main cause of the corrosion deterioration of the organic-coated steel used outdoors is the adhesion deterioration of the interface between the steel and the organic coating. Adhesion degradation is presumed to be due to oxygen, water, ions, and the like entering the organic coating from the outside and diffusing the coating, reaching the interface, and breaking the adhesive bond at the interface. In order to prevent the corrosion reaction, it is considered effective to form a bond having a high energy of an adhesive bond for suppressing invasion of water or the like at the interface between the steel material and the organic coating. However, the actual adhesion at the interface between the steel material and the organic coating is based on a bond such as a van der Waals force or a hydrogen bond having a small binding energy, and there is a concern that the organic coating essentially deteriorates in adhesion.
[0017]
By the way, conventionally, for example, since the undecyl group such as 2-undecyl imidazole of the above-mentioned surface treatment agent is a linear hydrocarbon group having an ethylene group as a repeating unit, interaction with a steel material or an organic coating agent has been considered. It was recognized as showing little. However, the present inventor has determined that even when a hydrocarbon group having a repeating unit of an ethylene group and / or a phenylene group is combined with two groups of functional groups having different functions, the hydrocarbon group may not interact with a steel material or an organic coating agent. The inventors have found that they contribute to the action, and have completed the present invention.
[0018]
First, the materials used in the method for producing an organic-coated steel material of the present invention will be described. The surface treating agent used in the present invention comprises at least one functional group B belonging to Group B at one end of a skeleton having preferably 1 to 20 units of an ethylene group and / or a phenylene group belonging to Group A as a repeating unit. A compound having a group and, at the other end, at least one functional group belonging to Group C.
The functional group of group B of the surface treating agent of the present invention is adsorbed on the steel material surface and contributes to the bonding between the steel material and the surface treating agent, while the functional group of group C reacts with an adhesive or an organic coating agent and mainly reacts. Contributes to the bonding between the organic coating layer and the steel material.
[0019]
Embedded image
Embedded image
Embedded image
[0020]
Group B: mercapto, sulfeno, phosphono, and phospheno groups.
Group C: amino group, carboxyl group, epoxy group, and vinyl group.
[0021]
The skeleton of Group A preferably has 1 to 20 units as a repeating unit of an ethylene group and / or a phenylene group, and particularly preferably has 1 to 10 units. If the amount exceeds 20 units, the compound forming the surface treating agent becomes large, and when the surface treating agent is adsorbed on the steel material surface, steric hindrance is likely to occur, and the adsorption density of the surface treating agent decreases. On the other hand, when the same repeating unit is not provided, the size of the compound forming the surface treatment agent is small, so that the reaction with the adhesive layer is not sufficient and does not contribute to the improvement of the adhesion durability.
[0022]
Since the functional groups belonging to groups B and C both show very high energy adhesive bonds, such as covalent bonds or acid-base bonds, at the interface between the steel material and the adhesive layer or the organic coating layer, these groups and the group A Organic hydrocarbon-coated steel material, which, in combination with the hydrocarbon group belonging to the above, contributes to bridging of the bond between the steel material and the organic coating agent, does not easily cause deterioration of the adhesion, and does not easily cause a corrosion reaction, that is, an organic material having excellent adhesion durability. They provide coated steel.
[0023]
Preferred examples of the surface treatment agent are compounds A to I represented by the following formula.
[0024]
Embedded image
[0025]
The surface treating agent of the present invention is used as a liquid after being dissolved in a solvent. The concentration of the surface treatment agent is not particularly limited as long as stirring, mixing and coating can be performed smoothly. The solvent used for dissolving the surface treatment agent of the present invention is an organic solvent or an inorganic solvent generally known as a solvent for a steel surface treatment agent, but an organic solvent is preferable. Suitable solvents include aromatic hydrocarbon solvents such as toluene and xylene. Of course, aqueous solvents can also be used.
[0026]
The organic coating agent used in the present invention is not particularly limited as long as it is known to be used for forming an organic coating layer of a steel material.Epoxy resin, acrylic resin, polyurethane resin, polyester resin, polyolefin resin, fluorine Resins and the like are preferred. These are used by dissolving them in a suitable solvent or by melting them at an increased temperature.
[0027]
The adhesive used in the present invention is preferably an epoxy resin, an acrylic resin, a polyurethane resin, or a polyester resin.
[0028]
The steel material to which the present invention is applied is a steel plate, a steel pipe, or the like, and its shape and form are not particularly limited, but application to a steel plate is preferable.
Steel sheets include galvanized steel sheets such as cold-rolled steel sheets, hot-rolled steel sheets, electro-galvanized steel sheets, electro-galvanized nickel-plated steel sheets, hot-dip galvanized steel sheets, and zinc-aluminum hot-dip galvanized steel sheets, hot-rolled steel sheets, cold-rolled steel sheets, Examples include a stainless steel sheet, a copper-plated steel sheet, and a hot-dip tin-zinc-plated steel sheet. Particularly preferred are cold-rolled steel sheets and galvanized steel sheets. There is no particular limitation on the thickness of the steel sheet.
