JP2004032463A - Method for dispersively speech amplifying to localize sound image by following to speaker movement and dispersively speech amplifying system - Google Patents

Method for dispersively speech amplifying to localize sound image by following to speaker movement and dispersively speech amplifying system Download PDF

Info

Publication number
JP2004032463A
JP2004032463A JP2002187102A JP2002187102A JP2004032463A JP 2004032463 A JP2004032463 A JP 2004032463A JP 2002187102 A JP2002187102 A JP 2002187102A JP 2002187102 A JP2002187102 A JP 2002187102A JP 2004032463 A JP2004032463 A JP 2004032463A
Authority
JP
Japan
Prior art keywords
sound
speaker
speakers
peripheral
sgx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002187102A
Other languages
Japanese (ja)
Inventor
Yuji Korenaga
是永 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002187102A priority Critical patent/JP2004032463A/en
Publication of JP2004032463A publication Critical patent/JP2004032463A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for dispersively speech amplifying to localize a sound image by following speaker movement which can change the direction of sound image localization by matching the direction of a moving sound source, and to provide a dispersively speed amplifying system. <P>SOLUTION: The method for dispersively speech amplifying to localize the sound image by following the speaker movement includes steps of dispersively disposing a plurality of speakers Sj having substantially equal acoustic characteristics used for a loudspeaker of a sound of a sound source O downward at a predetermined position above a sound receiving surface Ph, setting a site on the surface Ph vertically under the speakers Sj to a sound receiving point Pi, detecting the position of the source O moving in a sound field in which the speakers Sj are dispersively disposed, selecting the speaker nearest to the detected position of the source O of the speakers Sj as a main speaker So and sequentially ordering the residual speakers to the speakers Sgx in raising order of a distance from the speaker So, generating a loudspeaker sound of the source O from the speaker So at time zero without a time delay via a required input power, and time delaying the speakers Sgx sequentially in raising order and generating via the required input power. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、話者移動に追従して音像定位する分散拡声方法及び分散拡声システムに関し、特に、講演、式典、会議など集会に利用される空間において、音声や演奏を拡声する技術に関する。
【0002】
【従来の技術】
話者の声が話者(音源)の方向から聞こえること(音像定位)は、臨場感を増し、聞き手の集中力を持続する効果がある。従来の拡声方式としては、例えば、集中拡声方式、分散配置拡声方式がある。図15(a)は従来の拡声方式の一例である集中拡声方式を示し、同図(b)は他の例である分散配置拡声方式を示す。集中拡声方式では、話者または演奏者など音源Oの近傍にマイクロホンを設置し、発声などにより生じる音圧変化をマイクアンプおよびパワーアンプなどにより増幅し、単数または複数のスピーカSで拡声することにより音源Oからの音を聴者2へ伝達する。スピーカSは通常、舞台の両側に配置される。また分散配置拡声方式では、天井等に一定間隔で配置された複数のスピーカS0〜S4から音源Oの音を同時に拡声する。
【0003】
図16(a)及び(b)は、集中拡声方式及び分散拡声方式における、各スピーカからの拡声音が受音点に到達する時刻(以下、拡声音到達時刻という。)と受音点に到達した拡声音の音圧レベル(以下、拡声音到達音圧レベルという。)との関係の一例を示す。
【0004】
しかし、従来の集中拡声方式及び分散配置拡声方式には、以下のような問題点がある。
(1)見る方向と聞こえる方向とが違う。
スピーカが舞台両側にある集中拡声方式では、視野の中央にくる話者Oに対し、座席位置が舞台中央の対称軸より右側のときは右側のスピーカから話者Oの音声が聞こえ、対称軸より左側のときは左側のスピーカから話者Oの声が聞こえる状態となる。また分散配置拡声方式では、舞台上の話者Oの音声が頭上の天井スピーカから聞こえる状態となる。何れの方式も、聴者2にとっては話者Oの認知方向が視覚と聴覚で異なるという問題がある。
【0005】
(2)音がボケて聞こえる。
分散配置拡声方式では、図16(b)に示すように複数のスピーカS0〜S4から受音点に到達する音に方向および時間のズレが生じており、各スピーカS0〜S4からの音波の干渉により受音点において周波数特性に多くの山谷が生じる。その結果、受音点において音源の音がボケて不明瞭になる。
【0006】
(3)音の大きさが不自然となる。
集中拡散方式では、スピーカSを舞台中央付近に置くことで、視覚と聴覚の方向の不一致の解消が可能となる。しかし、舞台に近い場所と遠い場所とでは音の強さが大きく異なり、近くはうるさく、遠くでは聞こえないという問題が生じる。一方、分散スピーカをすべて同じ音量で拡声すると均一な音場がえられるものの、話者の見え方と音の大きさが不自然であると聴者に感じさせる問題がある。話者から離れた位置でも接近した位置と変わらない音量で聞こえると、日常の経験すなわち話者から離れると声は小さくなるという経験と著しく異なるため、音を不自然に感じてしまう。この不自然さは、話者から話しかけられている感じ(対話性)を損ない、話に集中できない、言いたいことが伝わらないなどの結果を生むとされている。
【0007】
上述した問題点を解決する拡声方法として、図15(c)に示すように、音源Oの近傍に主音源スピーカ(メインスピーカ)S0を配置し、音源から離れた場所の天井に分散スピーカS1〜S3を配置する半分散拡声方式がある。この方式では、分散スピーカに近い受音点でも話者方向から音がくるような感じ(話者方向と一致する方向の音像定位)を得るため、メインスピーカの発音時刻に対し分散スピーカの発音時刻を遅らせるように制御している。半分散拡声方式による各スピーカS0〜S3からの拡声音の受音点における到達時刻と到達音圧レベルとの関係の一例を図16(c)に示す。
【0008】
音像定位の方向は先行音効果と呼ばれるヒトの聴覚知覚に基づく。先行音効果とは、例えば図7に示すように、受音点においてスピーカAの方向からの音(先行音)を聞くと、別の方向のスピーカBから一定範囲の時間遅れと一定範囲の音圧レベル差を伴って到達する別の音(補強音)をスピーカAの方向(先行音の方向)に定位してしまう音響心理効果である。図8は、受音点において先行音効果が得られる先行音と補強音との間の到達時刻差(遅延時間、Tb−Ta=補強音の受音点到達時刻−先行音の受音点到達時刻)と到達音圧レベル差(Lb−La=補強音の受音点到達音圧レベル−先行音の受音点到達音圧レベル)との関係を示す。図中の斜線で示す範囲が先行音効果の得られる範囲、すなわち音像定位領域である。なお先行音効果はハース効果又は第一波面の法則と呼ばれることがある。
【0009】
半分散拡声方式では、図16(c)に示すように、メインスピーカS0からの音を受音点の聴者2に最初に到達するように制御する。また分散スピーカS1〜S3からの補強音(以下、後続音ということがある。)は、受音点の聴者2にメインスピーカS0からの先行音より10ms程度の時間遅れと図8に示す一定範囲の音圧レベル差を伴って到達するように制御する。このように各スピーカS0、S1〜S3からの拡声音の到達時刻と到達音圧レベルを制御することにより、受音点においてメインスピーカ方向の音像を定位することが可能となる。
【0010】
【発明が解決しようとする課題】
しかしながら、半分散拡声方式では、音源の位置の変化に対応できない問題点がある。音像定位を得るためには、聴者から見た話者(音源)の方向と先行音スピーカの方向とのずれが一定の許容範囲内にある必要がある。図4を参照するに、話者(音源)と聴者(受音点)とがXY平面(水平面)上のY軸上に原点を挟んで反対側(正側と負側)にあり、先行音スピーカがXZ平面上にあると仮定した場合、聴者から見て話者方向(Y軸方向)に対しX軸方向に±10度、Z軸(垂直)方向に±45度の範囲(同図の斜線で示す範囲)が先行音スピーカの配置許容範囲とされる。半分散拡声方式で話者の位置が変化する場合、例えば話者が広い会場を移動する場合或いは舞台位置が変化する場合には、話者の位置に合わせてメインスピーカS0を図4の配置許容範囲内に移動せねばならないが、現実にはメインスピーカS0の移動は困難である。また、客席の不特定な位置に質問者等が現れた場合にも、その質問者に音像を定位させることも不可能である。このため、大きな講演会場等において質問者の位置が分からない等の問題が発生している。音源位置の移動や質問者の不特定な位置での出現に応じて音像定位の方向を追従させることのできる拡声方法の開発が望まれている。
本発明は上記状況に鑑みてなされたもので、音像定位の方向を移動する音源の方向に合わせて変化させることのできる話者移動に追従して音像定位する分散拡声方法及び分散拡声システムを提供することにある。
【0011】
【課題を解決するための手段】
図1の実施例を参照するに、本発明に係る話者移動に追従して音像定位する分散拡声方法は、受音面Ph上方の所定位置に音源Oの音の拡声に使う実質上同一音響特性の複数のスピーカSj(1≦j≦n)を隣接スピーカのカバーエリアを一部重畳させて下向きに分散配置し、前記各スピーカSjの垂直下方の前記受音面Ph上の部位をそれぞれ受音点Pi(1≦i≦n)とし、前記各スピーカSjの分散配置された音場内にて移動する音源Oの位置を検出し、前記各スピーカSjのうち前記検出した音源Oの位置に最も近いスピーカを主スピーカSoとして選び且つ残余のスピーカを前記主スピーカSoからの距離の昇順に順位付けされた周辺スピーカSgx(x=1、2、......、(n−1))とし、前記主スピーカSoから前記音源Oの音の拡声音を時間遅延なしの時刻零に所要入力パワーで発音し、前記周辺スピーカSgxの各々について前記順位の昇順に時間遅延させて所要入力パワーで発音することにより、前記各受音点Piにおける音像の定位方向を前記音源Oヘ向かう方向としてなるものである。
【0012】
また、図1の実施例を参照するに、本発明に係る話者移動に追従して音像定位する分散拡声システムは、受音面Ph上方の所定位置に隣接スピーカのカバーエリアを一部重畳させて下向きに分散配置した実質上同一音響特性の拡声用スピーカSj(1≦j≦n)、前記各スピーカSjを分散配置した音場内にて移動する音源Oの位置を検出して検出信号を送出するマイクロホン位置検出装置、音源Oからの音響信号を前記各スピーカSjへ伝送する信号伝送装置、前記信号伝送装置と前記各スピーカSjとの間に設けられ且つ指示入力に応じて前記スピーカSj毎に前記音響信号の発音時刻と入力パワーとを調整して前記各スピーカSjへ出力する信号調整装置、前記マイクロホン位置検出装置からの検出信号を受けて前記各スピーカSjのうち音源Oに最も近いスピーカを主スピーカSoとして選択するスピーカ選択手段、前記主スピーカSo以外のスピーカSjを周辺スピーカSgx(x=1、2、......、(n−1))として前記主スピーカSoからの距離の昇順に順位付けするスピーカ順位付け手段、前記主スピーカSoの発音時刻及び入力パワーを指示する主スピーカ音指示手段、前記周辺スピーカSgxの発音時刻及び入力パワーを指示する周辺スピーカ音指示手段を備え、前記主スピーカ音指示手段及び周辺スピーカ音指示手段による発音時刻及び入力パワーの指示を前記信号調整装置へ入力することにより前記各受音点Piにおける音像の定位方向を前記音源Oヘ向かう方向としてなるものである。
【0013】
好ましくは、請求項3又は4記載の話者移動に追従して音像定位する分散拡声システムにおいて、前記マイクロホン位置検出装置が、マイクロホンに設けられタグ識別番号を送出する赤外線発信タグ、前記各スピーカSjに設けられるとともにリーダ識別番号を有し前記各スピーカSjのカバーエリアに進入した前記赤外線発信タグからの前記タグ識別番号を読み取り前記タグ識別番号及び前記リーダ識別番号を送出するタグ読み取り装置、前記音場内にて移動する前記マイクロホンの任意の位置を前記タグ識別番号及び前記リーダ識別番号に基づき検出する音源位置同定手段からなるものである。
【0014】
【発明の実施の形態】
以下、本発明に係る好適な実施の形態を図面を参照して詳細に説明する。
図1には受音面Phの上方に25個のスピーカSj(1≦j≦25)を下向きに分散配置した実施の形態を示す。受音面Phは、例えば床面6上の聴者2の耳の高さ位置hに想定した仮想面である。同図は床面6と平行な水平受音面Phを示すが、本発明が対象とする受音面Phは水平面に限定されない。スピーカSjは、受音面Phから一定高さの上方に、相互の間隔が一定となるように下向きに配置することが後述する信号調整の制御の観点からは望ましい。
【0015】
ただし、本発明のスピーカSjの分散配置は、必ずしも一定の高さ及び間隔での分散配置に限定されない。例えば、天井に段差がある場合は受音面Phから各スピーカSjまでの高さが一定ではなくなるが、各スピーカSjの入力パワーを前記高さの相違に応じて変化させることにより受音面Ph上における拡声音の音圧の相違を補償することができる。また後述するように隣接するスピーカSjのカバーエリアの重畳が例えば20%程度以上得られるのであれば、各スピーカSjの間隔も一定である必要はない。
【0016】
各スピーカSjは、後述のインテリジェントパワーアンプIPAを介してコンピュータ30に接続されている。このコンピュータ30には、マイクロホン位置検出装置37が接続される。マイクロホン位置検出装置37は、マイクロホン3に設けられる位置信号送出手段である赤外線発信タグ101と、各スピーカSjに設けられる位置信号読み取り手段であるタグ読み取り装置103と、例えばコンピュータ30に格納したプログラムである音源位置同定手段110とからなる。
【0017】
赤外線発信タグ101は、電池等の電源、発信回路、メモリを有し、割り当てられた固有のタグ識別番号を送出する。タグ読み取り装置103は、赤外線発信タグ101から発信されるタグ識別番号の信号を受信強度の検出値と共に受信可能としている。したがって、例えば隣接する二つのスピーカSj、Sjのカバーエリア重畳領域にマイクロホン3が進入した場合であっても、その受信信号強度から、どちらのスピーカSj、Sjに近いかが検出できるようになっている。
【0018】
また、それぞれのタグ読み取り装置103は、固有のリーダ識別番号を有している。タグ読み取り装置103は、スピーカSjのカバーエリアに進入した赤外線発信タグ101からのタグ識別番号を読み取り、このタグ識別番号と、自身に割り当てたリーダ識別番号とをコンピュータ30へ送出する。
【0019】
それぞれのスピーカSjは、インテリジェントパワーアンプIPAを備えている。インテリジェントパワーアンプIPAは、CPU、メモリ、RS485等の通信手段を有し、外部からの指示信号を受けてメモリの呼び出し、パラメータの設定、ボリューム調整等を実行する機能を有している。図2に示すように、タグ読み取り装置103は、インターフェース105を介して信号線109に接続され、インターフェース111を介してコンピュータ30に接続されている。また、インテリジェントパワーアンプIPAもインターフェース107を介して信号線109に接続され、インターフェース111を介してコンピュータ30に接続されている。
【0020】
コンピュータ30に格納された音源位置同定手段110は、タグ読み取り装置103が読み取った赤外線発信タグ101からのタグ識別番号及びタグ読み取り装置103のリーダ識別番号とに基づき、マイクロホン3がいずれのスピーカSjのカバーエリアに存在しているかを検出できるようになっている。図1に示すように、マイクロホン3が位置M1のときには、スピーカS1のカバーエリアにマイクロホン3が位置することを音源位置同定手段110が検出し、マイクロホン3が位置M2のときには、スピーカS3のカバーエリアにマイクロホン3が位置することを音源位置同定手段110が検出する。コンピュータ30は、この音源位置同定手段110の結果により、各スピーカSjのインテリジェントパワーアンプIPAに対して各パラメータの設定信号を送出するようになっている。
【0021】
図1では実質的に同一音響特性を有する複数のスピーカSjを用い、受音面Phにおいて隣接するスピーカのカバーエリアの一部分、例えば20%程度が重畳する高さHに配置している。半分散拡声方式のように分散スピーカと異なるメインスピーカを用いるのではなく、例えば音圧周波数特性や指向係数等の音響特性が実質的に同一のスピーカSjを用いることにより、各スピーカSjからの音色を揃え、受音面Ph上において音色の違いによる先行音効果の阻害を避けることができる。また、例えば1kHzを中心とする1オクターブバンド、好ましくは500Hz〜2kHzのバンドのカバーエリアを一部分重畳させることにより、受音面Ph上にそのバンドの音の到達しない領域が発生するのを避け、受音面Ph上のあらゆる位置で先行音効果を得ることを可能とする。
【0022】
一般的に、スピーカSjの特性A0(f)は、周波数f(Hz)における1(watt)信号入力時のスピーカ正面軸(水平指向方向0°、垂直指向方向0°)上の1mの点における自乗音圧P2(単位はPa(パスカル)の自乗、即ちPa2)として定義される。また音圧レベルLは、下記(1)式で示すように、20μPaの音圧P0(Pa)を基準とする自乗音圧P2として定義される。以下の説明において、20μPaの音圧P0を基準とする自乗音圧P2(P2/P02)を自乗音圧Iと表す。
【0023】
スピーカの音圧周波数特性は、1(watt)信号入力時のスピーカ正面軸1mの点での音圧レベルLの周波数特性として定義される。また、水平指向方向φ、垂直指向方向θにおける音圧をA(f、θ、φ)と表し、A0(f)をA(f、0、0)と表せば、指向係数D(f、θ、φ)は下記(2)式のように定義される。スピーカに対し水平指向方向φ、垂直指向方向θの方向に距離R(m)だけ離れた受音点に到達する拡声音の自乗音圧I及び音圧レベルLは、下記(3)式及び(4)式に示すように、スピーカSから受音点までの距離R(m)と、スピーカの指向係数D(f、θ、φ)と、スピーカの音圧周波数特性A(f)と、入力パワーW(watt)との関数として表される。
【0024】
【数1】

Figure 2004032463
【0025】
図1では、音圧周波数特性、指向係数等の音響特性が同一のスピーカSjのみを使用している。図3(b)のグラフは、正面軸に対し音圧レベルLが−6dB減衰する開き角度(指向角)の指向周波数特性を示す。例えば図3(b)の指向周波数特性のスピーカを本発明の分散配置スピーカSjとして選択した場合、1kHzの指向角が85〜90度程度であるから、その指向角とカバーエリアの重畳率とを考慮して各スピーカSjの受音面Phからの配置高さを設計することができる。図1のスピーカ配置は、図3に示す指向周波数特性のスピーカを分散配置した場合の一例である。
【0026】
ただし、本発明で用いるスピーカSjは必ずしも同一種類のものに限定されない。例えば1kHzを中心とする1オクターブバンド、好ましくは500Hz〜2kHzのバンドの音質の違いが少なく、実質的に同一音響特性であるときは、種類の異なるスピーカを用いることができる。
【0027】
分散配置スピーカSjの相互間隔は、受音点に対する音源O方向の2つのスピーカSjの伝送特性が類似するように定める。後述するように本発明では、音源Oに最も近いスピーカSjを先行音スピーカとし、音源Oから受音点(聴者2)へ向かう方向の周辺のスピーカSjを後続音スピーカとして音像を定位する。配置高さとの関係を考慮しつつ分散配置スピーカSjの間隔を適当に設計することにより、受音面Ph上の任意の受音点において、音源方向の先行音スピーカと後続音スピーカの両耳に対する伝送特性の差を音像定位が可能な許容範囲内とすることができる。
【0028】
さらに、上述したスピーカSjの配置において、受音点から見た音源Oの方向と先行音スピーカの方向とのずれを図4に示す許容範囲内に収める。例えば図1では、スピーカS5の下方の聴者2から見て、話者Oが他の何れのスピーカSjの下方にいる場合でも、話者Oの方向に対し話者上方のスピーカSjが図4の許容範囲内に配置されているので、話者上方のスピーカを先行音スピーカとして音像定位を得ることができる。すなわち本発明では、複数のスピーカSjを上記カバーエリアの重畳を得る高さと、類似の伝送特性を得る相互間隔と、先行音スピーカの配置許容範囲とを満たす所定位置に分散配置する。
【0029】
分散配置した各スピーカSjには、信号伝送装置10により音源Oからの音響信号が入力される。図1の信号伝送装置10は、マイクロホン3とミキサー11と信号伝送路とを有する。マイクロホン3は音場内の話者や演奏者その他の音源Oの近傍に配置して直接音を収音する。収音した直接音は、マイクアンプ(図示せず)で増幅したのち、ミキサー11により音場全体の音量コントロールが施され、後述の信号調整装置20へ送られる。ミキサー11でのマイク音量コントロールは、音源Oの音量を考慮して、オペレータが手動でコントロールできる。ただし、本発明の適用範囲は音場内の音源Oの音の拡声に限定されず、例えば予め録音した音源から拡声により音像を定位させる場合等にも適用できる。
【0030】
本発明では、信号伝送装置10と各スピーカSjとの間に、各スピーカSjの音響遅延と音圧レベルを調整する信号調整装置(イフェクタ)20を挿入する。信号調整装置20の一例は、図13に示すように、コンピュータ30(図14参照)からの指示信号の入力に応じて、スピーカSj毎に音響信号の発音時刻と入力パワーとを調整する音響遅延回路21及び音圧レベル制御回路(音量制御回路)22を有するものである。各信号調整装置20はコンピュータ30に接続され、コンピュータ30より各信号調整装置20の音響遅延と入力パワーの調整とが一括して制御される。
【0031】
図5は、音場内の音源Oの音の拡声により音像定位を得る場合におけるコンピュータ30による信号調整装置20の制御の流れ図の一例を示す。以下、図5の流れ図を参照して本発明の拡声方法を説明する。先ずステップ601において音場内の音源Oの位置を検出する。図1では、マイクロホン位置検出装置37の検出信号に基づき音源Oの位置を検出している。
【0032】
すなわち、マイクロホン3に付設した赤外線発信タグ101からはタグ識別番号が送出される。このタグ識別番号は、マイクロホン3が位置しているカバーエリアのタグ読み取り装置103によって検出される。タグ読み取り装置103は、このタグ識別番号と、自身に割り当てたリーダ識別番号とをコンピュータ30へ送出する。コンピュータ30は、音源位置同定手段110によってこれらの識別番号からマイクロホン3の位置を検出する。つまり、マイクロホン3の位置は、マイクロホン位置検出装置37によって自動検出される。
【0033】
次にステップ602において、スピーカ選択手段31により音源Oに最も近いスピーカS1を主スピーカSoとして選択する。スピーカ選択手段31の一例は、音源Oと各スピーカSjとの間の距離を計算して距離最小のスピーカS1を選択するコンピュータ内蔵のプログラムである。
【0034】
ステップ603では、例えばコンピュータ30内蔵のプログラムであるスピーカ順位付け手段32により、主スピーカSo以外の分散配置スピーカSjを主スピーカSoからの距離の昇順に順位付けする。本明細書において、順位付けされたスピーカSjを周辺スピーカSgx(x=1、2、......、(n−1))という。例えば図1では、分散配置のスピーカS2を音源Oに一番近い周辺スピーカSg1とし、スピーカS3を4番目に近い周辺スピーカSg4とし、スピーカS4を8番目に近い周辺スピーカSg8とし、スピーカS5を15番目に近い周辺スピーカSg15として順位付けしている。
【0035】
ステップ601〜603に示すように、本発明では主スピーカSoの位置を固定せず、音源Oに最も近い分散スピーカを主スピーカSoとし、主スピーカSoからの距離に応じて周辺スピーカSgxを順位付けするので、音源Oが移動した場合でも移動に応じて主スピーカSoの位置及び周辺スピーカSgxの順位を変化させ、受音面Ph上における音像定位を変化させる。すなわち、移動する音源Oに追従して音像定位することができる。
【0036】
ステップ604において、例えばコンピュータ30内蔵のプログラムである主スピーカ音指示手段33により、主スピーカSoの発音時刻To及び入力パワーWoを指示する。例えば主スピーカSoで信号伝送装置10からの音響信号を時間遅延なく発音し、その発音時刻Toを時刻零(ms)とおく。ただし主スピーカSoの発音時刻Toに時間遅延を設けても、本発明の音像定位を得ることが可能である。また主スピーカSoの入力パワーWoは、マイクロホン3における主スピーカSoからの拡声音到達音圧レベルが、話者Oから肉声の到達音音圧レベル(1m離れた地点の音圧レベル)に比べてハウリング防止に要するレベル、例えば2dBだけ低いレベルとなるように決定する。ただし、ハウリングの発生がない場合は主スピーカSoの入力パワーWoを所要レベルとすることができる。主スピーカSoの入力パワーWoの決定に際し、マイクロホン3に対応するミキサー11のボリュームを適宜調整でき、その際のアンプ12の減衰器(attenuator)の減衰量(以下、アッテネータ位置ということがある。)を0(dB)とおくことができる。
【0037】
ステップ605以降の周辺スピーカ音指示手段34による各周辺スピーカSgxの発音時刻及び入力パワーの決定方法については、説明簡単化のため、話者Oと聴者2との間に5つのスピーカS1〜S5を配置した図6を参照して説明する。図6は、話者Oに最も近いスピーカS1を主スピーカSoとし、スピーカS2〜S5を周辺スピーカSg1〜Sg4として順位付けし、周辺スピーカSg4の下方に聴者2がいる場合である。ステップ605では、先ず各スピーカS1〜S5の垂直下方の受音面Ph上に受音点P1〜P5を定める。図6において、受音点P1は主スピーカSoの垂直下方の受音点Po、受音点P2〜P5は周辺スピーカSgx(Sg1〜Sg4)の垂直下方の受音点Pgx(Pg1〜Pg4)である。
【0038】
主スピーカSoからの拡声音が周辺スピーカSgx下方の受音点Pgxに到達するに要する時間は、主スピーカSoと受音点Pgxとの間の距離をRoxとすれば、下記(10)式として算出できる。(10)式において符号Cは音速(m/s)を表す。通常は音速Cとして常温・常湿(23℃、相対湿度60%)の音速を用いる。また、受音点Pgxに到達した主スピーカSoからの拡声音の音圧レベルLoxは、式(4)を参照して下記(11)式として表すことができる。(11)式において、Woは主スピーカSoの入力パワー、Doは主スピーカSoの指向係数を示す。
【0039】
また、周辺スピーカSgxからその下方の受音点Pgxへの拡声音の到達に要する時間及び到達音圧レベルLxxも、周辺スピーカSgxと受音点Pgxとの間の距離をRxxとすれば、主スピーカSoの場合と同様にして(12)式、(13)式として表わすことができる。(13)式において、Wxは周辺スピーカSgxの入力パワー、Dxは周辺スピーカSgxの指向係数を示す。なお図示例では、主スピーカSoと周辺スピーカSgxとは同一の音響特性であるから、(11)式と(13)式のA(f)は同じである。
【0040】
各受音点Pgxには、主スピーカ及び複数の周辺スピーカからの拡声音が到達し得る。複数の同一特性A(f)のスピーカSj(j=1、2、3、......)からの拡声音が到達する受音点Pgxでの合成音圧レベル(以下、聴取音圧レベルという。)は、各スピーカSjからの到達音圧の自乗音圧Iの総和に基づき、下記(14)式で表すことができる。
【0041】
【数2】
Figure 2004032463
【0042】
ステップ605〜612では、各周辺スピーカSgxの順位の昇順に従い、各周辺スピーカSgxの発音時刻及び入力パワーを決定する。先ず図6の周辺スピーカSg1について、ステップ605で主スピーカSoから周辺スピーカSg1の下方の受音点Pg1までの距離Ro1と、周辺スピーカSg1から受音点Pg1までの距離R11を算出する。周辺スピーカSg1の場合は、下位順位の周辺スピーカSgx、すなわち周辺スピーカSg1よりも更に主スピーカSoに近い周辺スピーカSgxは存在しない。ステップ606では、主スピーカSoから受音点Pg1までの距離Ro1の(10)式ヘの代入結果と主スピーカSoの発音時刻To=0(ms)とから、受音点Pg1における主スピーカSoからの拡声音到達時刻To1を算出する。また、主スピーカSoから受音点Pg1までの距離Ro1と主スピーカSoの入力パワーWo及び指向係数Doとの(11)式ヘの代入結果から、受音点Pg1における主スピーカSoからの拡声音到達音圧レベルLo1を算出する。ただし主スピーカSoの音圧周波数特性A(f)は所定とする。
【0043】
ステップ607では、主スピーカSoからの拡声音到達時刻To1に対し先行音効果を与える遅延時間Δt1を求める。この遅延時間Δt1は、主スピーカSoに最も近い距離の周辺スピーカSg1で最短遅延時間Δtmin、例えば3msとし、主スピーカSoから最も遠い距離の周辺スピーカSg4で最長遅延時間Δtmax、例えば10msとし、他の周辺スピーカSg2、Sg3では主スピーカSoから当該周辺スピーカSg2、Sg3下方の受音点Pg2、Pg3までの距離Ro2、Ro3に比例配分した時間として定めることができる。
【0044】
ただし遅延時間Δt1の決定方法は前記距離に応じた比例配分による方法に限定されない。例えば、主スピーカSoから周辺スピーカSg2、Sg3下方の受音点Pg2、Pg3までの距離Ro2、Ro3の対数(logRox)に比例した最短遅延時間と最長遅延時間との間の時間として定めることができる。下記表1は、この関係から定めた各周辺スピーカSg1〜Sg4の遅延時間Δtxを示す。ただし表1では、最短遅延時間Δtminである周辺スピーカSg1の遅延時間Δt1を6msとし、最長遅延時間Δtmaxである周辺スピーカSg4の遅延時間Δt4を30msとしている。
【0045】
求めた遅延時間Δt1と主スピーカSoからの拡声音到達時刻To1との和として、ステップ607において、周辺スピーカSg1からの拡声音が受音点Pg1に到達すべき到達時刻T11(=To1+Δt1)を算出する。拡声音の到達すべき時刻T11が分かれば、周辺スピーカSg1から受音点Pg1までの距離R11を(12)式へ代入することにより、ステップ608において拡声音到達時刻T11に対応する周辺スピーカSg1の発音時刻を決定することができる。
【0046】
【表1】
Figure 2004032463
【0047】
ステップ609において、受音点Pg1に周辺スピーカSg1からの拡声音到達時刻T11より先行して到達する下位順位の周辺スピーカSgk及び主スピーカSoからの拡声音到達音圧レベルの総和を求める。この場合は、受音点Pg1において周辺スピーカSg1からの拡声音到達時刻より先行して到達する拡声音は主スピーカSoからの拡声音のみであるから、主スピーカSoからの拡声音の到達音圧レベルLo1を先行する拡声音の到達音圧レベルの総和とし、ステップ610において主スピーカSoからの拡声音到達音圧レベルLo1に対し先行音効果を与える音圧レベル差ΔL1を算出する。この音圧レベル差ΔL1は、例えば図8に示すように、先行音効果を与えるに必要な先行音から後続音までの遅延時間Δtと先行音・後続音間の音圧レベル差ΔLとの関係式(ΔL=f(Δt))を予め実験等により定め、周辺スピーカSg1の発音時刻の算出に要する遅延時間Δt1を図8の関係式へ代入(ΔL1=f(Δt1))することにより定めることができる。
【0048】
求めた音圧レベル差ΔL1と主スピーカSoからの拡声音到達音圧レベルLo1(=10logIo1)とから、ステップ612において周辺スピーカSg1からの拡声音が受音点Pg1において示すべき音圧レベルL11(=10logIo1+ΔL1)を算出し、算出した到達音圧レベルL11と周辺スピーカSg1から受音点Pg1までの距離R11とを(13)式へ代入することにより、ステップ612において周辺スピーカSg1の入力パワーW1を決定する。
【0049】
例えば図8では、周辺スピーカSg1の到達時間の遅延時間Δt1を6msとした場合、周辺スピーカSg1からの到達音圧レベルと主スピーカSoからの到達音圧レベルとの差が6dB以内であれば音像定位が得られることを示す。主スピーカSoの受音点Pg1における到達音圧レベルLo1は、(11)式に示すように、距離減衰などにより下がっている。主スピーカSoの受音点Pg1における到達音圧レベルLo1を基準とし、受音点Pg1において周辺スピーカSg1からの音圧レベルが(Lo1+6)(dB)となるように周辺スピーカSg1の相対入力レベルをアンプ12のアッテネータ位置により決めた結果が表1に示す−3(dB)である。このように、周辺スピーカSgxの入力パワーがステップ611で算出した値となるように、アンプ12のアッテネータ位置を調整し又は補正することができる。
【0050】
ステップ612で周辺スピーカSg1の発音時刻と入力パワーとを決定したのち、ステップ613ヘ進み、全ての周辺スピーカについて発音時刻と入力パワーの算出が終了したか否かを判断する。この場合は周辺スピーカSg2〜Sg4の処理が残っているのでステップ605へ戻り、ステップ605〜612を繰り返すことにより、周辺スピーカSg2について発音時刻及び入力パワーを決定する。周辺スピーカSg2の場合は下位順位の周辺スピーカSg1が存在するので、ステップ605において主スピーカSoから受音点Pg2までの距離Ro2、周辺スピーカSg2から受音点Pg2までの距離R22の算出に加えて、下位順位の周辺スピーカSg1から受音点Pg2までの距離R12を算出する。またステップ606において、下位順位の周辺スピーカSg1からの拡声音が受音点Pg2に到達する時刻、及び拡声音到達音圧レベルL12を(12)式及び(13)式に基づき算出する。
【0051】
ステップ607において主スピーカSoからの拡声音到達時刻To2に対し先行音効果を与える遅延時間Δt2を求めるが、この算出方法は周辺スピーカSg1について上述した方法と同様である。この遅延時間Δt2と主スピーカSoからの拡声音到達時刻To2との和から、受音点Pg2において周辺スピーカSg2からの拡声音が到達すべき時刻T22(=To2+Δt2)を求める。拡声音の到達すべき時刻T22が分かれば、周辺スピーカSg2から受音点Pg2までの距離R22を(12)式へ代入することにより、ステップ608において周辺スピーカSg2の発音時刻を決定できる。
【0052】
ステップ609では、受音点Pg2において周辺スピーカSg2からの拡声音到達時刻T22と周辺スピーカSg1からの拡声音到達時刻T12とを比較し、周辺スピーカSg1からの拡声音到達時刻T12が先行する場合は、受音点Pg2における周辺スピーカSg1からの到達拡声音の自乗音圧I12と主スピーカSoからの到達拡声音の自乗音圧Io2との和(I12+Io2)を求め、その自乗音圧の和(I12+Io2)を(14)式へ代入することにより、周辺スピーカSg1からの拡声音到達音圧レベルL12と主スピーカSoからの拡声音到達音圧レベルLoxとの総和(=10log(I12+Io2))を算出する。
【0053】
本発明者は、各受音点Pgxにおいて下位順位の周辺スピーカSgk(k=1、2、......、(x−1))からの拡声音が周辺スピーカSgxからの拡声音に対し先行して到達している場合は、主スピーカSoからの拡声音到達音圧レベルLoxのみではなく、下位順位の周辺スピーカSgkからの拡声音到音圧レベルLkx(=10logΣIkx)と主スピーカSoからの拡声音到達音圧レベルLox(=10logIox)との総和(=10log(ΣIkx+Iox))に対して先行音効果を与えるように当該受音点Pgxの上方の周辺スピーカSgxからの拡声音到達音圧レベルLxxを定めることにより、広い受音面Phにおいて、その上のあらゆる受音点で確実に先行音効果が得られることを見出した。本発明はかかる知見に基づくものである。
【0054】
ステップ610では、例えば図8の関係式へ周辺スピーカSg2の発音時刻の遅延時間Δt2を代入(ΔL2=f(Δt2))することにより音圧レベル差ΔL2を求める。求めたレベル差ΔL2を前記総和(=10log(I12+Io2))ヘ加えることにより、周辺スピーカSg2からの到達音が受音点Pg2で示すべき音圧レベルL22(=10log(I12+Io2)+ΔL2)を求める。到達音圧レベルが求まれば、ステップ612において、上述した周辺スピーカSg1の場合と同様に(13)式への代入により周辺スピーカSg2の入力パワーW2を決定できる。
【0055】
ステップ612で周辺スピーカSg2の発音時刻と入力パワーとを決定したのち、ステップ613から反復してステップ605へ戻り、周辺スピーカSg3、Sg4についてステップ605〜612を繰り返す。図5のステップ605〜612を全ての周辺スピーカSgxについて順位の昇順に繰り返すことにより、全ての周辺スピーカSgxの発音時刻及び入力パワーが決定できる。コンピュータ30により決定した各周辺スピーカSgxの発音時刻及び入力パワーの指示信号を信号調整装置20ヘ入力することにより、信号伝送装置10からの音響信号の発音時刻と入力パワーとをスピーカSj毎に調整し、調整後の音響信号をパワーアンプ12経由で各スピーカSjへ入力する(図1参照)。
【0056】
図9は、上述したように決定した各スピーカSo、Sg1〜Sg4からの拡声音が受音点Sg4につくる音圧を示す。すなわち、この場合は話者Oからの肉声が最先の先行音として到達し、話者Oに最も近い主スピーカSoからの拡声音が続き、次に周辺スピーカSg1、Sg2、Sg3の拡声音が順に到達する。最後に周辺スピーカSg4からの拡声音が到達する。肉声と各スピーカからの拡声音との関係、スピーカからの拡声音の相互関係は先行音効果が働く条件を満たしているため、受音点Sg4の聴者2の音場知覚にとっては、合成された音圧の主観レベルが図10の実線のようになると考えられる。すなわち図10の実線は、複数の分散配置のスピーカからの拡声音が一つの音として聴者2に知覚されることを示す。
【0057】
本発明は、実質的に同一の音響特性のスピーカを用いるのでスピーカの音色の違いはなく、またスピーカ間隔の適当な設定により聴者の両耳に対する伝送特性の差を許容範囲に収め、しかも各周辺スピーカの発音時刻と入力パワーを主スピーカからの拡声音が先行音となるように制御するので、受音面上のあらゆる位置で音源Oヘ向かう方向に音像が定位できる。また音源の位置の移動に応じて主スピーカの選択と周辺スピーカの順位付けを行なうことができるので、移動する音源に音像を定位させることができる。また不特定な位置に表れる質問者等に音像を定位させることも可能である。
【0058】
こうして本発明の目的である「音像定位の方向を移動する音源の方向に合わせて変化させ得る話者移動に追従して音像定位する分散拡声方法及び分散拡声システム」の提供を達成できる。
【0059】
好ましくは、各受音点Piの聴取音圧レベルを所定目標音圧レベルLhcに抑制することにより、聴者2が受音面Phの如何なる受音点Piにいても、所定目標音圧レベルで聴取できるようにする。この場合は図5のステップ611で、例えば受音点Pg4における聴取音圧レベルを、受音点Pg4における周辺スピーカSg4からの拡声音到達音圧レベルL44(=10logI44)と、先行して到達する下位順位の周辺スピーカSgk(k=1、2、3)及び主スピーカSoからの拡声音到達音圧レベルの総和(=10log(ΣIk4+Io4))との総計(=10logΣ(I44+ΣIk4+Io4))として求める。求めた聴取音圧レベルが目標音圧レベルLhcを超えるときは、周辺スピーカPg4の到着音音圧レベルL44を先行音効果が得られる範囲内において総計(=10logΣ(I44+Ik4+Io4))が目標音圧レベルLhcと一致するまで抑制する。
【0060】
更に好ましくは、目標音圧レベルLhcを図11の実線に示すように定め、各スピーカSjのつくる受音面Ph上の合成音場の音圧レベルが、音源Oから離れるに従って減衰するように制御する。この減衰制御は、音源Oから離れると音が小さくなるという日常の経験と合致した音場の形成を可能とし、聴者にとって音場が自然な感じで知覚されるように作用する。このため、講演会などであれば聴者は話者から話しかけられているという感じをもちながら聴くことができ、話者は聴衆の反応をよく感じ取りながら話題を展開する等の心理的なフィードバックが可能となリ、参加者にとって互いの意思の疎通が図れるという効果が期待できる。
【0061】
図11に示す目標音圧レベルLhcは、音源Oからの距離Rhに応じてレベルが低下するが、距離Rhに対する低下の傾きが自由音場における音の減衰の傾きよりも小さいものである。この目標音圧レベルLhcによれば、聴者に自然な知覚を与えつつ、十分大きな音圧で拡声することができる。図中の40dB以下の黒く塗りつぶした部分は、音が小さすぎて聴者の聞き取りに支障が生じる範囲を示す。自由音場では、話者がやや大きい声で発声した場合でも100m程度離れた聴者には聞き取り難い場合があるが、図11の目標音圧レベルLhcを用いた拡声方法によれば、聴者に自然な音場感覚を与えつつ、100m離れた地点でも十分な音圧で話者の発声を聞くことができる。
【0062】
本発明者は、図11に示すように目標音圧レベルLhcとして、主スピーカSo下方の受音点Poにおける主スピーカSoからの拡声音到達音圧レベルLooを最大レベルとし、主スピーカSoからの距離Rhの対数(logRh)に比例してレベルが低減するような傾斜型目標音圧レベルLhc=Loo−3.0×logRhを用いることにより、聴者が音と距離との不自然なずれを感じることなく、話者から離れた位置でも話者が近くにいるかのように明瞭でスッキリした自然な音を聞くことができる音場が形成できることを実験的に確認した。ただし、傾斜型目標音圧レベルLhcの減衰の比例定数は図示例に限定されない。
【0063】
【実施例】
図12は信号調整装置20とアンプ24を一体にした複合アンプ20bを用いた本発明の実施例を示し、図13は同実施例で使用する複合アンプ20bのブロック図を示す。図示例では、複合アンプ20bの相互間はタンデム接続されており、1本のデジタル音響信号ライン27と制御信号ライン28とにより複合アンプ20bの各々へ音響信号と制御信号とを供給している。複合アンプ20bは2つの音響遅延部21L、21Rと2つの音量制御部22L、22Rを有し、2チャンネルのデジタル音響信号を同時に処理することができる。
【0064】
コンピュータ30(図14参照)により算出された主スピーカSo及び各周辺スピーカSgxの発音時刻(遅延時間)と入力パワー(音量)は、インターフェース14及び制御ライン28経由で複合アンプ20bのCPU25へ送られる。CPU25は音響遅延部21L、21R、音量制御部22L、22Rとに接続され、パターンメモリ26に記憶された処理パターンに従って2チャンネルのデジタル音響信号の発音時刻及び入力パワーを調整する。調整後のデジタル音響信号は、ミキサ23でミキシングされ、アンプ24、出力ライン29経由でスピーカへ送られる。同図の複合アンプ20bを用いれば、2つの音源の音を同時に処理することができ、受音面Ph上の2箇所の音源に向けた音像を同時に定位させることが可能となる。
【0065】
図14は、複合アンプ20bを用いた本発明の更に他の実施例を示す。床面から3.5mの高さに5m×3.5mの間隔で格子状に14台のスピーカSjを分散配置し、各スピーカSjにそれぞれ複合アンプ20を取り付けた。同図に示すように、スピーカS1の下方の第1音源とスピーカS4の下方の第2音源の音をそれぞれマイクロホン3及び4で収音し、ミキサー11経由でインターフェース14へ入力した。他方、コンピュータ30では2つの音源への音像定位に必要な制御信号を図6の流れ図に従ってそれぞれ算出し、インターフェース14へ入力した。ミキサ11からのデジタル音響信号とコンピュータ30からの制御信号とをインタフェース14経由で各スピーカSjの複合アンプ20へ伝送した。各複合アンプ20は図14に示すようにタンデム状に接続した。複合アンプ20bにおいて右チャンネルヘ送られたマイクロホン3からのデジタル音響信号と、左チャンネルへ送られたマイクロホン4からのデジタル音響信号とを同時に処理し、ミキサー23及びメインアンプ24経由で各スピーカSjへ出力した。
【0066】
図14の実施例で用いた制御信号の一例を表2に示す。本発明者は、表2の制御信号により、受音面Ph上で第1音源へ向かう音像と第2音源ヘ向かう音像とを同時に定位できることを確認した。図14及び表2の実施例から分かるように、例えば舞台上の講演者と会場内の質間者などのように音場内に2つの音源Oが存在する場合でも、本発明の拡声方法によれば、講演者を第一音源として音像定位し且つ同時に質間者を第二音源として音像定位を行うことが可能である。この同時に2つの音像定位を行なうことにより、講演者と質問者がお互いの声をよく聞くことができるので話しやすい、さらには会場内のどこにいても両者のやりとりが自然な感じで聞こえる、という音場を創り出すことができる。
【0067】
【表2】
Figure 2004032463
【0068】
【発明の効果】
以上詳細に説明したように、本発明に係る話者移動に追従して音像定位する分散拡声方法及び分散拡声システムによれば、受音面上方に実質上同一音響特性の複数のスピーカSjをカバーエリアを一部重畳させて下向きに分散配置し、各スピーカSjの分散配置された音場内にて移動する音源Oの位置を検出し、各スピーカSjのうち検出した音源Oの位置に最も近いスピーカを主スピーカSoとし且つ残余のスピーカを主スピーカSoからの距離の昇順に順位付けされた周辺スピーカSgxとし、主スピーカからの拡声音が先行音効果を与えるように各周辺スピーカの発音時刻と入力レベルを制御し、受音面上の音像の定位方向を音源Oヘ向かう方向とするので、音源の位置の変化に対応することができる。すなわち、音源が移動する場合であっても主スピーカを選択し直すことにより、移動に応じた音源へ向かう方向に音像を定位することができる。したがって、話者の位置が変化する場合、例えば話者が広い会場を移動する場合或いは舞台位置が変化する場合においても、話者の位置に合わせて主スピーカSoを実質的に配置許容範囲内に移動させたのと同等の状態が得られることになる。これにより、音源位置の移動や質問者の不特定な位置での出現に応じて音像定位の方向を追従させることができ、大きな講演会場等において、移動する話者の位置や質問者の位置が分からない等の問題を解決することができる。
【図面の簡単な説明】
【図1】本発明に係る実施の形態の説明図である。
【図2】インテリジェントパワーアンプとタグ読み取り装置との接続例の説明図である。
【図3】スピーカの音響特性の一例の説明図である。
【図4】先行音効果を得るための先行音スピーカの配置許容範囲の説明図である。
【図5】各スピーカの発音時刻と入力パワーの算出方法の流れ図の一例である。
【図6】本発明の音像定位の原理を示す説明図である。
【図7】先行音効果の説明図である。
【図8】先行音効果が得られる先行音と補強音との関係の説明図である。
【図9】図6の受音点における各スピーカからの到達音の説明図である。
【図10】図6の受音点における音強度の説明図である。
【図11】受音点の目標音圧レベルの説明図である。
【図12】2チャンネル複合アンプを用いた本発明の実施例の説明図である。
【図13】2チャンネル複合アンプの説明図である。
【図14】本発明の他の実施例の説明図である。
【図15】従来の集中拡声方式、分散拡声方式、及び半分散拡声方式の説明図である。
【図16】従来の集中拡声方式、分散拡声方式、及び半分散拡声方式における受音点での到達音声レベルの説明図である。
【符号の説明】
3…マイクロホン、10…信号伝送装置、20…信号調整装置、31…スピーカ選択手段、32…スピーカ順位付け手段、33…主スピーカ音指示手段、34…周辺スピーカ音指示手段、37…マイクロホン位置検出装置、101…赤外線発信タグ、103…タグ読み取り装置、110…音源位置同定手段、O…音源、Ph…受音面、Pi…受音点、Sj…スピーカ、So…主スピーカ、Sgx…周辺スピーカ、Pgx…下方の受音点[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a distributed loudspeaker method and a distributed loudspeaker system for localizing a sound image following speaker movement, and more particularly to a technique for vocalizing voice and performance in a space used for gatherings such as lectures, ceremonies, and conferences.
[0002]
[Prior art]
Hearing the voice of the speaker from the direction of the speaker (sound source) (sound image localization) has the effect of increasing the sense of presence and maintaining the concentration of the listener. Conventional loudspeaker systems include, for example, a centralized loudspeaker system and a distributed arrangement loudspeaker system. FIG. 15A shows a centralized loudspeaker system as an example of a conventional loudspeaker system, and FIG. 15B shows a distributed arrangement loudspeaker system as another example. In the centralized loudspeaker system, a microphone is installed in the vicinity of a sound source O such as a speaker or a performer, and a sound pressure change caused by vocalization or the like is amplified by a microphone amplifier and a power amplifier and the like, and is amplified by one or more speakers S. The sound from the sound source O is transmitted to the listener 2. The speakers S are usually arranged on both sides of the stage. In the distributed arrangement loudspeaker system, the sound of the sound source O is simultaneously loudspeaked from a plurality of speakers S0 to S4 arranged at fixed intervals on a ceiling or the like.
[0003]
FIGS. 16A and 16B show the time when the loud sound from each speaker reaches a sound receiving point (hereinafter, referred to as a loud sound arrival time) and the sound receiving point in the centralized loudspeaker system and the distributed loudspeaker system. An example of the relationship with the sound pressure level of the loudspeaker sound (hereinafter, referred to as loudspeaker arrival sound pressure level) is shown.
[0004]
However, the conventional centralized loudspeaker system and the distributed arrangement loudspeaker system have the following problems.
(1) The viewing direction is different from the audible direction.
In the centralized loudspeaker system in which the speakers are on both sides of the stage, when the seat position is on the right side of the symmetry axis at the center of the stage, the voice of speaker O is heard from the right speaker and the speaker O comes to the center of the visual field. On the left side, the voice of speaker O can be heard from the left speaker. Further, in the distributed placement and loudspeaker system, the sound of the speaker O on the stage can be heard from the overhead speaker. Both methods have a problem that the listener 2 has a different recognition direction of the speaker O for vision and hearing.
[0005]
(2) The sound is out of focus.
In the distributed arrangement loudspeaker system, as shown in FIG. 16B, the sound reaching the sound receiving point from the plurality of speakers S0 to S4 has a difference in direction and time, and interference of sound waves from the speakers S0 to S4 occurs. As a result, many peaks and valleys occur in the frequency characteristics at the sound receiving point. As a result, the sound of the sound source is blurred and unclear at the sound receiving point.
[0006]
(3) The volume of the sound becomes unnatural.
In the concentrated diffusion method, by disposing the speaker S near the center of the stage, it is possible to eliminate the mismatch between the visual and auditory directions. However, the intensity of the sound is significantly different between a place close to the stage and a place far from the stage, and there is a problem that the sound is noisy near and inaudible at a distance. On the other hand, if the distributed speakers are all loudspeaked at the same volume, a uniform sound field can be obtained, but there is a problem that the listener feels that the speaker's appearance and sound volume are unnatural. If the sound is heard at the same volume as the close position even at a position away from the speaker, the sound is unnatural because it is significantly different from the everyday experience, that is, the experience that the voice decreases when the speaker is away from the speaker. It is said that this unnaturalness impairs the feeling (interactivity) being spoken by the speaker, and produces results such as being unable to concentrate on the talk and not communicating what they want to say.
[0007]
As a loudspeaker method for solving the above-mentioned problem, as shown in FIG. 15C, a main sound source speaker (main speaker) S0 is arranged near a sound source O, and distributed speakers S1 to S1 are placed on a ceiling remote from the sound source. There is a semi-variable loudspeaker system in which S3 is arranged. In this method, in order to obtain a feeling that sound comes from the speaker direction even at a sound receiving point close to the distributed speaker (sound image localization in a direction coincident with the speaker direction), the sounding time of the distributed speaker is compared with the sounding time of the main speaker. Is controlled to delay. FIG. 16C shows an example of the relationship between the arrival time and the arrival sound pressure level at the sound receiving point of the loudspeakers from the speakers S0 to S3 according to the half-dispersion loudspeaker system.
[0008]
The direction of sound image localization is based on human auditory perception called the precedence effect. As shown in FIG. 7, for example, as shown in FIG. 7, when a sound (preceding sound) from the direction of the speaker A is heard at a sound receiving point, a sound with a certain range of time delay and a certain range of sound is heard from the speaker B in another direction. This is an psychoacoustic effect in which another sound (reinforcement sound) that arrives with a pressure level difference is localized in the direction of the speaker A (the direction of the preceding sound). FIG. 8 shows the arrival time difference between the preceding sound and the reinforcement sound at which the preceding sound effect is obtained at the sound receiving point (delay time, Tb-Ta = reception sound arrival point arrival time of the reinforcement sound−preceding sound arrival point arrival) The relationship between (time) and the reached sound pressure level difference (Lb-La = sound pressure level at the sound receiving point of the reinforcement sound-sound pressure level at the sound receiving point of the preceding sound) is shown. The range indicated by oblique lines in the drawing is the range where the preceding sound effect can be obtained, that is, the sound image localization region. The precedence effect may be called the Haas effect or the first wavefront law.
[0009]
In the half-dispersion loudspeaker system, as shown in FIG. 16C, control is performed so that the sound from the main speaker S0 reaches the listener 2 at the sound receiving point first. The reinforcement sound from the distributed speakers S1 to S3 (hereinafter, sometimes referred to as a succeeding sound) has a time delay of about 10 ms from the preceding sound from the main speaker S0 to the listener 2 at the sound receiving point, and a certain range shown in FIG. Is controlled so as to arrive with the difference in sound pressure level. By controlling the arrival time and arrival sound pressure level of the loud sound from each of the speakers S0, S1 to S3 in this manner, it is possible to localize the sound image in the direction of the main speaker at the sound receiving point.
[0010]
[Problems to be solved by the invention]
However, the half-dispersion loudspeaker method has a problem that it cannot cope with a change in the position of a sound source. In order to obtain the sound image localization, it is necessary that the difference between the direction of the speaker (sound source) viewed from the listener and the direction of the preceding sound speaker is within a certain allowable range. Referring to FIG. 4, the speaker (sound source) and the listener (sound receiving point) are on opposite sides (positive side and negative side) of the origin on the Y axis on the XY plane (horizontal plane), and the preceding sound Assuming that the speaker is on the XZ plane, a range of ± 10 degrees in the X axis direction and ± 45 degrees in the Z axis (vertical) direction with respect to the speaker direction (Y axis direction) when viewed from the listener (see FIG. The range indicated by oblique lines) is the allowable range of the preceding sound speaker. When the position of the speaker changes in the semi-dispersed loudspeaker system, for example, when the speaker moves in a large hall or when the stage position changes, the main speaker S0 is moved to the position shown in FIG. Although it is necessary to move within the range, it is actually difficult to move the main speaker S0. Further, even when a questioner or the like appears at an unspecified position in the audience seat, it is impossible to localize the sound image to the questioner. For this reason, there have been problems such as that the position of the questioner cannot be determined in a large lecture hall or the like. It is desired to develop a loudspeaker method that can follow the direction of sound image localization in accordance with the movement of the sound source position or the appearance of an interrogator at an unspecified position.
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a distributed loudspeaker method and a distributed loudspeaker system for localizing a sound image following speaker movement that can change the direction of sound image localization in accordance with the direction of a moving sound source. Is to do.
[0011]
[Means for Solving the Problems]
Referring to the embodiment of FIG. 1, the distributed loudspeaker method for localizing a sound image following speaker movement according to the present invention is substantially the same sound used for loudspeaking the sound of a sound source O at a predetermined position above a sound receiving surface Ph. A plurality of loudspeakers Sj (1 ≦ j ≦ n) having characteristics are dispersed and arranged downward with a part of the cover area of the adjacent loudspeaker partially overlapped, and a portion on the sound receiving surface Ph vertically below each loudspeaker Sj is received. A sound point Pi (1 ≦ i ≦ n) is set, and the position of the sound source O moving in the sound field in which the speakers Sj are dispersed is detected. Peripheral speakers Sgx (x = 1, 2,..., (N−1)) in which a nearby speaker is selected as the main speaker So and the remaining speakers are ranked in ascending order of distance from the main speaker So. From the main speaker So The loudspeaker of the sound of the source O is produced at the required input power at time zero with no time delay, and each of the peripheral speakers Sgx is time-delayed in the ascending order of the order and produced at the required input power, thereby producing each of the receiving speakers. The localization direction of the sound image at the sound point Pi is the direction toward the sound source O.
[0012]
Further, referring to the embodiment of FIG. 1, the distributed loudspeaker system according to the present invention for localizing a sound image following a movement of a speaker partially overlaps a cover area of an adjacent speaker at a predetermined position above a sound receiving surface Ph. Loudspeakers Sj (1 ≦ j ≦ n) having substantially the same acoustic characteristics, which are distributed downward, and the position of a sound source O moving in a sound field in which each of the speakers Sj is distributed is detected and a detection signal is transmitted. A microphone position detecting device, a signal transmitting device for transmitting an acoustic signal from a sound source O to each of the speakers Sj, a signal transmitting device provided between the signal transmitting device and each of the speakers Sj, and for each of the speakers Sj according to an instruction input. A signal adjusting device that adjusts a sounding time and an input power of the acoustic signal and outputs the signal to each of the speakers Sj; Speaker selection means for selecting the speaker closest to the sound source O as the main speaker So, and speakers Sj other than the main speaker So as peripheral speakers Sgx (x = 1, 2,..., (N-1)) Speaker ranking means for ranking in ascending order of distance from the main speaker So, main speaker sound instructing means for indicating the sounding time and input power of the main speaker So, and sounding time and input power of the peripheral speaker Sgx. Peripheral speaker sound instructing means for inputting sounding time and input power instructions from the main speaker sound instructing means and the peripheral speaker sound instructing means to the signal adjusting device to localize the sound image at each sound receiving point Pi. As a direction toward the sound source O.
[0013]
Preferably, in the distributed loudspeaker system for localizing a sound image following a movement of a speaker according to claim 3 or 4, wherein the microphone position detecting device is provided in the microphone and transmits an tag identification number, and an infrared transmitting tag, and each of the speakers Sj. A tag reading device that is provided at the same time and has a reader identification number, reads the tag identification number from the infrared transmitting tag that has entered the cover area of each speaker Sj, and sends out the tag identification number and the reader identification number; Sound source position identification means for detecting an arbitrary position of the microphone moving in the field based on the tag identification number and the reader identification number.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an embodiment in which 25 speakers Sj (1 ≦ j ≦ 25) are dispersed and arranged downward above the sound receiving surface Ph. The sound receiving surface Ph is a virtual surface assumed at, for example, the height position h of the ear of the listener 2 on the floor surface 6. Although FIG. 3 shows a horizontal sound receiving surface Ph parallel to the floor surface 6, the sound receiving surface Ph targeted by the present invention is not limited to a horizontal plane. It is desirable from the viewpoint of signal adjustment control described later that the speakers Sj are disposed above the sound receiving surface Ph at a fixed height and downward so that their mutual intervals are constant.
[0015]
However, the distributed arrangement of the loudspeakers Sj of the present invention is not necessarily limited to the distributed arrangement at a fixed height and at an interval. For example, when there is a step on the ceiling, the height from the sound receiving surface Ph to each speaker Sj is not constant, but by changing the input power of each speaker Sj according to the difference in height, the sound receiving surface Ph is changed. The difference in sound pressure of the loudspeaker above can be compensated. Further, as described later, if the overlap of the cover areas of the adjacent speakers Sj can be obtained, for example, about 20% or more, the intervals between the speakers Sj do not need to be constant.
[0016]
Each speaker Sj is connected to the computer 30 via an intelligent power amplifier IPA described later. A microphone position detecting device 37 is connected to the computer 30. The microphone position detecting device 37 includes an infrared transmitting tag 101 serving as a position signal sending unit provided in the microphone 3, a tag reading device 103 serving as a position signal reading unit provided in each speaker Sj, and a program stored in the computer 30, for example. And a certain sound source position identification means 110.
[0017]
The infrared transmission tag 101 has a power source such as a battery, a transmission circuit, and a memory, and transmits an assigned unique tag identification number. The tag reading device 103 can receive the signal of the tag identification number transmitted from the infrared transmission tag 101 together with the detection value of the reception intensity. Therefore, for example, even when the microphone 3 enters the overlapping area of the cover areas of two adjacent speakers Sj, Sj, it is possible to detect which speaker Sj, Sj is closer from the received signal strength. .
[0018]
Each tag reading device 103 has a unique reader identification number. The tag reading device 103 reads the tag identification number from the infrared transmission tag 101 that has entered the cover area of the speaker Sj, and sends the tag identification number and the reader identification number assigned to itself to the computer 30.
[0019]
Each speaker Sj has an intelligent power amplifier IPA. The intelligent power amplifier IPA includes communication means such as a CPU, a memory, and an RS485, and has a function of receiving a command signal from the outside, calling a memory, setting parameters, performing volume adjustment, and the like. As shown in FIG. 2, the tag reading device 103 is connected to the signal line 109 via the interface 105, and is connected to the computer 30 via the interface 111. The intelligent power amplifier IPA is also connected to the signal line 109 via the interface 107 and to the computer 30 via the interface 111.
[0020]
Based on the tag identification number from the infrared transmission tag 101 read by the tag reading device 103 and the reader identification number of the tag reading device 103, the microphone 3 It is possible to detect whether it exists in the cover area. As shown in FIG. 1, when the microphone 3 is at the position M1, the sound source position identification means 110 detects that the microphone 3 is located in the cover area of the speaker S1, and when the microphone 3 is at the position M2, the cover area of the speaker S3. Is located by the sound source position identification means 110. The computer 30 sends a setting signal of each parameter to the intelligent power amplifier IPA of each speaker Sj based on the result of the sound source position identification means 110.
[0021]
In FIG. 1, a plurality of speakers Sj having substantially the same acoustic characteristics are used, and are arranged at a height H where a part of a cover area of an adjacent speaker, for example, about 20% overlaps on the sound receiving surface Ph. Rather than using a main speaker different from a distributed speaker as in the half-dispersion loudspeaker system, the timbre from each speaker Sj is obtained by using speakers Sj having substantially the same acoustic characteristics such as sound pressure frequency characteristics and directivity coefficients. To prevent the preceding sound effect from being disturbed due to the difference in timbre on the sound receiving surface Ph. Further, for example, by partially overlapping the cover area of one octave band centered at 1 kHz, preferably a band of 500 Hz to 2 kHz, it is possible to avoid the occurrence of a region where the sound of the band does not reach on the sound receiving surface Ph, It is possible to obtain a preceding sound effect at any position on the sound receiving surface Ph.
[0022]
In general, the characteristic A0 (f) of the speaker Sj is a point 1 m on the speaker front axis (horizontal direction 0 °, vertical direction 0 °) when a 1 (watt) signal is input at a frequency f (Hz). It is defined as the squared sound pressure P2 (the unit is the square of Pa (Pascal), that is, Pa2). The sound pressure level L is defined as a squared sound pressure P2 based on a sound pressure P0 (Pa) of 20 μPa as shown in the following equation (1). In the following description, the squared sound pressure P2 (P2 / P02) based on the sound pressure P0 of 20 μPa is referred to as the squared sound pressure I.
[0023]
The sound pressure frequency characteristic of the speaker is defined as a frequency characteristic of a sound pressure level L at a point 1 m of the front axis of the speaker when a 1 (watt) signal is input. If the sound pressure in the horizontal directivity direction φ and the vertical directivity direction θ is represented by A (f, θ, φ), and A0 (f) is represented by A (f, 0, 0), the directivity coefficient D (f, θ) , Φ) are defined as in the following equation (2). The squared sound pressure I and sound pressure level L of the loudspeaker reaching the sound receiving point at a distance R (m) away from the speaker in the horizontal directivity direction φ and the vertical directivity direction θ are expressed by the following equations (3) and (3). As shown in Equation 4), the distance R (m) from the speaker S to the sound receiving point, the directivity coefficient D (f, θ, φ) of the speaker, the sound pressure frequency characteristic A (f) of the speaker, and the input It is expressed as a function of the power W (watt).
[0024]
(Equation 1)
Figure 2004032463
[0025]
In FIG. 1, only speakers Sj having the same acoustic characteristics such as sound pressure frequency characteristics and directivity coefficients are used. The graph of FIG. 3B shows a directional frequency characteristic of an opening angle (directivity angle) at which the sound pressure level L attenuates by −6 dB with respect to the front axis. For example, when the speaker having the directional frequency characteristics shown in FIG. 3B is selected as the distributed speaker Sj of the present invention, since the directional angle of 1 kHz is about 85 to 90 degrees, the directional angle and the superposition ratio of the cover area are determined. The arrangement height of each speaker Sj from the sound receiving surface Ph can be designed in consideration of the above. The speaker arrangement shown in FIG. 1 is an example in which speakers having the directional frequency characteristics shown in FIG. 3 are distributed.
[0026]
However, the speakers Sj used in the present invention are not necessarily limited to the same type. For example, when there is little difference in sound quality between one octave band centered on 1 kHz, preferably a band of 500 Hz to 2 kHz, and the sound characteristics are substantially the same, different types of speakers can be used.
[0027]
The mutual distance between the distributed speakers Sj is determined so that the transmission characteristics of the two speakers Sj in the sound source O direction with respect to the sound receiving point are similar. As will be described later, in the present invention, the sound image is localized with the speaker Sj closest to the sound source O as the preceding sound speaker, and the surrounding speakers Sj in the direction from the sound source O to the sound receiving point (listener 2) as the subsequent sound speakers. By appropriately designing the distance between the distributed speakers Sj in consideration of the relationship with the arrangement height, at any sound receiving point on the sound receiving surface Ph, the sound of the preceding sound speaker and the following sound speaker in the sound source direction with respect to both ears. The difference in transmission characteristics can be set within an allowable range in which sound image localization is possible.
[0028]
Further, in the above-described arrangement of the speakers Sj, the deviation between the direction of the sound source O and the direction of the preceding sound speaker as viewed from the sound receiving point falls within the allowable range shown in FIG. For example, in FIG. 1, when the speaker O is below any of the other speakers Sj when viewed from the listener 2 below the speaker S5, the speaker Sj above the speaker with respect to the direction of the speaker O in FIG. Since the speaker is located within the allowable range, a sound image localization can be obtained using the speaker above the speaker as a preceding sound speaker. That is, in the present invention, the plurality of speakers Sj are dispersedly arranged at predetermined positions which satisfy the height at which the cover area is superimposed, the mutual interval at which similar transmission characteristics are obtained, and the allowable range of the preceding sound speakers.
[0029]
An acoustic signal from a sound source O is input to the dispersed speakers Sj by the signal transmission device 10. The signal transmission device 10 of FIG. 1 includes a microphone 3, a mixer 11, and a signal transmission path. The microphone 3 is disposed near a speaker, a performer, or another sound source O in a sound field to directly collect sound. The collected direct sound is amplified by a microphone amplifier (not shown), and then the volume of the entire sound field is controlled by the mixer 11 and sent to a signal adjusting device 20 described later. The microphone volume control in the mixer 11 can be manually controlled by an operator in consideration of the volume of the sound source O. However, the scope of application of the present invention is not limited to the loudspeaking of the sound of the sound source O in the sound field, but can be applied to, for example, a case where a sound image is localized by loudspeaking from a previously recorded sound source.
[0030]
In the present invention, a signal adjustment device (effector) 20 for adjusting the acoustic delay and the sound pressure level of each speaker Sj is inserted between the signal transmission device 10 and each speaker Sj. As shown in FIG. 13, an example of the signal adjustment device 20 is an audio delay that adjusts the sounding time and input power of an audio signal for each speaker Sj in response to input of an instruction signal from a computer 30 (see FIG. 14). It has a circuit 21 and a sound pressure level control circuit (volume control circuit) 22. Each signal conditioner 20 is connected to a computer 30, and the computer 30 controls the acoustic delay and the input power of each signal conditioner 20 collectively.
[0031]
FIG. 5 shows an example of a flow chart of the control of the signal adjustment device 20 by the computer 30 in the case where the sound image localization is obtained by loudspeaking the sound of the sound source O in the sound field. Hereinafter, the loudspeaker method of the present invention will be described with reference to the flowchart of FIG. First, in step 601, the position of the sound source O in the sound field is detected. In FIG. 1, the position of the sound source O is detected based on the detection signal of the microphone position detecting device 37.
[0032]
That is, a tag identification number is transmitted from the infrared transmission tag 101 attached to the microphone 3. This tag identification number is detected by the tag reading device 103 in the cover area where the microphone 3 is located. The tag reading device 103 sends the tag identification number and the reader identification number assigned to itself to the computer 30. The computer 30 detects the position of the microphone 3 from these identification numbers by the sound source position identification means 110. That is, the position of the microphone 3 is automatically detected by the microphone position detecting device 37.
[0033]
Next, in step 602, the speaker S1 closest to the sound source O is selected by the speaker selection means 31 as the main speaker So. An example of the speaker selection means 31 is a computer built-in program that calculates the distance between the sound source O and each speaker Sj and selects the speaker S1 having the shortest distance.
[0034]
In step 603, the distributed speaker Sj other than the main speaker So is ranked in ascending order of the distance from the main speaker So by the speaker ranking means 32 which is a program built in the computer 30, for example. In this specification, the ranked speakers Sj are called peripheral speakers Sgx (x = 1, 2,..., (N-1)). For example, in FIG. 1, the speakers S2 in the distributed arrangement are the peripheral speakers Sg1 closest to the sound source O, the speakers S3 are the peripheral speakers Sg4 closest to the fourth, the speakers S4 are the peripheral speakers Sg8 closest to the eighth, and the speakers S5 are 15 It is ranked as the nearest neighboring speaker Sg15.
[0035]
As shown in steps 601 to 603, in the present invention, the position of the main speaker So is not fixed, the distributed speaker closest to the sound source O is set as the main speaker So, and the peripheral speakers Sgx are ranked according to the distance from the main speaker So. Therefore, even when the sound source O moves, the position of the main speaker So and the order of the surrounding speakers Sgx are changed according to the movement, and the sound image localization on the sound receiving surface Ph is changed. That is, the sound image can be localized following the moving sound source O.
[0036]
In step 604, the sounding time To and the input power Wo of the main speaker So are instructed by the main speaker sound instructing means 33 which is a program in the computer 30, for example. For example, an acoustic signal from the signal transmission device 10 is generated by the main speaker So without time delay, and the sound generation time To is set to time zero (ms). However, the sound image localization of the present invention can be obtained even if a time delay is provided to the sounding time To of the main speaker So. Also, the input power Wo of the main speaker So is such that the sound pressure level of the loudspeaker reaching the microphone 3 from the main speaker So is higher than the sound pressure level of the real voice from the speaker O (the sound pressure level at a point 1 m away). The level is determined to be a level required for preventing howling, for example, a level lower by 2 dB. However, when no howling occurs, the input power Wo of the main speaker So can be set to a required level. When determining the input power Wo of the main speaker So, the volume of the mixer 11 corresponding to the microphone 3 can be appropriately adjusted, and the amount of attenuation of the attenuator of the amplifier 12 (hereinafter, may be referred to as the attenuator position). Can be set to 0 (dB).
[0037]
The method of determining the sounding time and input power of each of the peripheral speakers Sgx by the peripheral speaker sound instructing means 34 after step 605 will be described by arranging five speakers S1 to S5 between the speaker O and the listener 2 for the sake of simplicity. A description will be given with reference to FIG. FIG. 6 illustrates a case where the speaker S1 closest to the speaker O is set as the main speaker So, and the speakers S2 to S5 are ranked as the peripheral speakers Sg1 to Sg4, and the listener 2 is located below the peripheral speaker Sg4. In step 605, first, sound receiving points P1 to P5 are determined on a sound receiving surface Ph vertically below the respective speakers S1 to S5. In FIG. 6, a sound receiving point P1 is a sound receiving point Po vertically below the main speaker So, and sound receiving points P2 to P5 are sound receiving points Pgx (Pg1 to Pg4) vertically below the peripheral speakers Sgx (Sg1 to Sg4). is there.
[0038]
The time required for the loud sound from the main speaker So to reach the sound receiving point Pgx below the peripheral speaker Sgx is represented by the following equation (10), where Rox is the distance between the main speaker So and the sound receiving point Pgx. Can be calculated. In the equation (10), the symbol C represents the speed of sound (m / s). Normally, a sound speed at normal temperature and normal humidity (23 ° C., relative humidity 60%) is used as the sound speed C. Also, the sound pressure level Lox of the loud sound from the main speaker So that has reached the sound receiving point Pgx can be expressed as the following equation (11) with reference to the equation (4). In the equation (11), Wo represents the input power of the main speaker So, and Do represents the directivity coefficient of the main speaker So.
[0039]
Also, the time required for the loud sound to reach from the surrounding speaker Sgx to the sound receiving point Pgx below the surrounding speaker Sgx and the reached sound pressure level Lxx are the same if the distance between the surrounding speaker Sgx and the sound receiving point Pgx is Rxx. Expressions (12) and (13) can be expressed in the same manner as in the case of the speaker So. In equation (13), Wx represents the input power of the peripheral speaker Sgx, and Dx represents the directivity coefficient of the peripheral speaker Sgx. In the illustrated example, since the main speaker So and the peripheral speaker Sgx have the same acoustic characteristics, A (f) in the equations (11) and (13) is the same.
[0040]
Loudened sounds from the main speaker and a plurality of peripheral speakers can reach each sound receiving point Pgx. A combined sound pressure level (hereinafter, listening sound pressure) at a sound receiving point Pgx at which loudspeakers arrive from a plurality of speakers Sj (j = 1, 2, 3,...) Having the same characteristic A (f). Is referred to as a level) and can be expressed by the following equation (14) based on the sum of the squared sound pressures I of the sound pressures reached from the respective speakers Sj.
[0041]
(Equation 2)
Figure 2004032463
[0042]
In steps 605 to 612, the sounding time and input power of each of the peripheral speakers Sgx are determined according to the ascending order of the order of each of the peripheral speakers Sgx. First, for the peripheral speaker Sg1 in FIG. 6, in step 605, the distance Ro1 from the main speaker So to the sound receiving point Pg1 below the peripheral speaker Sg1 and the distance R11 from the peripheral speaker Sg1 to the sound receiving point Pg1 are calculated. In the case of the peripheral speaker Sg1, there is no lower-order peripheral speaker Sgx, that is, the peripheral speaker Sgx closer to the main speaker So than the peripheral speaker Sg1. In step 606, the main speaker So at the sound receiving point Pg1 is obtained from the substitution result of the distance Ro1 from the main speaker So to the sound receiving point Pg1 to the expression (10) and the sounding time To = 0 (ms) of the main speaker So. Is calculated. From the result of substituting the distance Ro1 from the main speaker So to the sound receiving point Pg1 and the input power Wo and the directivity coefficient Do of the main speaker So into the equation (11), the loud sound from the main speaker So at the sound receiving point Pg1. The attained sound pressure level Lo1 is calculated. However, the sound pressure frequency characteristic A (f) of the main speaker So is predetermined.
[0043]
In step 607, a delay time Δt1 for providing a preceding sound effect with respect to the loud sound arrival time To1 from the main speaker So is obtained. The delay time Δt1 is the shortest delay time Δtmin, for example, 3 ms for the peripheral speaker Sg1 closest to the main speaker So, the longest delay time Δtmax, for example, 10 ms for the peripheral speaker Sg4 farthest from the main speaker So. In the peripheral speakers Sg2 and Sg3, the time can be determined as a time proportionally distributed to the distances Ro2 and Ro3 from the main speaker So to the sound receiving points Pg2 and Pg3 below the peripheral speakers Sg2 and Sg3.
[0044]
However, the method for determining the delay time Δt1 is not limited to the method based on the proportional distribution according to the distance. For example, it can be determined as the time between the shortest delay time and the longest delay time proportional to the logarithm (logRox) of the distance Ro2, Ro3 from the main speaker So to the sound receiving points Pg2, Pg3 below the peripheral speakers Sg2, Sg3. . Table 1 below shows the delay time Δtx of each of the peripheral speakers Sg1 to Sg4 determined from this relationship. However, in Table 1, the delay time Δt1 of the peripheral speaker Sg1, which is the shortest delay time Δtmin, is 6 ms, and the delay time Δt4 of the peripheral speaker Sg4, which is the longest delay time Δtmax, is 30 ms.
[0045]
In step 607, the arrival time T11 (= To1 + Δt1) at which the loud sound from the peripheral speaker Sg1 should reach the sound receiving point Pg1 is calculated as the sum of the obtained delay time Δt1 and the loud sound arrival time To1 from the main speaker So. I do. When the time T11 at which the loudspeaker sound should arrive is known, the distance R11 from the peripheral speaker Sg1 to the sound receiving point Pg1 is substituted into the equation (12), so that at step 608 the peripheral speaker Sg1 corresponding to the loudspeaker arrival time T11 is obtained. The sounding time can be determined.
[0046]
[Table 1]
Figure 2004032463
[0047]
In step 609, the sum of the lower-order peripheral speakers Sgk reaching the sound receiving point Pg1 before the loudspeaker arrival time T11 from the peripheral speakers Sg1 and the loudspeaker arrival sound pressure levels from the main speaker So is calculated. In this case, at the sound receiving point Pg1, the only loudspeaker sound that arrives before the loudspeaker arrival time from the peripheral speaker Sg1 is the loudspeaker sound from the main speaker So, and therefore the arrival sound pressure of the loudspeaker sound from the main speaker So. In step 610, a sound pressure level difference ΔL1 that gives the preceding sound effect to the loudspeaker arrival sound pressure level Lo1 from the main speaker So is calculated as the level Lo1 as the sum of the arrival sound pressure levels of the preceding loudspeaker sound. This sound pressure level difference ΔL1 is, for example, as shown in FIG. 8, the relationship between the delay time Δt from the preceding sound to the succeeding sound necessary to give the preceding sound effect and the sound pressure level difference ΔL between the preceding sound and the succeeding sound. The equation (ΔL = f (Δt)) is determined in advance by experiments or the like, and the delay time Δt1 required for calculating the sounding time of the peripheral speaker Sg1 is substituted into the relational expression of FIG. 8 (ΔL1 = f (Δt1)). Can be.
[0048]
Based on the obtained sound pressure level difference ΔL1 and the sound pressure reaching sound pressure level Lo1 (= 10logIo1) from the main speaker So, in step 612, the sound sound from the surrounding speaker Sg1 should be indicated at the sound receiving point Pg1 by the sound pressure level L11 ( = 10logIo1 + ΔL1), and by substituting the calculated reached sound pressure level L11 and the distance R11 from the peripheral speaker Sg1 to the sound receiving point Pg1 into the equation (13), the input power W1 of the peripheral speaker Sg1 is determined in step 612. decide.
[0049]
For example, in FIG. 8, when the delay time Δt1 of the arrival time of the peripheral speaker Sg1 is 6 ms, if the difference between the arrival sound pressure level from the peripheral speaker Sg1 and the arrival sound pressure level from the main speaker So is within 6 dB, the sound image Indicates that localization can be obtained. The reached sound pressure level Lo1 at the sound receiving point Pg1 of the main speaker So is reduced due to distance attenuation or the like as shown in Expression (11). Based on the sound pressure level Lo1 at the sound receiving point Pg1 of the main speaker So as a reference, the relative input level of the peripheral speaker Sg1 is set so that the sound pressure level from the peripheral speaker Sg1 at the sound receiving point Pg1 becomes (Lo1 + 6) (dB). The result determined by the attenuator position of the amplifier 12 is -3 (dB) shown in Table 1. As described above, the attenuator position of the amplifier 12 can be adjusted or corrected so that the input power of the peripheral speaker Sgx becomes the value calculated in step 611.
[0050]
After determining the sounding time and input power of the peripheral speaker Sg1 in step 612, the process proceeds to step 613, where it is determined whether the calculation of the sounding time and input power has been completed for all the peripheral speakers. In this case, since the processing of the peripheral speakers Sg2 to Sg4 remains, the process returns to step 605, and the sounding time and input power are determined for the peripheral speaker Sg2 by repeating steps 605 to 612. In the case of the peripheral speaker Sg2, since the lower-order peripheral speaker Sg1 exists, in step 605, in addition to calculating the distance Ro2 from the main speaker So to the sound receiving point Pg2 and the distance R22 from the peripheral speaker Sg2 to the sound receiving point Pg2. , The distance R12 from the lower-order peripheral speaker Sg1 to the sound receiving point Pg2 is calculated. In step 606, the time at which the loud sound from the lower-order peripheral speaker Sg1 reaches the sound receiving point Pg2, and the loud sound reaching sound pressure level L12 are calculated based on the equations (12) and (13).
[0051]
In step 607, a delay time Δt2 that gives a preceding sound effect to the loudspeaker sound arrival time To2 from the main speaker So is obtained. The calculation method is the same as the method described above for the peripheral speaker Sg1. From the sum of the delay time Δt2 and the loud sound arrival time To2 from the main speaker So, a time T22 (= To2 + Δt2) at which the loud sound from the peripheral speaker Sg2 should arrive at the sound receiving point Pg2 is obtained. If the time T22 at which the loud sound should arrive is known, the sounding time of the surrounding speaker Sg2 can be determined in step 608 by substituting the distance R22 from the surrounding speaker Sg2 to the sound receiving point Pg2 into equation (12).
[0052]
In step 609, the loudspeaker arrival time T22 from the peripheral speaker Sg2 and the loudspeaker arrival time T12 from the peripheral speaker Sg1 are compared at the sound receiving point Pg2, and if the loudspeaker arrival time T12 from the peripheral speaker Sg1 precedes. The sum (I12 + Io2) of the squared sound pressure I12 of the loudspeaker arriving from the surrounding speaker Sg1 at the sound receiving point Pg2 and the squared sound pressure Io2 of the arriving loudspeaker sound from the main speaker So is obtained, and the sum (I12 + Io2) ) Into equation (14) to calculate the sum (= 10 log (I12 + Io2)) of the loudspeaker arrival sound pressure level L12 from the surrounding speaker Sg1 and the loudspeaker arrival sound pressure level Lox from the main speaker So. .
[0053]
The inventor has determined that the loud sound from the lower-order peripheral speakers Sgk (k = 1, 2,..., (X−1)) at each sound receiving point Pgx becomes the loud sound from the peripheral speakers Sgx. On the other hand, when the sound arrives first, not only the loudspeaker arrival sound pressure level Lox from the main speaker So, but also the loudspeaker arrival sound pressure level Lkx (= 10logΣIkx) from the lower-order peripheral speaker Sgk and the main speaker So. From the surrounding speaker Sgx above the sound receiving point Pgx so as to give a precedence effect to the sum (= 10 log (kIkx + Iox)) with the loud sound reaching sound pressure level Lox (= 10logIox) from the speaker. By determining the pressure level Lxx, it has been found that the leading sound effect can be reliably obtained at all sound receiving points on the wide sound receiving surface Ph. The present invention is based on such findings.
[0054]
In step 610, for example, the sound pressure level difference ΔL2 is obtained by substituting the delay time Δt2 of the sounding time of the peripheral speaker Sg2 into the relational expression of FIG. 8 (ΔL2 = f (Δt2)). By adding the obtained level difference ΔL2 to the sum (= 10log (I12 + Io2)), a sound pressure level L22 (= 10log (I12 + Io2) + ΔL2) at which the sound arrived from the peripheral speaker Sg2 should be shown at the sound receiving point Pg2 is obtained. When the reached sound pressure level is obtained, in step 612, the input power W2 of the peripheral speaker Sg2 can be determined by substituting into the equation (13), as in the case of the peripheral speaker Sg1 described above.
[0055]
After determining the sounding time and input power of the peripheral speaker Sg2 in step 612, the process returns from step 613 to step 605, and repeats steps 605 to 612 for the peripheral speakers Sg3 and Sg4. By repeating steps 605 to 612 in FIG. 5 for all the peripheral speakers Sgx in ascending order, the sounding times and input powers of all the peripheral speakers Sgx can be determined. By inputting an instruction signal of the sounding time and input power of each peripheral speaker Sgx determined by the computer 30 to the signal adjusting device 20, the sounding time and input power of the acoustic signal from the signal transmission device 10 are adjusted for each speaker Sj. Then, the adjusted acoustic signal is input to each speaker Sj via the power amplifier 12 (see FIG. 1).
[0056]
FIG. 9 shows the sound pressure generated at each sound receiving point Sg4 by the loud sounds from the speakers So and Sg1 to Sg4 determined as described above. That is, in this case, the real voice from the speaker O arrives as the earliest preceding sound, the loud sound from the main speaker So closest to the speaker O follows, and then the loud sounds from the peripheral speakers Sg1, Sg2, and Sg3. Reach in order. Finally, the loud sound from the peripheral speaker Sg4 arrives. Since the relationship between the real voice and the loud sound from each speaker and the mutual relation between the loud sounds from the speakers satisfy the condition where the preceding sound effect works, the sound field perception of the listener 2 at the sound receiving point Sg4 is synthesized. It is considered that the subjective level of the sound pressure is as shown by the solid line in FIG. That is, the solid line in FIG. 10 indicates that the loudspeakers from a plurality of distributed speakers are perceived by the listener 2 as one sound.
[0057]
According to the present invention, since the speakers having substantially the same acoustic characteristics are used, there is no difference in the timbre of the speakers, and the difference in the transmission characteristics with respect to both ears of the listener can be kept within an allowable range by appropriately setting the speaker interval. Since the sounding time and input power of the loudspeaker are controlled so that the loud sound from the main loudspeaker becomes the preceding sound, a sound image can be localized in a direction toward the sound source O at any position on the sound receiving surface. Further, since the main speaker can be selected and the peripheral speakers can be ranked according to the movement of the position of the sound source, the sound image can be localized on the moving sound source. It is also possible to localize the sound image to a questioner or the like appearing at an unspecified position.
[0058]
Thus, it is possible to achieve the object of the present invention to provide "a distributed loudspeaker method and a distributed loudspeaker system for localizing a sound image following speaker movement that can change the direction of sound image localization in accordance with the direction of a moving sound source".
[0059]
Preferably, the listening sound pressure level at each sound receiving point Pi is suppressed to a predetermined target sound pressure level Lhc, so that the listener 2 listens at the predetermined target sound pressure level regardless of the sound receiving point Pi on the sound receiving surface Ph. It can be so. In this case, in step 611 of FIG. 5, for example, the listening sound pressure level at the sound receiving point Pg4 reaches the sound pressure level L44 (= 10 log I44) of the loudspeaker reaching the sound from the surrounding speaker Sg4 at the sound receiving point Pg4 in advance. It is determined as the total (= 10logΣ (I44 + ΣIk4 + Io4)) of the sum of the sound pressure levels reached by the lower-order peripheral speakers Sgk (k = 1, 2, 3) and the loudspeaker sound arrival from the main speaker So (= 10log (ΣIk4 + Io4)). When the obtained listening sound pressure level exceeds the target sound pressure level Lhc, the total (= 10 logΣ (I44 + Ik4 + Io4)) of the arrival sound pressure level L44 of the peripheral speaker Pg4 within the range where the preceding sound effect can be obtained is equal to the target sound pressure level. Suppress until it matches Lhc.
[0060]
More preferably, the target sound pressure level Lhc is determined as shown by the solid line in FIG. 11, and control is performed such that the sound pressure level of the synthesized sound field on the sound receiving surface Ph created by each speaker Sj decreases as the distance from the sound source O increases. I do. This attenuation control enables the formation of a sound field that matches the daily experience that the sound becomes smaller when the sound source is away from the sound source O, and acts so that the sound field is perceived by the listener with a natural feeling. Therefore, in a lecture or the like, the listener can listen while feeling that the speaker is talking to the speaker, and the speaker can give psychological feedback such as developing the topic while feeling the audience's reaction well It can be expected that participants will be able to communicate with each other.
[0061]
Although the target sound pressure level Lhc shown in FIG. 11 decreases in accordance with the distance Rh from the sound source O, the slope of the decrease with respect to the distance Rh is smaller than the slope of the sound attenuation in the free sound field. According to the target sound pressure level Lhc, it is possible to increase the sound volume with a sufficiently large sound pressure while giving the listener a natural perception. The black portion of 40 dB or less in the drawing indicates a range in which the sound is too low and hinders the listener's hearing. In the free sound field, even if the speaker utters a little loud voice, it may be difficult for a listener at a distance of about 100 m to hear. However, according to the loudspeaker method using the target sound pressure level Lhc in FIG. It is possible to hear the speaker's utterance with sufficient sound pressure even at a point 100 m away while giving a natural sound field feeling.
[0062]
The inventor sets the maximum sound pressure level Loo from the main speaker So at the sound receiving point Po below the main speaker So as the target sound pressure level Lhc as shown in FIG. By using the inclined target sound pressure level Lhc = Loo-3.0 × logRh whose level decreases in proportion to the logarithm (logRh) of the distance Rh, the listener feels an unnatural shift between the sound and the distance. It has been experimentally confirmed that a sound field can be formed that can hear clear and refreshing natural sound as if the speaker is near even at a position distant from the speaker. However, the proportionality constant of the attenuation of the inclined target sound pressure level Lhc is not limited to the illustrated example.
[0063]
【Example】
FIG. 12 shows an embodiment of the present invention using a composite amplifier 20b in which the signal adjusting device 20 and the amplifier 24 are integrated, and FIG. 13 shows a block diagram of the composite amplifier 20b used in the embodiment. In the illustrated example, the composite amplifiers 20b are connected in tandem with each other, and an audio signal and a control signal are supplied to each of the composite amplifiers 20b by one digital audio signal line 27 and a control signal line 28. The composite amplifier 20b has two sound delay units 21L and 21R and two volume control units 22L and 22R, and can simultaneously process two-channel digital sound signals.
[0064]
The sounding time (delay time) and input power (volume) of the main speaker So and each peripheral speaker Sgx calculated by the computer 30 (see FIG. 14) are sent to the CPU 25 of the composite amplifier 20b via the interface 14 and the control line 28. . The CPU 25 is connected to the sound delay units 21L and 21R and the volume control units 22L and 22R, and adjusts the sounding time and input power of the two-channel digital sound signal in accordance with the processing pattern stored in the pattern memory 26. The adjusted digital audio signal is mixed by the mixer 23 and sent to the speaker via the amplifier 24 and the output line 29. With the use of the composite amplifier 20b in the figure, sounds from two sound sources can be simultaneously processed, and sound images directed to two sound sources on the sound receiving surface Ph can be simultaneously localized.
[0065]
FIG. 14 shows still another embodiment of the present invention using the composite amplifier 20b. Fourteen speakers Sj were dispersedly arranged in a grid pattern at a height of 3.5 m from the floor and at an interval of 5 m × 3.5 m, and a composite amplifier 20 was attached to each speaker Sj. As shown in the figure, the sounds of the first sound source below the speaker S1 and the second sound source below the speaker S4 were collected by the microphones 3 and 4, respectively, and input to the interface 14 via the mixer 11. On the other hand, the computer 30 calculates control signals necessary for sound image localization to the two sound sources according to the flowchart of FIG. The digital audio signal from the mixer 11 and the control signal from the computer 30 were transmitted to the composite amplifier 20 of each speaker Sj via the interface 14. Each composite amplifier 20 was connected in tandem as shown in FIG. In the composite amplifier 20b, the digital audio signal from the microphone 3 sent to the right channel and the digital audio signal from the microphone 4 sent to the left channel are simultaneously processed and sent to each speaker Sj via the mixer 23 and the main amplifier 24. Output.
[0066]
Table 2 shows an example of the control signals used in the embodiment of FIG. The present inventor has confirmed that the sound image heading to the first sound source and the sound image heading to the second sound source can be simultaneously localized on the sound receiving surface Ph by the control signals in Table 2. As can be seen from the embodiment shown in FIG. 14 and Table 2, even when two sound sources O are present in the sound field, such as a speaker on the stage and an interlocutor in the hall, the method of the present invention can be applied. For example, it is possible to perform sound image localization using the speaker as the first sound source and simultaneously perform sound image localization using the interlocutor as the second sound source. By simultaneously performing the two sound image localizations, the speaker and the questioner can hear each other's voices well, so it is easy to talk, and even wherever in the venue the interaction between the two can be heard with a natural feeling You can create a place.
[0067]
[Table 2]
Figure 2004032463
[0068]
【The invention's effect】
As described above in detail, according to the distributed loudspeaker method and the distributed loudspeaker system for localizing a sound image following speaker movement according to the present invention, a plurality of speakers Sj having substantially the same acoustic characteristics are covered above a sound receiving surface. A part of the area is partially superimposed and dispersed downward, the position of the sound source O moving in the sound field where the speakers Sj are dispersed is detected, and the speaker closest to the detected position of the sound source O among the speakers Sj is detected. Is the main speaker So, and the remaining speakers are the peripheral speakers Sgx ranked in ascending order of the distance from the main speaker So, and the sounding time and input of each peripheral speaker are set so that the loudspeaker sound from the main speaker gives a preceding sound effect. Since the level is controlled and the localization direction of the sound image on the sound receiving surface is set to the direction toward the sound source O, it is possible to cope with a change in the position of the sound source. That is, even when the sound source moves, the sound image can be localized in the direction toward the sound source according to the movement by selecting the main speaker again. Therefore, even when the position of the speaker changes, for example, when the speaker moves in a large venue or when the stage position changes, the main speaker So is set substantially within the permissible arrangement range in accordance with the position of the speaker. A state equivalent to the movement is obtained. This makes it possible to follow the direction of sound image localization according to the movement of the sound source position or the appearance of the interrogator at an unspecified position, and in a large lecture hall, the position of the moving speaker or the position of the interrogator can be changed. Problems such as not knowing can be solved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment according to the present invention.
FIG. 2 is an explanatory diagram of a connection example of an intelligent power amplifier and a tag reading device.
FIG. 3 is a diagram illustrating an example of acoustic characteristics of a speaker.
FIG. 4 is an explanatory diagram of an allowable arrangement range of a preceding sound speaker for obtaining a preceding sound effect.
FIG. 5 is an example of a flowchart of a method of calculating a sounding time and input power of each speaker.
FIG. 6 is an explanatory diagram showing the principle of sound image localization according to the present invention.
FIG. 7 is an explanatory diagram of a preceding sound effect.
FIG. 8 is an explanatory diagram of a relationship between a preceding sound at which a preceding sound effect is obtained and a reinforcing sound.
FIG. 9 is an explanatory diagram of a sound reached from each speaker at the sound receiving point in FIG. 6;
10 is an explanatory diagram of the sound intensity at the sound receiving point in FIG.
FIG. 11 is an explanatory diagram of a target sound pressure level at a sound receiving point.
FIG. 12 is an explanatory diagram of an embodiment of the present invention using a two-channel composite amplifier.
FIG. 13 is an explanatory diagram of a two-channel composite amplifier.
FIG. 14 is an explanatory diagram of another embodiment of the present invention.
FIG. 15 is an explanatory diagram of a conventional centralized loudspeaker system, a distributed loudspeaker system, and a semi-variable loudspeaker system.
FIG. 16 is an explanatory diagram of a reaching sound level at a sound receiving point in the conventional concentrated loudspeaker system, distributed loudspeaker system, and semi-dispersive loudspeaker system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 3 ... Microphone, 10 ... Signal transmission device, 20 ... Signal adjustment device, 31 ... Speaker selection means, 32 ... Speaker ranking means, 33 ... Main speaker sound instruction means, 34 ... Peripheral speaker sound instruction means, 37 ... Microphone position detection Apparatus, 101: infrared transmitting tag, 103: tag reader, 110: sound source position identification means, O: sound source, Ph: sound receiving surface, Pi: sound receiving point, Sj: speaker, So: main speaker, Sgx: peripheral speaker , Pgx: Lower sound receiving point

Claims (5)

受音面Ph上方の所定位置に音源Oの音の拡声に使う実質上同一音響特性の複数のスピーカSj(1≦j≦n)を隣接スピーカのカバーエリアを一部重畳させて下向きに分散配置し、前記各スピーカSjの垂直下方の前記受音面Ph上の部位をそれぞれ受音点Pi(1≦i≦n)とし、前記各スピーカSjの分散配置された音場内にて移動する音源Oの位置を検出し、前記各スピーカSjのうち前記検出した音源Oの位置に最も近いスピーカを主スピーカSoとして選び且つ残余のスピーカを前記主スピーカSoからの距離の昇順に順位付けされた周辺スピーカSgx(x=1、2、......、(n−1))とし、前記主スピーカSoから前記音源Oの音の拡声音を時間遅延なしの時刻零に所要入力パワーで発音し、前記周辺スピーカSgxの各々について前記順位の昇順に時間遅延させて所要入力パワーで発音することにより、前記各受音点Piにおける音像の定位方向を前記音源Oヘ向かう方向としてなる話者移動に追従して音像定位する分散拡声方法。At a predetermined position above the sound receiving surface Ph, a plurality of speakers Sj (1 ≦ j ≦ n) having substantially the same acoustic characteristics used for loudspeaking of the sound of the sound source O are dispersed and arranged downward by partially overlapping the cover areas of the adjacent speakers. A portion on the sound receiving surface Ph that is vertically below each of the speakers Sj is defined as a sound receiving point Pi (1 ≦ i ≦ n), and a sound source O moving in a sound field in which the speakers Sj are dispersedly arranged. Of the speakers Sj, a speaker closest to the position of the detected sound source O is selected as a main speaker So, and the remaining speakers are ranked in ascending order of distance from the main speaker So. Sgx (x = 1, 2,..., (N-1)), and a loud sound of the sound of the sound source O is generated from the main speaker So at time zero with no time delay at a required input power. , The peripheral speaker S For each of x, the sound image is generated at the required input power with a time delay in the ascending order of the order, so that the localization direction of the sound image at each of the sound receiving points Pi follows the movement of the speaker toward the sound source O. A distributed loudspeaker localization method. 請求項1記載の話者移動に追従して音像定位する分散拡声方法において、
前記周辺スピーカSgxの各々について前記順位の昇順に、当該周辺スピーカSgx下方の受音点Pgxで当該周辺スピーカSgxからの拡声音到達時刻Txxが前記主スピーカSoからの拡声音到達時刻Toxに対し先行音効果を与える遅延時間Δtxだけ遅れる(Txx=Tox+Δtx)如き当該周辺スピーカSgxの発音時刻を算出し、当該受音点Pgxに当該周辺スピーカSgxからの拡声音到達時刻Txxより先行して到達する下位順位の周辺スピーカSgk(k=1、2、......、(x−1))及び主スピーカSoからの拡声音のそれぞれの到達音圧レベルの総和を各スピーカSgk及びSoから当該受音点Pgxまでの距離と各スピーカSgk及びSoの入力パワー及び音響特性との関数として求め、且つ当該受音点Pgxにおける当該周辺スピーカSgxからの拡声音到達音圧レベルLxxを前記求めた総和に対し先行音効果を与える音圧レベル差ΔLxだけ高くなる如きものとして定め、定めた到達音圧レベルLxxに対応する当該周辺スピーカSgxの入力パワーを算出し、前記周辺スピーカSgxの各々から前記音源Oの音の拡声音を前記算出した発音時刻に前記算出した入力パワーで発音してなる話者移動に追従して音像定位する分散拡声方法。
A distributed loudspeaker method for localizing a sound image following speaker movement according to claim 1,
In each of the peripheral speakers Sgx, in the ascending order of the rank, the loud sound arrival time Txx from the peripheral speaker Sgx at the sound receiving point Pgx below the peripheral speaker Sgx precedes the loud sound arrival time Tox from the main speaker So. The sound generation time of the peripheral speaker Sgx is calculated such that the sound effect is delayed by a delay time Δtx for giving a sound effect (Txx = Tox + Δtx), and the lower order of reaching the sound receiving point Pgx before the sound arrival time Txx from the peripheral speaker Sgx is reached. The sum of the reached sound pressure levels of the surrounding speakers Sgk (k = 1, 2,..., (X-1)) of the rank and the loudspeaker sound from the main speaker So is calculated from each of the speakers Sgk and So. The distance to the sound receiving point Pgx is determined as a function of the input power and the acoustic characteristics of each of the speakers Sgk and So. The sound pressure level Lxx of the loudspeaker sound from the peripheral speaker Sgx at gx is determined to be higher than the sum obtained by the sound pressure level difference ΔLx that gives the preceding sound effect, and corresponds to the determined sound pressure level Lxx. The input power of the peripheral speaker Sgx is calculated, and the loud sound of the sound of the sound source O is sounded from each of the peripheral speakers Sgx at the calculated sounding time at the calculated sound power by following the speaker movement. A distributed loudspeaker method for sound image localization.
受音面Ph上方の所定位置に隣接スピーカのカバーエリアを一部重畳させて下向きに分散配置した実質上同一音響特性の拡声用スピーカSj(1≦j≦n)、前記各スピーカSjを分散配置した音場内にて移動する音源Oの位置を検出して検出信号を送出するマイクロホン位置検出装置、音源Oからの音響信号を前記各スピーカSjへ伝送する信号伝送装置、前記信号伝送装置と前記各スピーカSjとの間に設けられ且つ指示入力に応じて前記スピーカSj毎に前記音響信号の発音時刻と入力パワーとを調整して前記各スピーカSjへ出力する信号調整装置、前記マイクロホン位置検出装置からの検出信号を受けて前記各スピーカSjのうち音源Oに最も近いスピーカを主スピーカSoとして選択するスピーカ選択手段、前記主スピーカSo以外のスピーカSjを周辺スピーカSgx(x=1、2、......、(n−1))として前記主スピーカSoからの距離の昇順に順位付けするスピーカ順位付け手段、前記主スピーカSoの発音時刻及び入力パワーを指示する主スピーカ音指示手段、前記周辺スピーカSgxの発音時刻及び入力パワーを指示する周辺スピーカ音指示手段を備え、前記主スピーカ音指示手段及び周辺スピーカ音指示手段による発音時刻及び入力パワーの指示を前記信号調整装置へ入力することにより前記各受音点Piにおける音像の定位方向を前記音源Oヘ向かう方向としてなる話者移動に追従して音像定位する分散拡声システム。Loudspeakers Sj (1 ≦ j ≦ n) having substantially the same acoustic characteristics in which the cover areas of the adjacent speakers are partially overlapped and partially downwardly arranged at predetermined positions above the sound receiving surface Ph, and the speakers Sj are dispersedly arranged. Microphone position detection device that detects the position of a sound source O moving in a given sound field and sends out a detection signal, a signal transmission device that transmits an acoustic signal from a sound source O to each of the speakers Sj, the signal transmission device, and each of the above. A signal adjusting device provided between the microphone and the microphone position detecting device, wherein the signal adjusting device is provided between the speaker Sj and adjusts a sounding time and an input power of the sound signal for each of the speakers Sj in accordance with an instruction input and outputs the signals to the respective speakers Sj. Speaker selection means for receiving, as the main speaker So, a speaker closest to the sound source O among the respective speakers Sj, Speaker ranking means for ranking external speakers Sj as peripheral speakers Sgx (x = 1, 2,..., (N-1)) in ascending order of distance from the main speaker So, and the main speaker Main speaker sound instructing means for instructing the sounding time and input power of So, and peripheral speaker sound instructing means for instructing the sounding time and input power of the peripheral speaker Sgx; A distributed loudspeaker system in which an instruction of a sounding time and an input power is input to the signal adjusting device so that a sound image localization direction at each of the sound receiving points Pi follows a speaker movement as a direction toward the sound source O. . 請求項3記載の話者移動に追従して音像定位する分散拡声システムにおいて、
前記周辺スピーカ音指示手段が、前記各スピーカSjの垂直下方の前記受音面Ph上に受音点Pi(1≦i≦n)を定め、前記周辺スピーカSgxの各々について前記順位の昇順に、当該周辺スピーカSgx下方の受音点Pgxで当該周辺スピーカSgxからの拡声音到達時刻Txxが前記主スピーカSoからの拡声音到達時刻Toxに対し先行音効果を与える遅延時間Δtxだけ遅れる(Txx=Tox+Δtx)如き当該周辺スピーカSgxの発音時刻を算出し、当該受音点Pgxに当該周辺スピーカSgxからの拡声音到達時刻Txxより先行して到達する下位順位の周辺スピーカSgk(k=1、2、......、(x−1))及び主スピーカSoからの拡声音のそれぞれの到達音圧レベルの総和を各スピーカSgk及びSoから当該受音点Pgxまでの距離と各スピーカSgk及びSoの入力パワー及び音響特性との関数として求め、且つ当該受音点Pgxにおける当該周辺スピーカSgxからの拡声音到達音圧レベルLxxを前記求めた総和に対し先行音効果を与える音圧レベル差ΔLxだけ高くなる如きものとして定め、定めた到達音圧レベルLxxに対応する当該周辺スピーカSgxの入力パワーを算出し、前記算出した発音時刻及び入力パワーを指示する話者移動に追従して音像定位する分散拡声システム。
4. The distributed loudspeaker system according to claim 3, wherein the sound image is localized following the movement of the speaker.
The peripheral speaker sound instructing means determines a sound receiving point Pi (1 ≦ i ≦ n) on the sound receiving surface Ph vertically below each of the speakers Sj, and for each of the peripheral speakers Sgx, At the sound receiving point Pgx below the peripheral speaker Sgx, the loudspeaker arrival time Txx from the peripheral speaker Sgx lags behind the loudspeaker arrival time Tox from the main speaker So by a delay time Δtx that gives a preceding sound effect (Txx = Tox + Δtx). ), The sound generation time of the peripheral speaker Sgx is calculated, and the lower-order peripheral speakers Sgk (k = 1, 2,...) That reach the sound receiving point Pgx earlier than the loudspeaker sound arrival time Txx from the peripheral speaker Sgx. , (X-1)) and the sum of the reached sound pressure levels of the loudspeakers from the main speaker So are calculated from the respective speakers Sgk and So. The distance to the sound receiving point Pgx and the input power and acoustic characteristics of each of the speakers Sgk and So were obtained as a function, and the sound pressure level Lxx at which the sound from the surrounding speakers Sgx was reached at the sound receiving point Pgx was obtained. The input power of the peripheral loudspeaker Sgx corresponding to the determined ultimate sound pressure level Lxx is calculated to be higher than the sum by the sound pressure level difference ΔLx that gives a preceding sound effect, and the calculated sounding time and input power are calculated. A distributed loudspeaker system that localizes the sound image following the movement of the speaker.
請求項3又は4記載の話者移動に追従して音像定位する分散拡声システムにおいて、
前記マイクロホン位置検出装置が、マイクロホンに設けられタグ識別番号を送出する赤外線発信タグ、前記各スピーカSjに設けられるとともにリーダ識別番号を有し前記各スピーカSjのカバーエリアに進入した前記赤外線発信タグからの前記タグ識別番号を読み取り前記タグ識別番号及び前記リーダ識別番号を送出するタグ読み取り装置、前記音場内にて移動する前記マイクロホンの任意の位置を前記タグ識別番号及び前記リーダ識別番号に基づき検出する音源位置同定手段からなる話者移動に追従して音像定位する分散拡声システム。
The distributed loudspeaker system according to claim 3 or 4, wherein the sound image is localized following the movement of the speaker.
The microphone position detection device is provided with a microphone, and transmits an tag identification number. The infrared transmission tag is provided on each of the speakers Sj and has a reader identification number and has an infrared transmission tag that has entered the cover area of each of the speakers Sj. A tag reader that reads the tag identification number and sends out the tag identification number and the reader identification number, and detects an arbitrary position of the microphone that moves in the sound field based on the tag identification number and the reader identification number. A distributed loudspeaker system comprising sound source position identification means for localizing a sound image following speaker movement.
JP2002187102A 2002-06-27 2002-06-27 Method for dispersively speech amplifying to localize sound image by following to speaker movement and dispersively speech amplifying system Pending JP2004032463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002187102A JP2004032463A (en) 2002-06-27 2002-06-27 Method for dispersively speech amplifying to localize sound image by following to speaker movement and dispersively speech amplifying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002187102A JP2004032463A (en) 2002-06-27 2002-06-27 Method for dispersively speech amplifying to localize sound image by following to speaker movement and dispersively speech amplifying system

Publications (1)

Publication Number Publication Date
JP2004032463A true JP2004032463A (en) 2004-01-29

Family

ID=31182241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002187102A Pending JP2004032463A (en) 2002-06-27 2002-06-27 Method for dispersively speech amplifying to localize sound image by following to speaker movement and dispersively speech amplifying system

Country Status (1)

Country Link
JP (1) JP2004032463A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081843A (en) * 2005-09-14 2007-03-29 Yamaha Corp Sound field control equipment
JP2008216623A (en) * 2007-03-05 2008-09-18 Pioneer Electronic Corp Sound device and speech correcting method
JP2009501462A (en) * 2005-07-15 2009-01-15 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Apparatus and method for controlling multiple speakers using a graphical user interface
JP2011166256A (en) * 2010-02-05 2011-08-25 Panasonic Corp Acoustic reproducing device
WO2017167562A1 (en) * 2016-03-30 2017-10-05 Siemens Aktiengesellschaft Method and arrangement for controlling the output volume of at least one acoustic output device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501462A (en) * 2005-07-15 2009-01-15 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Apparatus and method for controlling multiple speakers using a graphical user interface
JP4913140B2 (en) * 2005-07-15 2012-04-11 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Apparatus and method for controlling multiple speakers using a graphical user interface
US8189824B2 (en) 2005-07-15 2012-05-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for controlling a plurality of speakers by means of a graphical user interface
JP2007081843A (en) * 2005-09-14 2007-03-29 Yamaha Corp Sound field control equipment
JP4701944B2 (en) * 2005-09-14 2011-06-15 ヤマハ株式会社 Sound field control equipment
JP2008216623A (en) * 2007-03-05 2008-09-18 Pioneer Electronic Corp Sound device and speech correcting method
JP2011166256A (en) * 2010-02-05 2011-08-25 Panasonic Corp Acoustic reproducing device
WO2017167562A1 (en) * 2016-03-30 2017-10-05 Siemens Aktiengesellschaft Method and arrangement for controlling the output volume of at least one acoustic output device
CN109478872A (en) * 2016-03-30 2019-03-15 西门子移动有限公司 Method and apparatus for controlling the output volume of at least one acoustic output equipment
RU2705716C1 (en) * 2016-03-30 2019-11-11 Сименс Мобилити Гмбх Method and an arrangement for controlling the output loudness of at least one acoustic device
US10637425B2 (en) 2016-03-30 2020-04-28 Siemens Mobility GmbH Method and arrangement for controlling an output volume of at least one acoustic output device
CN109478872B (en) * 2016-03-30 2022-10-11 西门子交通有限公司 Method and apparatus for controlling output volume of at least one acoustic output device

Similar Documents

Publication Publication Date Title
US7995768B2 (en) Sound reinforcement system
JP4196956B2 (en) Loudspeaker system
JP4120646B2 (en) Loudspeaker system
JP5323055B2 (en) Directed radiation of sound in vehicles (DIRECTIONALLYRADIATINGSOUNDINAVEHICHILE)
JP4258472B2 (en) Loudspeaker system
US7804972B2 (en) Method and apparatus for calibrating a sound beam-forming system
JP3134254B2 (en) Concert audio system
US20140064526A1 (en) Method for controlling a speaker array to provide spatialized, localized, and binaural virtual surround sound
JP4752403B2 (en) Loudspeaker system
US20080219485A1 (en) Apparatus, System and Method for Acoustic Signals
US20140294210A1 (en) Systems, methods, and apparatus for directing sound in a vehicle
JP2008543143A (en) Acoustic transducer assembly, system and method
US20220272454A1 (en) Managing playback of multiple streams of audio over multiple speakers
EP2222092A1 (en) Speaker array apparatus and signal processing method
CN113079453B (en) Intelligent following method and system for auditory sound effect
JP3273561B2 (en) Sound image localization loudspeaker method and loudspeaker system using distributed speakers
JP2004032463A (en) Method for dispersively speech amplifying to localize sound image by following to speaker movement and dispersively speech amplifying system
JP2006211156A (en) Acoustic device
US20230362571A1 (en) Information processing device, information processing terminal, information processing method, and program
JP2006352728A (en) Audio apparatus
JP3874855B2 (en) Sound image localization system
JPH02230899A (en) Voice reproduction system
US20210409866A1 (en) Loudspeaker System with Overhead Sound Image Generating (e.g., ATMOS™) Elevation Module and Method and apparatus for Direct Signal Cancellation
JPH06133399A (en) Sound image localization controller
JP2011155500A (en) Monitor control apparatus and acoustic system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024