JP2004029039A - Method and apparatus for controlling temperature in electromotive force cell - Google Patents

Method and apparatus for controlling temperature in electromotive force cell Download PDF

Info

Publication number
JP2004029039A
JP2004029039A JP2003346491A JP2003346491A JP2004029039A JP 2004029039 A JP2004029039 A JP 2004029039A JP 2003346491 A JP2003346491 A JP 2003346491A JP 2003346491 A JP2003346491 A JP 2003346491A JP 2004029039 A JP2004029039 A JP 2004029039A
Authority
JP
Japan
Prior art keywords
electromotive force
cell
oxygen
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003346491A
Other languages
Japanese (ja)
Inventor
Tetsumasa Yamada
山田 哲正
Takashi Kawai
川合 尊
Yuji Oi
大井 雄二
Shigeki Mori
森 茂樹
Satoshi Teramoto
寺本 諭司
Toshiya Matsuoka
松岡 俊也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003346491A priority Critical patent/JP2004029039A/en
Publication of JP2004029039A publication Critical patent/JP2004029039A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature controlling method and a temperature controlling apparatus of a total region oxygen sensor for accurately and constantly maintaining temperature. <P>SOLUTION: A constant current ICONST is applied to an electromotive force cell 24 being pinched between a diffusion chamber 20 in a fixed atmosphere and an oxygen reference chamber 26 in fixed oxygen concentration to measure a resistance value, thus accurately measuring the resistance value regardless of the oxygen concentration in the measurement atmosphere of an oxygen sensor element 10. Additionally, the resistance value of the electromotive force cell 24 is measured at specific timing T2 when current starts to be applied, thus accurately performing measurement without including an amount of change in resistance due to deterioration or the like in porous electrodes 22, 24 in the electromotive force cell 24 being included in measurement by DC. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、エンジンの排気ガス中に含まれる酸素の濃度を検出する全領域酸素センサの温度制御方法及び温度制御装置に関するものである。 The present invention relates to a temperature control method and a temperature control device for an all-region oxygen sensor that detects the concentration of oxygen contained in exhaust gas of an engine.

 エンジンに供給する混合気の空燃比を目標値に制御し、排気ガス中のCO、NOx 、HCを軽減するために、排気系に酸素センサを設け、空燃比と相関関係を持つ排気中の酸素濃度に応じて、燃料供給量をフィードバック制御することが知られている。このフィードバック制御に用いられる酸素センサとしては、特定の酸素濃度(特に理論空燃比雰囲気)で出力がステップ状に変化するλセンサと、リーン領域からリッチ領域まで連続的に出力が変化する全領域酸素センサとが主に用いられている。全領域酸素センサは、上述したように排気ガス中の酸素濃度を連続的に測定でき、フィードバック制御の速度及び精度を向上させ得るため、より高速な高精度制御が要求される際に用いられている。 An oxygen sensor is provided in the exhaust system to control the air-fuel ratio of the air-fuel mixture supplied to the engine to a target value and reduce CO, NOx, and HC in the exhaust gas. It is known that the fuel supply amount is feedback-controlled according to the concentration. As the oxygen sensor used for this feedback control, there are a λ sensor whose output changes stepwise at a specific oxygen concentration (particularly, a stoichiometric air-fuel ratio atmosphere) and an oxygen sensor whose output continuously changes from a lean region to a rich region. Sensors are mainly used. As described above, the full-range oxygen sensor can continuously measure the oxygen concentration in the exhaust gas, and can improve the speed and accuracy of the feedback control. I have.

 全領域酸素センサは、酸素イオン伝導性固体電解質体の2つのセルを間隔を介して対向配設し、一方のセルを間隔内の酸素を周囲にくみ出すもしくは周囲から酸素をくみ込むポンプセルとして用い、また、他方のセルを酸素基準室と間隔との酸素濃度差によって電圧を生じる起電力セルとして用い、起電力セルの出力が一定になるようにポンプセルを動作させ、その時に該ポンプセルに流す電流を、測定酸素濃度比例値として測定する。この全領域酸素センサの動作原理は、本出願人の出願に係る特開昭62−148849号中に詳述されている。 In the whole-area oxygen sensor, two cells of an oxygen ion conductive solid electrolyte body are disposed to face each other with a space therebetween, and one of the cells is used as a pump cell that draws oxygen in the space to the surroundings or draws oxygen from the surroundings. Further, the other cell is used as an electromotive force cell that generates a voltage due to a difference in oxygen concentration between the oxygen reference chamber and the space, and the pump cell is operated so that the output of the electromotive force cell becomes constant. Is measured as a measured oxygen concentration proportional value. The operating principle of this full-range oxygen sensor is described in detail in Japanese Patent Application Laid-Open No. Sho 62-148849 filed by the present applicant.

この全領域酸素センサを動作させるためには、該ポンプセル及び起電力セルを所定温度以上に加熱し、酸素イオン伝導性固体電解質体の活性を高める必要がある。このため、全領域酸素センサには、加熱用のヒータがポンプセル及び起電力セルの近傍に取り付けられている。
特開昭62−148849号公報
In order to operate this full-area oxygen sensor, it is necessary to heat the pump cell and the electromotive force cell to a predetermined temperature or higher to increase the activity of the oxygen ion conductive solid electrolyte. For this reason, a heater for heating is attached to the whole area oxygen sensor near the pump cell and the electromotive force cell.
JP-A-62-148849

 現在、排気ガス中のCO、NOx、HC等の有害ガス成分を更に低減することが求められている。この有害ガスの除去には、酸素センサにて排気ガス中の酸素濃度を更に正確に測定し、空燃比のフィードバック制御を高速で行う必要がある。ここで、酸素センサの精度を高めるためには、酸素センサの温度を一定に保つことが要求される。一定温度を実現するために、ヒータの抵抗値を測定することにより、温度を測定し、測定温度をセル温度とほぼ等しいと見なして、ヒータの温度を一定に保つ方法が取られている。 At present, it is required to further reduce harmful gas components such as CO, NOx, and HC in exhaust gas. In order to remove this harmful gas, it is necessary to more accurately measure the oxygen concentration in the exhaust gas with an oxygen sensor and to perform feedback control of the air-fuel ratio at a high speed. Here, in order to improve the accuracy of the oxygen sensor, it is required to keep the temperature of the oxygen sensor constant. In order to achieve a constant temperature, a method has been adopted in which the temperature of the heater is measured by measuring the resistance value of the heater, the measured temperature is regarded as substantially equal to the cell temperature, and the temperature of the heater is kept constant.