[0029]
Next, a method for producing the organic-coated steel material of the present invention will be described.
(Pre-cleaning of steel)
Before the steel material is subjected to the base treatment of the present invention, it is preferable that surface dirt and contaminants are removed as much as possible. The means for the pre-cleaning is not particularly limited, but may be a general blasting treatment or a descaling treatment by pickling.
[0030]
(surface treatment)
In order to maximize the adsorption density of the surface treatment agent (compound), the base treatment is usually performed by immersing the steel material in a solution obtained by dissolving the surface treatment agent in a solvent or by applying the solution to the steel material surface. Is preferred. However, since it takes several tens of seconds to several tens of minutes before the surface treatment agent is adsorbed on the surface of the steel material, it is preferable to heat and dry the steel material after the immersion or application to a temperature of room temperature or higher for a considerable time. .
[0031]
After the base treatment, the surface of the steel material is washed to remove the surface treatment agent that has not been adsorbed. Thereby, when an adhesive or an organic coating agent is applied and an adhesive or the like is reacted with a surface treatment agent to form an organic film, it is not adsorbed to steel, which causes weak adhesion durability. The surface treating agent is removed from the steel surface. That is, the surface treatment agent is adsorbed on the surface of the steel material by the base treatment of the present invention, and a surface treatment layer firmly adhered to the surface of the steel material is formed. The washing is performed by a method such as immersing the steel material in a solvent such as water or a solvent used for dissolving the surface treatment agent, or spraying the solvent on the steel material surface. Suitable washing solvents include toluene, xylene, water and the like.
[0032]
After performing the cleaning for removing the surface treatment agent, it is important to remove the solvent in which the surface treatment agent has been dissolved and the cleaning agent (solvent) used for removing the surface treatment agent. For this reason, the steel material after washing is heated to evaporate the solvent.
[0033]
(Adhesive treatment)
In the adhesive treatment, an adhesive resin in a liquid state or dissolved in a solvent is applied to the surface to be treated with a bar coater, a brush, a spin coater, a spray, or the like. After application, baking is performed at room temperature to 200 ° C. for about 1 to 30 minutes, depending on the properties of the adhesive. Then, it is cooled to room temperature to form an adhesive layer. The thickness is about 20 μm to 2 mm.
[0034]
(Organic coating treatment)
In the organic coating treatment, the organic coating is dissolved in a solvent, directly or after the above-described adhesive treatment, applied to the base-treated steel material, applied by a bar coater, a brush, a spin coater, a spray, or the like, and baked. In the case of a thermoplastic resin, it may be dissolved in a solvent and subjected to the same treatment as described above, or may be subjected to a treatment such as heating and melting, and winding or pressing a fluid. The thickness is preferably about 20 μm to 2 mm.
[0035]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. The present invention is not limited to the embodiments.
(Examples 1 to 14, Comparative Examples 1 to 4)
A mild steel plate (6 mm thick) was blasted to remove surface contaminants and oxide layers. On the mild steel sheet after the treatment, a base treatment from coating of the surface treatment agent shown below to removal of the solvent and the surface treatment agent was performed under the conditions shown in Table 1, and then the organic coating agent shown below was added to Table 1. After spray-coating under the conditions shown, or applying the adhesive shown below under the conditions shown in Table 1, low-density polyethylene (thickness: 1.5 mm) was pressed by hot pressing to form an organic film. The undercoating solution was prepared by dissolving 0.1 mol of each of the surface treatment agents A to I represented by the following formula in toluene.
[0036]
Embedded image
[0037]
In the base treatment, (1) a base treatment liquid was applied to the surface of a mild steel plate with a nylon brush, and after 3 minutes, washed with toluene for 5 seconds. Thereafter, drying was performed in an atmosphere at 200 ° C. for about 3 minutes. (2) The mild steel sheet was immersed in the undercoat treatment liquid for 3 minutes. Next, the removed mild steel sheet was washed with toluene for 5 seconds, and then dried at 200 ° C. for about 3 minutes. It should be noted that, in the base treatments (1) and (2), the case where the toluene washing was omitted was used as a comparative example.
Note adsorption to mild steel plate of the ground processing material was NiS in XPS (X-ray photoelectron spectroscopy), and the peak shift of S 2 p 3, P 2 p 3 is deviated high 0.5~2eV is assumed that the adsorption state .
[0038]
The adhesive strength of the organic-coated mild steel sheet obtained by coating or lining (compression bonding by hot pressing) was measured by the following method. The results are shown in Table 1.
