JP2004031106A - Cold molten salt type electrochemical device - Google Patents

Cold molten salt type electrochemical device Download PDF

Info

Publication number
JP2004031106A
JP2004031106A JP2002185408A JP2002185408A JP2004031106A JP 2004031106 A JP2004031106 A JP 2004031106A JP 2002185408 A JP2002185408 A JP 2002185408A JP 2002185408 A JP2002185408 A JP 2002185408A JP 2004031106 A JP2004031106 A JP 2004031106A
Authority
JP
Japan
Prior art keywords
group
molten salt
electrochemical device
electrode
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002185408A
Other languages
Japanese (ja)
Inventor
Hajime Matsumoto
松本 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002185408A priority Critical patent/JP2004031106A/en
Publication of JP2004031106A publication Critical patent/JP2004031106A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical device having the performance, safety, and easiness of systematization. <P>SOLUTION: At least one electrode selected from a group of positive electrodes and negative electrodes is turned into a porous electrode, and cold molten salt is arranged between the porous electrode and a solid electrolyte. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、常温溶融塩型電気化学デバイスに関する。
【0002】
【従来の技術及びその課題】
電池、燃料電池、色素増感太陽電池などの電気化学デバイスは、通常電解質溶液(電解液)を用いるため、電解液の液漏れや揮発といった要因により長期にわたる安定動作が困難であり、また、液に有機溶媒を用いることにより発火などの危険を伴う。
【0003】
携帯電話や電気自動車などの生活に密着した電気化学デバイスでは、特に安全性の確保が重要であり、電解液の使用に伴う欠点を克服する手段として、ガラスやセラミック、固体高分子などのいわゆる固体電解質の研究開発が行われ、その性能も液体系に匹敵するものが知られている。固体電解質は、単に電解質部分が固体になるという利点だけではなく、セパレータなどの隔壁の役割を同時に果たすことができる。
【0004】
一般に、電気化学デバイスでは出力を高めるために電極の実効面積を増大する必要があり、そのためにセラミック焼結体などの極めて微細な孔を有する比表面積の大きな電極を用いる。固体電解質を単に既存の電解液と置き換えた場合、固体電解質と電極を張り合わせただけでは、微細な電極内部と固体電解質は接触することができないため、大きな実効表面積の大部分が生かし切れず、液体電解質に比べてデバイスの性能が著しく低下することになる。
【0005】
本発明は、性能、安全性及びシステム化の容易さを兼ね備えた電気化学デバイスを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、以下の電気化学デバイスを提供するものである。
項1. 陽極及び陰極からなる群から選ばれる少なくとも1つの電極が多孔質電極であり、該多孔質電極と固体電解質の間に常温溶融塩を位置させてなる電気化学デバイス。
項2. 陽極及び陰極が多孔質電極である項1に記載の電気化学デバイス。
項3. 電気化学デバイスが一次電池、二次電池、燃料電池、湿式太陽電池、キャパシター、エレクトロクロミックデバイス又は電気化学センサーである項1又は2に記載のデバイス。
【0007】
【発明の実施の形態】
本発明で使用する常温溶融塩の融点は、通常100℃以下、好ましくは80℃以下、より好ましくは60℃以下、さらに好ましくは40℃以下、特に25℃以下である。例えば燃料電池に使用する場合には100℃以下の常温溶融塩を広く使用することができる。一方、太陽電池では常温溶融塩の融点は室温(25℃)以下が好ましく、特に0℃以下であるのがさらに好ましい。
【0008】
本発明の1つの実施態様における電気化学デバイスの構造を図1に示す。
【0009】
該デバイスは、カソード集電体1、カソード電極(多孔質)2、固体電解質3、アノード集電体5、アノード電極(多孔質)4及び負荷6を有する。該デバイスにおいて、常温溶融塩を固体電解質と多孔質電極2,4の間隙に位置させることで、多孔質電極2,4と固体電解質3の間の円滑なイオン移動を実現することができる。また、常温溶融塩を更に多孔質電極2、4の内部に位置させることで、固体電解質と多孔質電極及び集電体とのイオン移動を更に円滑にすることができる。
【0010】
図2に示されるように、常温溶融塩は、−40℃〜400℃程度の温度下に使用されるものであり、使用温度が高いほど粘性が低下し、導電性が向上する。
【0011】
特に燃料電池において、従来の電解液では対応できない100℃以上、特に100℃〜300℃)の中温度域での電解質が求められており、常温溶融塩はこのような中温度域での使用にも適している。又、常温溶融塩には、デバイスの作動に必要となるイオン種(例えばリチウムイオン、プロトン、ヨウ化物アニオン)を混在させてもよい。
【0012】
本発明の「常温溶融塩」は、デバイスの使用温度で溶融していることが必要である。その融点が常温以下の塩は当然に常温溶融塩に含まれるが、デバイスの使用温度で溶融している限り、融点が100℃程度の塩も本発明の「常温溶融塩」に該当する。
【0013】
融点が常温(25℃)以下の常温溶融塩は、例えば以下のアニオン成分とカチオン成分からなる塩が例示される。
(1)常温溶融塩のアニオン成分
クロロアルミネート(AlCl , AlCl など)、ハライド(I, I など)、BF ,PF 、CFCOO,CFSO ,F(HF) 硝酸イオン、酢酸イオンを含む脂肪族カルボン酸イオン、安息香酸イオンを含む芳香族カルボン酸イオン、(CB(C13が例示され、さらに以下の一般式(I)のアニオンが例示される:
【0014】
【化1】
−Y−N−Y−R   (I)
〔式中、R及びRは、同一又は異なってフッ素原子を有することのある(アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基)を示す。Y及びYは同一又は異なってSOまたはCOを示す〕
フッ素原子を有することのあるアルキル基としては、炭素数1〜20の直鎖又は分枝を有するパーフルオロアルキル基(C2n+1;n=1〜20)、炭素数1〜20の直鎖又は分枝を有するポリフルオロアルキル基(C;n=1〜20、a+b=2n+1、a>0,b>0)、炭素数1〜20の直鎖又は分枝を有するアルキル基(C2n+1)が例示される。
【0015】
フッ素原子を有することのあるアルケニル基としては、直鎖又は分枝を有するC〜C20パーフルオロアルケニル基(C2n−1;n=1〜20;パーフルオロビニル基、パーフルオロアリル基、パーフルオロブテニル基等)、ポリフルオロアルケニル基(C;n=1〜20、a+b=2n−1、a>0,b>0)、アルケニル基(C2n−1)が例示される。
【0016】
フッ素原子を有することのあるシクロアルキル基としては、C〜Cパーフルオロシクロアルキル基(C2n−1;n=3〜8)、C〜Cポリフルオロシクロアルキル基(C;n=3〜8、a+b=2n−1、a>0,b>0)、C〜Cシクロアルキル基(C2n−1;n=3〜8)が例示される。
【0017】
フッ素原子を有することのあるアリール基としては、フェニル基、(モノ、ジ、トリ、テトラ又はペンタ)フルオロフェニル基、フッ素原子を1〜6個有するポリフルオロナフチル基、パーフルオロナフチル基、ナフチル基、パーフルオロトルイル基、パーフルオロキシリル基、トルイル基、キシリル基などのフッ素原子を有することのあるC〜C14アリール基が挙げられる。
【0018】
フッ素原子を有することのあるアラルキル基としては、パーフルオロベンジル基、パーフルオロフェネチル基などのC〜C15パーフルオロアラルキル基、ポリフルオロベンジル基、ポリフルオロフェネチル基などのC〜C15ポリフルオロアラルキル基、ベンジル基、フェネチル基などのC〜C15アラルキル基等が挙げられる。
【0019】
前記アルキル基、アルケニル基の任意の位置のC−C単結合の間に−O−、−COO−、−CO−、を1個または複数個介在させて、エーテル、エステルまたはケトン構造としてもよい。
(2)常温溶融塩のカチオン成分
イミダゾリウムカチオン、ピリジニウムカチオンなどの含窒素複素環基の環を構成する窒素が4級アンモニウムであるカチオン、芳香族、脂肪族又は脂環式アンモニウム:N(R)(Rは同一又は異なって炭素数1〜20の直鎖又は分枝を有するアルキル基、炭素数6〜14のアリール基、炭素数7〜15のアラルキル基、或いは2つのRが一緒になって炭素数2〜6の環式基を形成する)などが例示される。
【0020】
固体電解質としては、ガラス、セラミックス、固体高分子が例示され、使用条件下で固体であれば、ゲル状のものも含まれる。
【0021】
多孔質電極としては、多孔質カーボン電極、金属酸化物多孔体、白金担持カーボン電極、色素担持酸化物多孔体などが例示され、電気化学デバイスの種類に応じて各種の多孔質電極が使用できる。
【0022】
【発明の効果】
常温溶融塩は、溶媒を全く含まないため、難燃性及び不揮発性であるため、安全なシステムを構築可能であり、多孔質電極の内部及び多孔質電極と固体電解質の間隙を満たすことができる。一方、固体電解質はセパレータを兼ねるため、多孔質電極の表面及び内部に充填された常温溶融塩の液漏れを防ぐことができる。
【0023】
本発明の電気化学デバイスは、固体電解質及び常温溶融塩を各々単独で使用した電気化学デバイスよりも、性能、安全性、システム化の容易さの点において格段に優れている。
【図面の簡単な説明】
【図1】電気化学デバイスの概略図である。
【図2】使用温度域と導電性の関係を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a room temperature molten salt electrochemical device.
[0002]
[Prior art and its problems]
Electrochemical devices such as batteries, fuel cells, and dye-sensitized solar cells usually use an electrolyte solution (electrolyte solution), so that stable operation over a long period of time is difficult due to factors such as electrolyte leakage and volatilization. The use of an organic solvent involves the danger of ignition.
[0003]
It is particularly important to ensure safety for electrochemical devices that are closely related to daily life such as mobile phones and electric vehicles. To overcome the drawbacks associated with the use of electrolytes, so-called solid materials such as glass, ceramics, and solid polymers are used. Research and development of electrolytes have been conducted, and their performance is known to be comparable to that of liquid systems. The solid electrolyte can serve not only as an advantage that the electrolyte portion becomes solid but also as a partition such as a separator.
[0004]
Generally, in an electrochemical device, it is necessary to increase the effective area of the electrode in order to increase the output. For this reason, an electrode having a very large specific surface area having extremely fine pores such as a ceramic sintered body is used. When the solid electrolyte is simply replaced with an existing electrolyte, the inside of the fine electrode cannot contact the solid electrolyte simply by laminating the electrode with the solid electrolyte. The performance of the device will be significantly reduced compared to the electrolyte.
[0005]
An object of the present invention is to provide an electrochemical device having performance, safety, and ease of systemization.
[0006]
[Means for Solving the Problems]
The present invention provides the following electrochemical device.
Item 1. An electrochemical device wherein at least one electrode selected from the group consisting of an anode and a cathode is a porous electrode, and a room-temperature molten salt is located between the porous electrode and the solid electrolyte.
Item 2. Item 2. The electrochemical device according to Item 1, wherein the anode and the cathode are porous electrodes.
Item 3. Item 3. The device according to Item 1 or 2, wherein the electrochemical device is a primary battery, a secondary battery, a fuel cell, a wet solar cell, a capacitor, an electrochromic device, or an electrochemical sensor.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The melting point of the room temperature molten salt used in the present invention is usually 100 ° C. or lower, preferably 80 ° C. or lower, more preferably 60 ° C. or lower, further preferably 40 ° C. or lower, and particularly preferably 25 ° C. or lower. For example, when used in a fuel cell, a room temperature molten salt of 100 ° C. or less can be widely used. On the other hand, in a solar cell, the melting point of the room temperature molten salt is preferably room temperature (25 ° C.) or lower, and more preferably 0 ° C. or lower.
[0008]
FIG. 1 shows the structure of an electrochemical device according to one embodiment of the present invention.
[0009]
The device has a cathode current collector 1, a cathode electrode (porous) 2, a solid electrolyte 3, an anode current collector 5, an anode electrode (porous) 4, and a load 6. In this device, by positioning the room temperature molten salt in the gap between the solid electrolyte and the porous electrodes 2 and 4, smooth ion transfer between the porous electrodes 2 and 4 and the solid electrolyte 3 can be realized. Further, by further positioning the room temperature molten salt inside the porous electrodes 2 and 4, the ion transfer between the solid electrolyte and the porous electrode and the current collector can be further smoothed.
[0010]
As shown in FIG. 2, the room temperature molten salt is used at a temperature of about −40 ° C. to 400 ° C. The viscosity decreases as the use temperature increases, and the conductivity improves.
[0011]
In particular, in fuel cells, electrolytes in the middle temperature range of 100 ° C. or higher (especially 100 ° C. to 300 ° C.), which cannot be handled by conventional electrolytes, are required. Are also suitable. Further, an ionic species (for example, lithium ion, proton, or iodide anion) necessary for operation of the device may be mixed in the room-temperature molten salt.
[0012]
The “room temperature molten salt” of the present invention needs to be molten at the use temperature of the device. Salts having a melting point below room temperature are naturally included in the room temperature molten salt, but salts having a melting point of about 100 ° C. also fall under the “room temperature molten salt” of the present invention as long as they are melted at the device use temperature.
[0013]
Examples of the room temperature molten salt having a melting point of room temperature (25 ° C.) or lower include, for example, the following salts composed of an anionic component and a cationic component.
(1) Anionic components chloroaluminate (AlCl 4 , Al 2 Cl 7 etc.), halides (I , I 3 etc.), BF 4 , PF 6 , CF 3 COO , CF of room temperature molten salt 3 SO 3 -, F (HF ) n - nitrate ions, aliphatic carboxylate ions containing acetic acid ion, an aromatic carboxylic acid ions including benzoic acid ion, (C 2 H 5) 3 B (C 6 H 13) - And further anion of the following general formula (I):
[0014]
Embedded image
R 1 -Y 1 -N -- Y 2 -R 2 (I)
[In the formula, R 1 and R 2 are the same or different and each may have a fluorine atom (alkyl group, alkenyl group, cycloalkyl group, aryl group, aralkyl group). Y 1 and Y 2 are the same or different and represent SO 2 or CO]
Examples of the alkyl group which may have a fluorine atom include a linear or branched perfluoroalkyl group having 1 to 20 carbon atoms (C n F 2n + 1 ; n = 1 to 20), and a linear chain having 1 to 20 carbon atoms. or polyfluoroalkyl group having a branch (C n F a H b; n = 1~20, a + b = 2n + 1, a> 0, b> 0), alkyl having a straight or branched having 1 to 20 carbon atoms The group (C n H 2n + 1 ) is exemplified.
[0015]
The alkenyl group which may have a fluorine atom, a straight-chain or C 2 -C 20 perfluoroalkenyl groups having branched (C n F 2n-1; n = 1~20; perfluorovinyl group, perfluoro allyl group, perfluorobutenyl group), polyfluoroalkenyl group (C n F a H b; n = 1~20, a + b = 2n-1, a> 0, b> 0), an alkenyl group (C n F 2n -1 ) is exemplified.
[0016]
The cycloalkyl group which may have a fluorine atom, C 3 -C 8 perfluoroalkyl cycloalkyl group (C n F 2n-1; n = 3~8), C 3 ~C 8 polyfluoroalkyl cycloalkyl (C n F a H b; n = 3~8, a + b = 2n-1, a> 0, b> 0), C 3 ~C 8 cycloalkyl group (C n H 2n-1; n = 3~8) is Is exemplified.
[0017]
Examples of the aryl group which may have a fluorine atom include a phenyl group, a (mono, di, tri, tetra or penta) fluorophenyl group, a polyfluoronaphthyl group having 1 to 6 fluorine atoms, a perfluoronaphthyl group, a naphthyl group , A perfluorotolyl group, a perfluoroxylyl group, a toluyl group, a xylyl group and other C 6 -C 14 aryl groups which may have a fluorine atom.
[0018]
The aralkyl group which may have a fluorine atom, perfluoro benzyl group, C 7 -C 15 perfluoro aralkyl group such as a perfluoro phenethyl group, a poly-fluorobenzyl group, C 7 -C 15 such as poly polyfluoro phenethyl group C 7 -C 15 aralkyl groups such as fluoroaralkyl group, benzyl group and phenethyl group.
[0019]
One or more -O-, -COO-, -CO- may be interposed between C-C single bonds at any position of the alkyl group or alkenyl group to form an ether, ester or ketone structure. .
(2) Cation component of room temperature molten salt Cation in which nitrogen constituting a ring of a nitrogen-containing heterocyclic group such as imidazolium cation and pyridinium cation is a quaternary ammonium, aromatic, aliphatic or alicyclic ammonium: N (R 4 ) (R is the same or different and has a linear or branched alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 14 carbon atoms, an aralkyl group having 7 to 15 carbon atoms, or two R To form a cyclic group having 2 to 6 carbon atoms).
[0020]
Examples of the solid electrolyte include glass, ceramics, and solid polymers, and include a gel-like solid electrolyte if it is solid under the conditions of use.
[0021]
Examples of the porous electrode include a porous carbon electrode, a metal oxide porous body, a platinum-supported carbon electrode, and a dye-supported oxide porous body. Various porous electrodes can be used depending on the type of the electrochemical device.
[0022]
【The invention's effect】
Since the room temperature molten salt does not contain any solvent, it is flame-retardant and non-volatile, so a safe system can be constructed, and the inside of the porous electrode and the gap between the porous electrode and the solid electrolyte can be filled. . On the other hand, since the solid electrolyte also serves as a separator, it is possible to prevent liquid leakage of the room-temperature molten salt filled on the surface and inside of the porous electrode.
[0023]
The electrochemical device of the present invention is far superior in performance, safety, and ease of systemization to an electrochemical device using a solid electrolyte and a room-temperature molten salt alone.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an electrochemical device.
FIG. 2 is a diagram showing a relationship between an operating temperature range and conductivity.

Claims (3)

陽極及び陰極からなる群から選ばれる少なくとも1つの電極が多孔質電極であり、該多孔質電極と固体電解質の間に常温溶融塩を位置させてなる電気化学デバイス。An electrochemical device wherein at least one electrode selected from the group consisting of an anode and a cathode is a porous electrode, and a room-temperature molten salt is located between the porous electrode and the solid electrolyte. 陽極及び陰極が多孔質電極である請求項1に記載の電気化学デバイス。The electrochemical device according to claim 1, wherein the anode and the cathode are porous electrodes. 電気化学デバイスが一次電池、二次電池、燃料電池、キャパシター、エレクトロクロミックデバイス又は電気化学センサーである請求項1又は2に記載のデバイス。The device according to claim 1, wherein the electrochemical device is a primary battery, a secondary battery, a fuel cell, a capacitor, an electrochromic device, or an electrochemical sensor.
JP2002185408A 2002-06-26 2002-06-26 Cold molten salt type electrochemical device Pending JP2004031106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002185408A JP2004031106A (en) 2002-06-26 2002-06-26 Cold molten salt type electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002185408A JP2004031106A (en) 2002-06-26 2002-06-26 Cold molten salt type electrochemical device

Publications (1)

Publication Number Publication Date
JP2004031106A true JP2004031106A (en) 2004-01-29

Family

ID=31181044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185408A Pending JP2004031106A (en) 2002-06-26 2002-06-26 Cold molten salt type electrochemical device

Country Status (1)

Country Link
JP (1) JP2004031106A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251466A (en) * 2004-03-02 2005-09-15 Nissan Motor Co Ltd Fuel cell electrolyte, and fuel cell
JP2009117168A (en) * 2007-11-06 2009-05-28 Sumitomo Electric Ind Ltd All solid battery, and manufacturing method thereof
JP2011108499A (en) * 2009-11-18 2011-06-02 Konica Minolta Holdings Inc Solid electrolyte and lithium ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251466A (en) * 2004-03-02 2005-09-15 Nissan Motor Co Ltd Fuel cell electrolyte, and fuel cell
WO2005086266A1 (en) * 2004-03-02 2005-09-15 Nissan Motor Co., Ltd. Electrolyte for fuel cell and fuel cell
JP2009117168A (en) * 2007-11-06 2009-05-28 Sumitomo Electric Ind Ltd All solid battery, and manufacturing method thereof
JP2011108499A (en) * 2009-11-18 2011-06-02 Konica Minolta Holdings Inc Solid electrolyte and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
Zheng et al. New insights into the compositional dependence of Li-ion transport in polymer–ceramic composite electrolytes
Agostini et al. Polysulfide-containing glyme-based electrolytes for lithium sulfur battery
JP5050847B2 (en) Secondary battery, power supply system using the same, and method of using the power supply system
US20170309943A1 (en) Ionic liquid catholytes and electrochemical devices containing same
JP5545728B2 (en) Lithium secondary battery and composite negative electrode for lithium secondary battery
KR102448135B1 (en) Dendrite inhibiting electrolytes for metal-based batteries
JPH0358150B2 (en)
CN101443933B (en) Power storage device
CN102916220A (en) Magnesium battery electrolyte
Austin Suthanthiraraj et al. Nanocomposite polymer electrolytes
JP4292876B2 (en) Electrolyte for storage element and storage element
JP2019505967A (en) Redox flow battery electrolyte and redox flow battery
An et al. The effects of functional ionic liquid on properties of solid polymer electrolyte
CN104641503B (en) The 1.5 3V lithium batteries with additives for overcharge protection
US20110151340A1 (en) Non-aqueous electrolyte containing as a solvent a borate ester and/or an aluminate ester
JPWO2019188358A1 (en) Electrolyte for fluoride ion secondary battery, and fluoride ion secondary battery using the electrolyte
JP2010129495A (en) Air battery
JP2004031106A (en) Cold molten salt type electrochemical device
JP4946308B2 (en) Electric storage device and electrode used for electric storage device
JP5979551B2 (en) Vanadium redox battery
JP4310989B2 (en) Nonaqueous electrolytes and electrochemical devices
JP3587982B2 (en) Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same
WO2023155553A1 (en) Magnesium battery electrolyte and preparation method therefor, and magnesium battery
Sano et al. In-situ optical microscope morphology observation of lithium electrodeposited in room temperature ionic liquids containing aliphatic quaternary ammonium cation
Tamainato et al. Composite Polymer Electrolytes for Lithium Batteries

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703