 しかしながら、この方法では、排気ガスの温度が低いときや、ガスの流速が高いときには、セル温度とヒータ温度が一致しなくなり、高精度でセル温度を制御することができなかった。 However, in this method, when the temperature of the exhaust gas is low or when the flow rate of the gas is high, the cell temperature and the heater temperature do not match, and the cell temperature cannot be controlled with high accuracy.

 本発明は、上述した課題を解決するためになされたものであり、その目的とするところは、温度を正確に一定に保ち得る全領域酸素センサの温度制御方法及び装置を提供することにある。 The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a temperature control method and apparatus for an entire region oxygen sensor that can accurately maintain a constant temperature.

 上記の目的を達成するため、請求項1の全領域酸素センサの温度制御方法では、加熱用ヒータによって加熱される酸素イオン伝導性固体電解質体の両面に多孔質電極が設けられた2つのセルを、間隔を介して対向配設し、一方のセルを前記間隔内の酸素を周囲にくみ出すもしくは酸素をくみ込むポンプセル、他方のセルを酸素基準室と前記間隔との酸素濃度差によって電圧を生じる起電力セルとしてそれぞれ使用し、酸素濃度を測定する全領域酸素センサの、前記2つのセルの温度を、前記加熱用ヒータを用いて制御する全領域酸素センサの温度制御方法であって、
 前記起電力セルに抵抗値測定用の一定の電流もしくは電圧を印加し、
 前記起電力セルの抵抗値を、該抵抗値に前記多孔質電極と前記固体電解質体の界面における抵抗成分が含まれない様に、前記抵抗値測定用電流もしくは電圧の印加後所定時間以内に測定し、
 測定した前記起電力セルの抵抗値が一定値となるように、前記ヒータを制御することを技術的特徴とする。
In order to achieve the above object, in the temperature control method for an all-region oxygen sensor according to claim 1, two cells provided with porous electrodes on both surfaces of an oxygen ion conductive solid electrolyte heated by a heater are provided. A pump cell is disposed opposite to a space, and one of the cells is a pump cell that draws oxygen into or draws oxygen in the space, and the other cell generates a voltage due to an oxygen concentration difference between the oxygen reference chamber and the space. A method of controlling the temperature of the two-area oxygen sensor, which is used as an electromotive force cell and measures the oxygen concentration, of the two cells, using the heater for heating,
Apply a constant current or voltage for resistance measurement to the electromotive force cell,
The resistance value of the electromotive force cell is measured within a predetermined time after the application of the current or voltage for resistance measurement so that the resistance value does not include a resistance component at the interface between the porous electrode and the solid electrolyte body. And
The technical feature is that the heater is controlled such that the measured resistance value of the electromotive force cell becomes a constant value.

 更に、請求項2では、前記起電力セルの抵抗値を測定した後に、前記抵抗値測定用電流もしくは電圧の印加に引き続いて該電流もしくは電圧とは逆極性の、一定の電流もしくは電圧を所定時間印加することを特徴とする。 Furthermore, in claim 2, after measuring the resistance value of the electromotive force cell, following application of the resistance value measurement current or voltage, a constant current or voltage having a polarity opposite to the current or voltage is applied for a predetermined time. It is characterized by applying.

 上記の目的を達成するため、請求項3の全領域酸素センサの温度制御装置では、 加熱用ヒータによって加熱される酸素イオン伝導性固体電解質体の両面に多孔質電極が設けられた2つのセルを、間隔を介して対向配設し、一方のセルを前記間隔内の酸素を周囲にくみ出すもしくは酸素をくみ込むポンプセル、他方のセルを酸素基準室と前記間隔との酸素濃度差によって電圧を生じる起電力セルとしてそれぞれ使用し、酸素濃度を測定する全領域酸素センサの、前記2つのセルの温度を、前記加熱用ヒータを用いて制御する全領域酸素センサの温度制御装置であって、
 前記起電力セルに抵抗値測定用の一定の電流もしくは電圧を印加する第1の電流もしくは電圧印加手段と、
 前記起電力セルの抵抗値を、該抵抗値に前記多孔質電極と前記固体電解質体の界面における抵抗成分が含まれない様に、前記抵抗値測定用電流もしくは電圧の印加後所定時間以内に測定を行う抵抗値測定手段と、
 前記起電力セルの抵抗値を測定した後、前記抵抗値測定用電流もしくは電圧の印加に引き続いて該電流もしくは電圧とは逆極性の一定電流もしくは電圧を所定時間印加する第2の電流もしくは電圧印加手段と、
 測定した前記起電力セルの抵抗値が一定値となるように、前記ヒータを制御する温度制御手段と、から成ることを特徴とする。
In order to achieve the above object, in the temperature control device for an all-zone oxygen sensor according to claim 3, two cells having porous electrodes provided on both surfaces of an oxygen ion conductive solid electrolyte body heated by a heater are provided. A pump cell is disposed opposite to a space, and one of the cells is a pump cell that draws oxygen into or draws oxygen in the space, and the other cell generates a voltage due to an oxygen concentration difference between the oxygen reference chamber and the space. A temperature control device for an entire-area oxygen sensor, which is used as an electromotive force cell and measures the oxygen concentration of the entire-area oxygen sensor, and controls the temperatures of the two cells by using the heater for heating.
First current or voltage applying means for applying a constant current or voltage for resistance measurement to the electromotive force cell,
The resistance value of the electromotive force cell is measured within a predetermined time after the application of the current or voltage for resistance measurement so that the resistance value does not include a resistance component at the interface between the porous electrode and the solid electrolyte body. Resistance measurement means for performing
After measuring the resistance value of the electromotive force cell, a second current or voltage application for applying a constant current or voltage having a polarity opposite to the current or voltage for a predetermined time following application of the resistance measurement current or voltage. Means,
Temperature control means for controlling the heater so that the measured resistance value of the electromotive force cell becomes a constant value.

上記の目的を達成するため、請求項4の全領域酸素センサでは請求項3の温度制御装置を備えたことを特徴とする。 In order to achieve the above object, the whole area oxygen sensor of claim 4 is provided with the temperature control device of claim 3.

請求項1の発明では、ポンプセルにより一定雰囲気に保持されている間隔と一定酸素濃度である酸素基準室とに挟まれた起電力セルに電圧又は電流を印加して抵抗値を測定するため、全領域酸素センサの測定雰囲気中の酸素濃度とは無関係に、抵抗値を正確に測定することができる。また、該起電力セルの抵抗値を、該抵抗値に前記多孔質電極と前記固体電解質体の界面における抵抗成分が含まれない様に、電圧及び電流の印加を開始した時点から所定タイミングにて測定するため、低周波の電流又は電圧によって測定した際に含まれる起電力セルの多孔質電極と固体電解質体の界面の劣化等による該界面における抵抗成分の変化分を含まず、起電力セルの固体電解質体のバルク抵抗成分が正確に測定できる。従ってセルの温度を正確に反映した抵抗値を得ることができる。 According to the first aspect of the present invention, since a voltage or a current is applied to an electromotive force cell sandwiched between an interval maintained at a constant atmosphere by a pump cell and an oxygen reference chamber having a constant oxygen concentration to measure a resistance value, The resistance value can be accurately measured irrespective of the oxygen concentration in the measurement atmosphere of the region oxygen sensor. Further, the resistance value of the electromotive force cell is determined at a predetermined timing from the time when the application of voltage and current is started so that the resistance value does not include the resistance component at the interface between the porous electrode and the solid electrolyte body. For the measurement, it does not include the change in the resistance component at the interface due to the deterioration of the interface between the porous electrode and the solid electrolyte body of the electromotive cell included when measured by the low-frequency current or voltage, and The bulk resistance component of the solid electrolyte can be accurately measured. Therefore, a resistance value accurately reflecting the cell temperature can be obtained.

 請求項2の発明では、起電力セルに電圧を印加する際に、前記抵抗測定用の電圧又は電流の印加に引き続いて該電流又は電圧に対して逆極性の一定の電圧又は電流を印加するため、大きな電流を流した場合に生じる酸素イオン伝導性固体電解質体の配向現象によって内部起電力が影響を受け本来の酸素濃度差を反映する内部起電力値を出力しない状態から復帰するまでの復帰時間を短縮でき、抵抗値の測定後に短時間で酸素濃度の測定を再開することが可能となる。 According to the second aspect of the present invention, when applying a voltage to the electromotive force cell, a constant voltage or current having a polarity opposite to that of the current or the voltage is applied following the application of the voltage or the current for resistance measurement. , The internal electromotive force is affected by the orientation phenomenon of the oxygen ion conductive solid electrolyte body that occurs when a large current flows, and the return time from when no internal electromotive force value that reflects the original oxygen concentration difference is output to when the device returns. And the measurement of the oxygen concentration can be resumed in a short time after the measurement of the resistance value.

請求項4の発明では、ポンプセルにより一定雰囲気に保たれた間隔と一定酸素濃度である酸素基準室とに挟まれた起電力セルに電圧又は電流を印加して抵抗値を測定するため、測定雰囲気中の酸素濃度とは無関係に、抵抗値を正確に測定することができる。また、該起電力セルの抵抗値を、該抵抗値に前記多孔質電極と前記固体電解質体の界面における抵抗成分が含まれない様に測定するため、低周波の電流もしくは電圧によって測定した際に含まれる起電力セルの多孔質電極と固体電解質体との界面の劣化等による該界面における抵抗成分の変化分を含まず、起電力セルの固体電解質体のバルク抵抗成分が正確に測定できる。 According to the fourth aspect of the present invention, the resistance value is measured by applying a voltage or a current to an electromotive force cell sandwiched between an interval maintained at a constant atmosphere by a pump cell and an oxygen reference chamber having a constant oxygen concentration. The resistance value can be accurately measured irrespective of the oxygen concentration therein. Further, in order to measure the resistance value of the electromotive force cell so that the resistance value does not include a resistance component at the interface between the porous electrode and the solid electrolyte body, when measured by a low-frequency current or voltage. The bulk resistance component of the solid electrolyte body of the electromotive force cell can be accurately measured without including the change in the resistance component at the interface between the porous electrode of the electromotive cell and the solid electrolyte body due to deterioration of the interface.

 請求項1及び4の全領域酸素センサの温度制御方法及び装置では、理論空燃比の雰囲気である間隔と一定酸素濃度である酸素基準室とに挟まれた起電力セルに電圧又は電流を印加して抵抗値を測定するため、測定雰囲気中の酸素濃度とは無関係に、抵抗値を正確に測定することができる。また、該起電力セルの抵抗値を、多孔質電極と固体電解質体の界面の抵抗成分が含まれないように測定するため、低周波の電流や電圧によって測定した場合に含まれる起電力セルの多孔質電極と固体電解質体の界面の劣化等による抵抗の変化分によ影響を受けず、正確にセンサ素子の温度を測定できる。 According to the temperature control method and apparatus of the whole area oxygen sensor according to claims 1 and 4, a voltage or a current is applied to an electromotive force cell sandwiched between an interval that is an atmosphere having a stoichiometric air-fuel ratio and an oxygen reference chamber that has a constant oxygen concentration. Therefore, the resistance value can be accurately measured irrespective of the oxygen concentration in the measurement atmosphere. Further, in order to measure the resistance value of the electromotive force cell so that the resistance component at the interface between the porous electrode and the solid electrolyte body is not included, the resistance value of the electromotive force cell included when measured by a low-frequency current or voltage is used. The temperature of the sensor element can be accurately measured without being affected by a change in resistance due to deterioration of the interface between the porous electrode and the solid electrolyte body.

 請求項2又は3の発明では、起電力セルに抵抗測定用の電圧もしくは電流を印加する際に、前記抵抗測定用の電圧もしくは電流の印加に引き続いて該抵抗測定用の電圧もしくは電流とは逆極性の電圧もしくは電流を印加するため、酸素イオン伝導性固体電解質体の配向現象によって内部起電力が影響を受け本来の酸素濃度差を反映する内部起電力値を出力しない状態から、正常な状態に復帰するまでの復帰時間を短縮でき、抵抗値の測定後に短時間で酸素濃度の測定を再開することが可能となる。 According to the second or third aspect of the present invention, when a voltage or current for resistance measurement is applied to the electromotive force cell, the voltage or current for resistance measurement is reversed following the application of the voltage or current for resistance measurement. Since a polarity voltage or current is applied, the internal electromotive force is affected by the orientation phenomenon of the oxygen ion conductive solid electrolyte body, and the internal electromotive force value that reflects the original oxygen concentration difference is not output. The return time until the return can be shortened, and the measurement of the oxygen concentration can be restarted in a short time after the measurement of the resistance value.

 以下、本発明を具体化した実施態様について図を参照して説明する。
 図1は、本発明の一実施態様に係る全領域酸素センサを示している。セル10は排気ガス系に配設される。該セル10は、排気ガス中の酸素濃度を測定すると共に該セル10の温度を測定するコントローラ50に接続されている。このセル10には、ヒータ制御回路60にて制御されるヒータ70が、図示しないセラミック製接合剤を介して取り付けられている。ヒータ70は、絶縁材料としてアルミナ等のセラミックから成りその内部にヒータ配線72が配設されている。ヒータ制御回路60は、コントローラ50により測定されるセル10の抵抗値を、目標値に保つようヒータ70へ電力を印加し、該セル10の温度を設定値に維持する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a full area oxygen sensor according to one embodiment of the present invention. The cell 10 is provided in an exhaust gas system. The cell 10 is connected to a controller 50 that measures the oxygen concentration in the exhaust gas and the temperature of the cell 10. A heater 70 controlled by a heater control circuit 60 is attached to the cell 10 via a ceramic bonding agent (not shown). The heater 70 is made of ceramic such as alumina as an insulating material, and has a heater wiring 72 disposed therein. The heater control circuit 60 applies electric power to the heater 70 so as to keep the resistance value of the cell 10 measured by the controller 50 at a target value, and maintains the temperature of the cell 10 at a set value.

 セル10は、ポンプセル14と、多孔質拡散層18と、起電力セル24と、補強板30とを積層することにより構成されている。ポンプセル14は、酸素イオン伝導性固体電解質材料である安定化または部分安定化ジルコニア(ZrO2 ) により形成され、その表面と裏面のそれぞれに主として白金で形成された多孔質電極12、16を有している。測定ガスに晒される表面側の多孔質電極12は、Ip+電流を流すためにIp+電圧が印加されるためIp+電極として参照する。また、裏面側の多孔質電極14は、Ip電流を流すためにIp−電圧が印加されるためIp−電極として参照する。 The cell 10 is configured by stacking a pump cell 14, a porous diffusion layer 18, an electromotive force cell 24, and a reinforcing plate 30. The pump cell 14 is made of stabilized or partially stabilized zirconia (ZrO2), which is an oxygen ion conductive solid electrolyte material, and has porous electrodes 12, 16 mainly made of platinum on its front and back surfaces, respectively. I have. The porous electrode 12 on the front side exposed to the measurement gas is referred to as an Ip + electrode because an Ip + voltage is applied to flow an Ip + current. The back side porous electrode 14 is referred to as an Ip-electrode because an Ip-voltage is applied to flow an Ip current.

 起電力セル24も同様に安定化または部分安定化ジルコニア(ZrO2 )により形成され、その表面と裏面のそれぞれに主として白金で形成された多孔質電極22、28を有している。拡散室20側に配設された多孔質電極18は、起電力セル24の起電力VsのVs−電圧が生じるためVs−電極として参照し、また、基準酸素室26側に配設された多孔質電極28は、Vs+電圧が生じるためVs+電極として参照する。なお、基準酸素室26の基準酸素は多孔質電極22から一定酸素を多孔質電極28にポンピングする事により生成する。ポンプセル14と起電力セル24との間には、多孔質拡散層18により包囲された拡散室20が形成されている。即ち、該拡散室20は、多孔質拡散層18を介して測定ガス雰囲気と連通されている。なお、本実施態様では、多孔質物質を充填して成る多孔質拡散層18を用いるが、この代わりに小孔を配設することも可能である。     Similarly, the electromotive force cell 24 is also formed of stabilized or partially stabilized zirconia (ZrO2), and has porous electrodes 22, 28 mainly formed of platinum on the front and back surfaces, respectively. The porous electrode 18 disposed on the diffusion chamber 20 side is referred to as a Vs-electrode because a Vs-voltage of the electromotive force Vs of the electromotive force cell 24 is generated, and the porous electrode 18 disposed on the reference oxygen chamber 26 side. The quality electrode 28 is referred to as a Vs + electrode because a Vs + voltage is generated. The reference oxygen in the reference oxygen chamber 26 is generated by pumping constant oxygen from the porous electrode 22 to the porous electrode 28. A diffusion chamber 20 surrounded by the porous diffusion layer 18 is formed between the pump cell 14 and the electromotive force cell 24. That is, the diffusion chamber 20 is communicated with the measurement gas atmosphere via the porous diffusion layer 18. In this embodiment, the porous diffusion layer 18 filled with a porous substance is used. However, a small hole may be provided instead.

 ここで、測定ガスの酸素濃度と拡散室20の酸素濃度との差に応じた酸素が、拡散室20側に多孔質拡散層18を介して拡散して行く。ここで、拡散室20内の雰囲気が理論空燃比に保たれるとき、ほぼ酸素濃度が一定に保たれている基準酸素室26との間で、起電力セル24のVs+電極28とVs−電極22との間には、約0.45vの電位が発生する。このため、コントローラ50は、ポンプセル14に流す電流Ipを、上記起電力セル電位24の起電力Vsが0.45vとなるように調整することで、拡散室20内の雰囲気を理論空燃比に保ち、この理論空燃比に保つためのポンプセル電流量Ipに基づき、測定ガス中の酸素濃度を測定する。 Here, oxygen according to the difference between the oxygen concentration of the measurement gas and the oxygen concentration in the diffusion chamber 20 diffuses toward the diffusion chamber 20 via the porous diffusion layer 18. Here, when the atmosphere in the diffusion chamber 20 is maintained at the stoichiometric air-fuel ratio, the Vs + electrode 28 and the Vs- electrode of the electromotive force cell 24 are located between the diffusion chamber 20 and the reference oxygen chamber 26 in which the oxygen concentration is kept substantially constant. 22 and a potential of about 0.45 V is generated. For this reason, the controller 50 maintains the atmosphere in the diffusion chamber 20 at the stoichiometric air-fuel ratio by adjusting the current Ip flowing through the pump cell 14 so that the electromotive force Vs of the electromotive force cell potential 24 becomes 0.45 V. The oxygen concentration in the measurement gas is measured based on the pump cell current amount Ip for maintaining the stoichiometric air-fuel ratio.

 引き続き、コントローラ50の構成を示す図2を参照して制御動作について述べる。
 コントローラ50は、セル10により酸素濃度を測定する動作と、セル10の起電力セル24のバルク抵抗を測定することで温度を測定する動作とを行っている。ここでは、まず、酸素濃度測定について説明する。
Subsequently, the control operation will be described with reference to FIG.
The controller 50 performs an operation of measuring the oxygen concentration using the cell 10 and an operation of measuring the temperature by measuring the bulk resistance of the electromotive force cell 24 of the cell 10. Here, the oxygen concentration measurement will be described first.

 オペアンプOP2は、一方の入力端子に+4Vが印加され、他方の入力端子はVCENT点に接続されており、出力端子にて、ポンプセル14を介して流れるIp電流が変化しても、VCENT点に於いて4Vに保っように動作する。PID制御を行うPID回路は起電力セル24の起電力Vsを検出し、抵抗R1を介して流すIp電流によってVsを一定(0.45V)に保つようにポンプセル14の電流Ipを決定する動作を行う。このように、PID回路にて起電力セル24の起電力が0.45Vに保持された状態で、ポンプセル14に流される電流Ipの量に比例する電圧がPID回路の出力端に現れ、この電圧を酸素濃度検出回路52で、図示しないA/D回路にてデェジタル値に変換した後、保持しているマップから対応する酸素濃度値を検索し、この値を図示しないエンジン制御装置側へ出力する。 In the operational amplifier OP2, +4 V is applied to one input terminal, and the other input terminal is connected to the VCENT point. Even if the Ip current flowing through the pump cell 14 changes at the output terminal, the operation amplifier OP2 is connected to the VCENT point. And operates to keep it at 4V. The PID circuit that performs PID control detects the electromotive force Vs of the electromotive force cell 24 and determines the current Ip of the pump cell 14 so as to keep Vs constant (0.45 V) by the Ip current flowing through the resistor R1. Do. As described above, in a state where the electromotive force of the electromotive force cell 24 is maintained at 0.45 V in the PID circuit, a voltage proportional to the amount of the current Ip flowing through the pump cell 14 appears at the output terminal of the PID circuit. Is converted into a digital value by an A / D circuit (not shown) in an oxygen concentration detection circuit 52, and a corresponding oxygen concentration value is searched from a held map, and this value is output to an engine control device (not shown). .

引き続き、コントローラ50の起電力セル24の温度(抵抗)測定動作について説明する。オペアンプOP1は、コンデンサC1と共にサンプルホールド回路を形成し、起電力セル24の温度測定のための電圧印加中において電圧印加直前の、該起電力セル24の起電力Vsを保ちPID回路に入力する役割を果たす。オペアンプOP3は、オペアンプOP1に保持されているホールド値(抵抗値測定用電圧印加直前の起電力セル24の起電力Vs)と、起電力セル24に抵抗値測定用の電流−Iconst を印加した際の電位値との差分をA/D回路へ出力する。 Subsequently, the operation of measuring the temperature (resistance) of the electromotive force cell 24 of the controller 50 will be described. The operational amplifier OP1 forms a sample-and-hold circuit together with the capacitor C1, and holds the electromotive force Vs of the electromotive force cell 24 immediately before the voltage is applied during the voltage application for measuring the temperature of the electromotive force cell 24 and inputs the voltage to the PID circuit. Fulfill. The operational amplifier OP3 applies the hold value (the electromotive force Vs of the electromotive force cell 24 immediately before the application of the resistance value measuring voltage) held in the operational amplifier OP1 and the current −Iconst for the resistance value measurement to the electromotive force cell 24. Is output to the A / D circuit.

 スイッチSW1は、オペアンプOP1、即ち、サンプルホールド回路電圧ホールド動作を制御する。また、スイッチSW2は、起電力セル24の抵抗値測定用の一定電流−Iconst をオン・オフし、スイッチSW3は、スイッチSW2にて流される抵抗値測定用の電流−Iconst とは逆極性の一定電流+Iconst をオン・オフする。 The switch SW1 controls the operational amplifier OP1, that is, the sample-and-hold circuit voltage hold operation. The switch SW2 turns on and off a constant current -Iconst for measuring the resistance value of the electromotive force cell 24, and the switch SW3 has a constant polarity opposite to the current -Iconst for measuring the resistance value flowing through the switch SW2. Turns on / off the current + Iconst.

 スイッチSW1、SW2、SW3のタイミングチャートと共に起電力セル24の起電力Vsを図3に示す。スイッチSW1は、上述したように所定のインターバルT5毎に設定された時間T6(約500μs)に渡りオフし、起電力セル24の抵抗測定を可能ならしめる。なお、このオフ時間T6においては、オペアンプOP1から成るサンプルホールド回路にて、PID回路への入力値は0.45Vに維持される。 FIG. 3 shows the electromotive force Vs of the electromotive force cell 24 together with the timing chart of the switches SW1, SW2, and SW3. The switch SW1 is turned off for the time T6 (about 500 μs) set at every predetermined interval T5 as described above, thereby enabling the resistance measurement of the electromotive force cell 24. During the off time T6, the input value to the PID circuit is maintained at 0.45 V by the sample and hold circuit including the operational amplifier OP1.

 スイッチSW1がオフされてから時間T1が経過した後、スイッチSW2が時間T3(約100μs)に渡りオンし、抵抗値測定用の一定電流−Iconst が起電力セル24側に流される。この電流−Iconst の極性は、起電力セル24に生じる内部起電力と逆極性であって、この電流−Iconst によって起電力セル24の両端の電圧が、図中に示すようにΔVs分低下する。 (4) After the time T1 has elapsed since the switch SW1 was turned off, the switch SW2 is turned on for a time T3 (about 100 μs), and a constant current -Iconst for measuring the resistance value flows to the electromotive force cell 24 side. The polarity of the current -Iconst is opposite to the polarity of the internal electromotive force generated in the electromotive force cell 24, and the voltage at both ends of the electromotive force cell 24 decreases by ΔVs as shown in FIG.

 ここで、電流−Iconst の印加を開始した後、時間T2(約60μs)が経過してから、当該時点(印加開始から60μs経過時)でのオペアンプOP3の出力を、A/D変換回路がアナログ値からデェジタル値に変換してヒータ制御回路側60へ出力する。ヒータ制御回路60は、この測定された値、即ち、起電力セル24のバルク抵抗値と相関する値が目標値となるようにヒータ70への通電を制御する。この制御は実質的に、起電力セル24のバルク抵抗値が目標値よりも高いときには、電圧を高め、また、目標値よりも低いときには、電圧を下げることにより、酸素センサ素子10の温度を正確に目標温度(800°C)に保つよう機能する。 Here, after the application of the current -Iconst is started, after the time T2 (about 60 μs) has elapsed, the output of the operational amplifier OP3 at the time (60 μs after the start of application) is converted into an analog signal by the A / D conversion circuit. The value is converted into a digital value and output to the heater control circuit side 60. The heater control circuit 60 controls energization of the heater 70 so that the measured value, that is, a value correlated with the bulk resistance value of the electromotive force cell 24 becomes a target value. This control substantially raises the voltage when the bulk resistance value of the electromotive force cell 24 is higher than the target value, and lowers the voltage when the bulk resistance value is lower than the target value, thereby accurately controlling the temperature of the oxygen sensor element 10. At the target temperature (800 ° C.).

 なお、ここで、電流−Iconst の印加開始から60μs経過時の値を測定するのは、測定された抵抗値に前記多孔質電極と前記固体電解質体の界面における抵抗成分が含まれないようにするためである。これは、低周波の電流や電圧によって測定を行うと起電力セル24の多孔質電極22、28と固体電解質体との界面の劣化等による該界面における抵抗成分の変化分を含む値が検出されるため、この変化分によって正確に測定が行い得なくなるからである。逆に言えばこの測定の時間を変化させることにより劣化を含めた抵抗を測定し、劣化検出に用いることが可能となる。 Here, the value at the time when 60 μs elapses from the start of application of the current −Iconst is measured so that the measured resistance value does not include the resistance component at the interface between the porous electrode and the solid electrolyte body. That's why. This is because when measurement is performed using low-frequency current or voltage, a value including a change in the resistance component at the interface between the porous electrodes 22, 28 of the electromotive force cell 24 and the solid electrolyte body due to deterioration or the like is detected. Therefore, the measurement cannot be performed accurately due to the change. Conversely, by changing the time of this measurement, the resistance including the deterioration can be measured and used for deterioration detection.

 そして、時間T3の経過により、スイッチSW2をオフすると同時に、スイッチSW3をオンし、スイッチSW2をオンした時間とほぼ等しい時間T3に渡り、抵抗値測定用の上記電流−Iconst とは逆極性の一定電流+Iconst を起電力セル24側に印加する。これは、起電力セル24を構成する酸素イオン伝導性固体電解質体の配向現象によって内部起電力が影響を受け本来の酸素濃度差を反映する内部起電力値を出力しない状態から、正常な状態に復帰するまでの復帰時間を短縮させ、抵抗値の測定後に酸素濃度の測定を短時間で再開し得るようにするためである。 When the time T3 elapses, the switch SW2 is turned off, and at the same time, the switch SW3 is turned on. Over a time T3 substantially equal to the time when the switch SW2 is turned on, the current -Iconst having a polarity opposite to that of the current for measuring the resistance is kept constant. The current + Iconst is applied to the electromotive force cell 24 side. This is because the internal electromotive force is affected by the orientation phenomenon of the oxygen ion conductive solid electrolyte constituting the electromotive force cell 24 and the internal electromotive force value that reflects the original oxygen concentration difference is not output, but changes to a normal state. This is because the return time before the return is shortened, and the measurement of the oxygen concentration can be restarted in a short time after the measurement of the resistance value.

 この酸素イオン伝導性固体電解質体の配向現象と考えられる正規の起電力までの復帰時間について、図4を参照して説明する。図4(A)は、抵抗値測定用の上記電流−Iconst に相当する4.88mAの電流をパルス状に起電力セル24へ印加し、その後該電流を止めた場合の起電力セルの起電力Vsの変化を示し、図4(B)は、上記電流−Iconst に相当する4.88mAの電流をパルス状に印加した後、該電流の−Iconst と逆極性の電流+Iconst をパルス状に起電力セル24へ印加した場合、即ち、交番状に印加した場合の起電力セルの起電力Vsの変化を示している。図4(A)に示すように4.88mAの電流をパルス状に1回加えただけの場合には、復帰までに16msec必要となった。これに対して、図4(B)に示すように電流を交番状に加えた場合は、0.5msecで復帰することができた。この様に、本実施態様では、電流を交番状に加えることで起電力セル24を用いる酸素濃度の測定を短時間で再開し得るようにしいてる。 {Return time to normal electromotive force, which is considered to be an orientation phenomenon of the oxygen ion conductive solid electrolyte body, will be described with reference to FIG. FIG. 4A shows the electromotive force of the electromotive force cell when a current of 4.88 mA corresponding to the current -Iconst for measuring the resistance value is applied to the electromotive force cell 24 in the form of a pulse, and then the current is stopped. FIG. 4B shows a change in Vs. FIG. 4B shows that after applying a current of 4.88 mA corresponding to the current -Iconst in a pulse shape, a current + Iconst having a polarity opposite to -Iconst of the current is generated in a pulse shape. The graph shows a change in the electromotive force Vs of the electromotive force cell when applied to the cell 24, that is, when applied in an alternating manner. As shown in FIG. 4A, in the case where a current of 4.88 mA was applied only once in a pulse form, it took 16 msec to recover. On the other hand, when the current was alternately applied as shown in FIG. 4 (B), it was possible to recover in 0.5 msec. As described above, in this embodiment, the measurement of the oxygen concentration using the electromotive force cell 24 can be restarted in a short time by applying the current alternately.

 この一定電流+Iconst の印加のための時間T3の経過後、スイッチSW3がオフとなった後、時間T4が経過したタイミングで、スイッチSW1がオンし、起電力セル24の起電力Vsが再び、オペアンプOP1を介してPID回路に加えられ、酸素濃度の測定が再開される。そして、インターバルT5の経過後スイッチSW1がオフし、再び起電力セル24の抵抗値を測定する。 After a lapse of time T3 for applying the constant current + Iconst, the switch SW3 is turned off, and then, at the timing of lapse of time T4, the switch SW1 is turned on and the electromotive force Vs of the electromotive force cell 24 is again changed to the operational amplifier. It is added to the PID circuit via OP1, and the measurement of the oxygen concentration is restarted. Then, after the elapse of the interval T5, the switch SW1 is turned off, and the resistance value of the electromotive force cell 24 is measured again.

 本実施態様では、ポンプセル14ではなく起電力セル24の抵抗値を測定することでセル10の温度を測定している。この作用について図5のグラフを参照して説明する。図5(A)は、起電力セル24側に交流電流を印加して抵抗値を測定した際のグラフであり、図5(B)は、ポンプセル14側に交流電流を印加して抵抗値を測定した際のグラフである。図中で縦軸には測定された抵抗値を、また、横軸にはセル10温度に相当するヒータ電圧を取っている。ここで、○は、A/F23(リーン状態)雰囲気中にて20Hz(低周波)で測定した際の値を、●は、A/F23(リーン状態)雰囲気中にて1KHz(高周波)で測定した際の値を、Δは、理論空燃比の雰囲気中にて20Hz(低周波)で測定した際の値を、■は、理論空燃比の雰囲気中にて1KHz(高周波)で測定した際の値を示している。 In this embodiment, the temperature of the cell 10 is measured by measuring the resistance value of the electromotive force cell 24 instead of the pump cell 14. This operation will be described with reference to the graph of FIG. FIG. 5A is a graph when an AC current is applied to the electromotive force cell 24 and the resistance is measured. FIG. 5B is a graph when an AC is applied to the pump cell 14 and the resistance is measured. It is a graph at the time of measurement. In the figure, the vertical axis represents the measured resistance value, and the horizontal axis represents the heater voltage corresponding to the cell 10 temperature. Here, ○ indicates a value measured at 20 Hz (low frequency) in an A / F23 (lean state) atmosphere, and ● indicates a value measured at 1 KHz (high frequency) in an A / F23 (lean state) atmosphere. Δ is a value measured at 20 Hz (low frequency) in an atmosphere of stoichiometric air-fuel ratio, and Δ is a value measured at 1 KHz (high frequency) in an atmosphere of stoichiometric air-fuel ratio. Indicates the value.

 本実施態様に相当する図5(A)のグラフでは、理論空燃比の雰囲気中で測定された抵抗値と、リーン雰囲気中で測定された抵抗値とがほぼ等しく、酸素基準室によらず正確に抵抗値が測定できることが分かる。これに対して、図5(B)のグラフでは、理論空燃比の雰囲気中で測定された抵抗値と、リーン雰囲気中で測定された抵抗値とが異なり、酸素基準室により抵抗値が正確に測定できないことが分かる。これは、起電力セル24(図1参照)に電流を印加した際に、該起電力セル24は、理論空燃比の雰囲気に固定されている拡散室20と、一定酸素濃度である酸素基準室26とに挟まれているので該起電力セルの両側の酸素濃度は常に一定である。これに対して、ポンプセル14は、酸素濃度の変化している測定ガスと、理論空燃比の雰囲気に固定されている拡散室20とに挟まれ、ポンプセルの両側の酸素濃度差は測定ガス中の酸素濃度によって常に変動するからである。 In the graph of FIG. 5A corresponding to the present embodiment, the resistance value measured in an atmosphere having a stoichiometric air-fuel ratio is substantially equal to the resistance value measured in a lean atmosphere, and the resistance value is accurate regardless of the oxygen reference chamber. It can be seen that the resistance can be measured. On the other hand, in the graph of FIG. 5B, the resistance value measured in the atmosphere of the stoichiometric air-fuel ratio is different from the resistance value measured in the lean atmosphere, and the resistance value is accurately determined by the oxygen reference chamber. It turns out that measurement is not possible. This is because, when a current is applied to the electromotive force cell 24 (see FIG. 1), the electromotive force cell 24 is connected to the diffusion chamber 20 fixed in an atmosphere having a stoichiometric air-fuel ratio and the oxygen reference chamber having a constant oxygen concentration. 26, the oxygen concentration on both sides of the electromotive force cell is always constant. On the other hand, the pump cell 14 is sandwiched between the measurement gas in which the oxygen concentration is changing and the diffusion chamber 20 fixed in the atmosphere of the stoichiometric air-fuel ratio. This is because it always varies depending on the oxygen concentration.

本発明の一実施態様に係る全領域酸素センサ構成を示す説明図である。It is an explanatory view showing the whole area oxygen sensor composition concerning one embodiment of the present invention. 図1に示すコントローラの回路図である。FIG. 2 is a circuit diagram of the controller shown in FIG. 1. スイッチSW1、SW2、SW3のタイミングチャートである。5 is a timing chart of switches SW1, SW2, and SW3. 図4(A)は、抵抗値測定用電流をパルス状に一回起電力セルへ印加した際の起電力セル起電力Vsを示し、図4(B)は、電流を交番状に印加した際の起電力セル起電力Vsを示している。FIG. 4 (A) shows the electromotive force cell electromotive force Vs when the resistance value measuring current is applied once to the electromotive force cell in a pulse shape, and FIG. 4 (B) shows the case where the current is applied alternately. The electromotive force Vs of the electromotive force cell shown in FIG. 図5(A)は、起電力セルに交流電流を印加して抵抗値を測定したグラフであり、図5(B)は、ポンプセルに交流電流を印加して抵抗値を測定したグラフである。FIG. 5A is a graph in which an AC current is applied to the electromotive force cell to measure the resistance value, and FIG. 5B is a graph in which an AC current is applied to the pump cell to measure the resistance value.

符号の説明Explanation of reference numerals

 10 セル
 14 ポンプセル
 20 拡散室
 24 起電力セル
 50 コントローラ
 60 ヒータ制御回路
 70 ヒータ
 Vs 起電力セル電圧
 Ip ポンプセル電流
Reference Signs List 10 cell 14 pump cell 20 diffusion chamber 24 electromotive cell 50 controller 60 heater control circuit 70 heater Vs electromotive cell voltage Ip pump cell current

Claims (4)

加熱用ヒータによって加熱される酸素イオン伝導性固体電解質体の両面に多孔質電極が設けられた2つのセルを、間隔を介して対向配設し、一方のセルを前記間隔内の酸素を周囲にくみ出すもしくは酸素をくみ込むポンプセル、他方のセルを酸素基準室と前記間隔との酸素濃度差によって電圧を生じる起電力セルとしてそれぞれ使用し、酸素濃度を測定する全領域酸素センサの、前記2つのセルの温度を、前記加熱用ヒータを用いて制御する全領域酸素センサの温度制御方法であって、
 前記起電力セルに抵抗値測定用の一定の電流もしくは電圧を印加し、
 前記起電力セルの抵抗値を、該抵抗値に前記多孔質電極と前記固体電解質体の界面における抵抗成分が含まれない様に、前記抵抗値測定用電流もしくは電圧の印加後所定時間以内に測定し、
 測定した前記起電力セルの抵抗値が一定値となるように、前記ヒータを制御することを特徴とする全領域酸素センサの温度制御方法。
Two cells having porous electrodes provided on both sides of an oxygen ion conductive solid electrolyte body heated by a heater are disposed to face each other with an interval therebetween, and one of the cells is provided with oxygen in the interval surrounding the cell. A pump cell for pumping or pumping oxygen, and the other cell being used as an electromotive force cell for generating a voltage due to a difference in oxygen concentration between the oxygen reference chamber and the interval, and an oxygen sensor for measuring the oxygen concentration in the whole area. A method for controlling the temperature of a cell, which controls the temperature of an entire-area oxygen sensor using the heater for heating,
Apply a constant current or voltage for resistance measurement to the electromotive force cell,
The resistance value of the electromotive force cell is measured within a predetermined time after the application of the current or voltage for resistance measurement so that the resistance value does not include a resistance component at the interface between the porous electrode and the solid electrolyte body. And
A temperature control method for an oxygen sensor for an entire area, wherein the heater is controlled so that the measured resistance value of the electromotive force cell becomes a constant value.
前記起電力セルの抵抗値を測定した後に、前記抵抗値測定用電流もしくは電圧の印加に引き続いて該電流もしくは電圧とは逆極性の、一定の電流もしくは電圧を所定時間印加することを特徴とする請求項1の全領域酸素センサの温度制御方法。 After measuring the resistance value of the electromotive force cell, a constant current or voltage having a polarity opposite to that of the current or voltage is applied for a predetermined time following application of the resistance measurement current or voltage. The method for controlling the temperature of an entire-area oxygen sensor according to claim 1. 加熱用ヒータによって加熱される酸素イオン伝導性固体電解質体の両面に多孔質電極が設けられた2つのセルを、間隔を介して対向配設し、一方のセルを前記間隔内の酸素を周囲にくみ出すもしくは酸素をくみ込むポンプセル、他方のセルを酸素基準室と前記間隔との酸素濃度差によって電圧を生じる起電力セルとしてそれぞれ使用し、酸素濃度を測定する全領域酸素センサの、前記2つのセルの温度を、前記加熱用ヒータを用いて制御する全領域酸素センサの温度制御装置であって、
 前記起電力セルに抵抗値測定用の一定の電流もしくは電圧を印加する第1の電流もしくは電圧印加手段と、
 前記起電力セルの抵抗値を、該抵抗値に前記多孔質電極と前記固体電解質体の界面における抵抗成分が含まれない様に、前記抵抗値測定用電流もしくは電圧の印加後所定時間以内に測定を行う抵抗値測定手段と、
 前記起電力セルの抵抗値を測定した後、前記抵抗値測定用電流もしくは電圧の印加に引き続いて該電流もしくは電圧とは逆極性の一定電流もしくは電圧を所定時間印加する第2の電流もしくは電圧印加手段と、
測定した前記起電力セルの抵抗値が一定値となるように、前記ヒータを制御する温度制御手段と、から成ることを特徴とする全領域酸素センサの温度制御装置。  
Two cells having porous electrodes provided on both sides of an oxygen ion conductive solid electrolyte body heated by a heater are disposed to face each other with an interval therebetween, and one of the cells is provided with oxygen in the interval surrounding the cell. A pump cell for pumping or pumping oxygen, and the other cell being used as an electromotive force cell for generating a voltage due to a difference in oxygen concentration between the oxygen reference chamber and the interval, and an oxygen sensor for measuring the oxygen concentration in the whole area. A temperature control device for an entire-area oxygen sensor that controls the temperature of the cell using the heater for heating,
First current or voltage applying means for applying a constant current or voltage for resistance measurement to the electromotive force cell,
The resistance value of the electromotive force cell is measured within a predetermined time after the application of the current or voltage for resistance measurement so that the resistance value does not include a resistance component at the interface between the porous electrode and the solid electrolyte body. Resistance measurement means for performing
After measuring the resistance value of the electromotive force cell, a second current or voltage application for applying a constant current or voltage having a polarity opposite to the current or voltage for a predetermined time following application of the resistance measurement current or voltage. Means,
Temperature control means for controlling the heater so that the measured resistance value of the electromotive force cell becomes a constant value.
請求項3の温度制御装置を備えた全領域酸素センサ。
A full range oxygen sensor comprising the temperature control device according to claim 3.
JP2003346491A 2003-10-06 2003-10-06 Method and apparatus for controlling temperature in electromotive force cell Pending JP2004029039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003346491A JP2004029039A (en) 2003-10-06 2003-10-06 Method and apparatus for controlling temperature in electromotive force cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003346491A JP2004029039A (en) 2003-10-06 2003-10-06 Method and apparatus for controlling temperature in electromotive force cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21781596A Division JP3645665B2 (en) 1996-07-31 1996-07-31 Temperature control method and apparatus for all-region oxygen sensor

Publications (1)

Publication Number Publication Date
JP2004029039A true JP2004029039A (en) 2004-01-29

Family

ID=31185619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003346491A Pending JP2004029039A (en) 2003-10-06 2003-10-06 Method and apparatus for controlling temperature in electromotive force cell

Country Status (1)

Country Link
JP (1) JP2004029039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020519884A (en) * 2017-05-09 2020-07-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method for determining the temperature of a solid electrolyte gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020519884A (en) * 2017-05-09 2020-07-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method for determining the temperature of a solid electrolyte gas sensor

Similar Documents

Publication Publication Date Title
US6120677A (en) Temperature control for all range oxygen sensor
EP1239282B1 (en) Gas sensor and method of heating the same
JP3645665B2 (en) Temperature control method and apparatus for all-region oxygen sensor
JPH0560052B2 (en)
JP4860503B2 (en) Sensor control device
US6099717A (en) Method of and apparatus for detecting a deteriorated condition of a wide range air-fuel ratio sensor
JP2006284358A (en) Gas sensor control device
JP7128090B2 (en) Sensor control device and sensor control method
JP6147630B2 (en) Gas sensor heater control device
JP2017181301A (en) Controller for gas sensor
JP4562042B2 (en) Sensor control device and sensor control method
JP2013250163A (en) Gas sensor control device
JPS60239664A (en) Heating apparatus of oxygen sensor
JP2006105959A (en) Apparatus for detecting gas concentration
JP2000081414A (en) Element resistance detecting device for gas concentration sensor
JP3958755B2 (en) Deterioration state detection method and apparatus for all-range air-fuel ratio sensor
JP3563941B2 (en) Method and apparatus for detecting state of deterioration of full-range air-fuel ratio sensor
JP3587943B2 (en) Temperature control method and apparatus for full-range air-fuel ratio sensor
JP2004029039A (en) Method and apparatus for controlling temperature in electromotive force cell
JPH10246720A (en) Fault detecting method for total region air-fuel ratio sensor
JPH10288595A (en) Nitrogen oxide concentration detector
JPH10221182A (en) Method and device for measuring temperature using total area air/fuel ratio sensor
JP3615319B2 (en) Full-range air-fuel ratio sensor, temperature control method and apparatus for full-range air-fuel ratio sensor
JP2019002842A (en) Control state setting device and sensor control system
JP3736444B2 (en) Gas concentration detection device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622