(1) A 5 × 5 cm (1 mm wide) cross cut was made at the center of a test piece (10 × 10 cm) cut from an organic-coated mild steel sheet obtained by spray coating. The test piece was placed in a salt water spray tester for 90 days, and the one-side peeling width from the cross-cut portion of the taken out test piece was examined. Also,
(2) The end portion of the test piece was ground by about 2 mm, and after aligning the end portion, the test piece was immersed in warm salt water (3 mass% saline solution, 60 ° C.) for 1000 hours. The adhesive strength and the peel distance from the end of the removed test piece were measured. The ratio of the test piece to the initial strength of the test piece was defined as the retention. The retention is preferably at least 40%. Here, the adhesive strength was measured by a pull-off method (peeling area: 1 cm 2 ) when an epoxy resin was used for the organic coating treatment. When a polyethylene resin was used, the 90-degree peel strength (10 mm width) was measured.
[0039]
(3) An artificial defect having a diameter of 5 mm was formed at the center of a test piece (10 × 10 cm) cut from the organic coated mild steel sheet obtained by lining, and a 70 mm-diameter cylinder was erected thereon. % Saline, 60 ° C.). Then, the surface of the test piece was kept at -1.5 V with respect to the reference electrode (SCE) using the counter electrode as a platinum electrode, and exposed to an electric furnace at 60 ° C for 30 days. The peeling distance around the defect of the collected test piece was examined.
[0040]
[Table 1]
[0041]
【The invention's effect】
Since the organic-coated steel material of the present invention has no adhesive deterioration and has long-term adhesive durability, it can withstand a long period of use even in a highly corrosive environment. Therefore, in a building, a pipe, and the like using the organic-coated steel material of the present invention, social loss and economic loss due to corrosion and paint deterioration can be avoided.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002197408A JP4110860B2 (en) | 2002-07-05 | 2002-07-05 | Method for producing organic coated steel with excellent adhesion durability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002197408A JP4110860B2 (en) | 2002-07-05 | 2002-07-05 | Method for producing organic coated steel with excellent adhesion durability |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004034603A true JP2004034603A (en) | 2004-02-05 |
JP2004034603A5 JP2004034603A5 (en) | 2005-10-13 |
JP4110860B2 JP4110860B2 (en) | 2008-07-02 |
Family
ID=31705190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002197408A Expired - Fee Related JP4110860B2 (en) | 2002-07-05 | 2002-07-05 | Method for producing organic coated steel with excellent adhesion durability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4110860B2 (en) |
-
2002
- 2002-07-05 JP JP2002197408A patent/JP4110860B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP4110860B2 (en) | 2008-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5478655A (en) | Metal pretreated with an inorganic/organic composite coating with enhanced paint adhesion | |
US7452428B2 (en) | Method for coating metal substrates with a radically polymerizable coating agent and coated substrates | |
JP4416167B2 (en) | Chemically treated ground treatment agent for anticorrosion coated steel, chemical groundwork treatment method for anticorrosive coated steel, and anticorrosive coated steel | |
JPS6022067B2 (en) | Method for forming film on metal surface | |
US6660386B2 (en) | Flame activated primer for polyolefinic coatings | |
CN1270641A (en) | Method and compositions for preventing corrosion of metal substrates | |
JPH10157004A (en) | Anticorrosive film, composite material, and coating method | |
JP3873680B2 (en) | Method for producing anti-corrosion coated steel | |
JP4110860B2 (en) | Method for producing organic coated steel with excellent adhesion durability | |
JP3128115B2 (en) | Painted sheet metal member having anticorrosive adhesive film based on polyacid, particularly automobile body, and method of applying such adhesive film | |
JP4617575B2 (en) | Method for producing anti-corrosion coated steel | |
KR102063914B1 (en) | Coating systems | |
JP3787047B2 (en) | Anticorrosive paint composition for steel | |
JPH10237417A (en) | Desalting agent and coating method | |
JP2002060963A (en) | Method for producing corrosion protective-converted steel | |
JP4665151B2 (en) | Anticorrosion paint composition for steel and steel coated with the same | |
CN114292592B (en) | Coating composition, coating and coating process applied to power equipment | |
JP4329217B2 (en) | Method for producing resin-coated steel | |
JP2735971B2 (en) | Coated body of hot-dip galvanized product | |
JPH10113613A (en) | Anticorrosive paint coating method | |
CN115433504A (en) | Stainless steel surface anti-corrosion treating agent and treating method | |
JPH0696831B2 (en) | Cable wire for suspension bridge with anti-rust treatment | |
JPH10277476A (en) | Surface treated metallic plate excellent in soil resistance and its production | |
김재호 | Concrete Formation of Organic Thin Film on Metal via Reduction of Aryl Diazonium Salt | |
JP5909891B2 (en) | High corrosion resistant black skin steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050610 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050610 |
|
A977 | Report on retrieval |
Effective date: 20070926 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20071002 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20071130 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Effective date: 20071225 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20080318 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20080331 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |