JP2004028829A - Method for analyzing surface form, and instrument for measuring surface form - Google Patents

Method for analyzing surface form, and instrument for measuring surface form Download PDF

Info

Publication number
JP2004028829A
JP2004028829A JP2002186455A JP2002186455A JP2004028829A JP 2004028829 A JP2004028829 A JP 2004028829A JP 2002186455 A JP2002186455 A JP 2002186455A JP 2002186455 A JP2002186455 A JP 2002186455A JP 2004028829 A JP2004028829 A JP 2004028829A
Authority
JP
Japan
Prior art keywords
data
dimensional data
dimensional
measurement
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002186455A
Other languages
Japanese (ja)
Other versions
JP3794988B2 (en
Inventor
Akiko Shinozaki
篠崎 朗子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002186455A priority Critical patent/JP3794988B2/en
Publication of JP2004028829A publication Critical patent/JP2004028829A/en
Application granted granted Critical
Publication of JP3794988B2 publication Critical patent/JP3794988B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Road Repair (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To analyze the shape of a face three-dimensionally. <P>SOLUTION: In this face form analyzing method for analyzing the shape of the objective face based on a data concerned in the shape of the objective face measured by a measuring body 100, a positional data indicating an absolute position of the measuring body, a posture data indicating a posture of the measuring body, and at least one of the first two-dimensional data indicating a property of a cross-section of the objective face and the second two-dimensional data indicating a property of a longitudinal section of the objective face are input, an approximate expression concerned in a time is calculated using a method of least squares for the positional data and the posture data, and at least one of the first two-dimensional data and the second two-dimensional data is converted into a three-dimensional data, based on the approximate expression. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、路面等の形状を解析する面形状解析方法、及び路面等の形状を計測する面形状計測装置に関する。
【0002】
【従来の技術】
従来、道路等の路面の形状を認識する場合、例えば機械式の測定器具を用いている。この場合、路面の横断面と縦断面を仮想基準面(計測器の基準位置)で測定し、その測定結果から路面の凹凸形状を評価している。あるいは、路面性状測定車により路面のわだち掘れと縦断凹凸を測定し、その測定結果から路面の凹凸形状を評価している。
【0003】
【発明が解決しようとする課題】
前述した測定器具や路面性状測定車により路面を測定する場合、得られる測定結果は基準面に対する相対値となり、絶対的な値ではない。このため、路面に生じている水勾配や、連続した坂道、カーブなどに影響される凹凸形状に対する評価、あるいは路面の経年変化の判定に、測定結果を適用できないという問題がある。
【0004】
本発明の目的は、面の形状を3次元で解析する面形状解析方法を提供することにある。
【0005】
また本発明の目的は、面の形状を3次元で計測する面形状計測装置を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決し目的を達成するために、本発明の面形状解析方法及び面形状計測装置は以下の如く構成されている。
【0007】
(1)本発明の面形状解析方法は、測定体により測定された対象面の形状に係るデータを基に前記対象面の形状を解析する面形状解析方法であり、前記測定体の絶対位置を示す位置データ、前記測定体の姿勢を示す姿勢データ、及び前記対象面の横断面の性状を示す第1の2次元データと前記対象面の縦断面の性状を示す第2の2次元データとの少なくとも一方を入力し、前記位置データ及び前記姿勢データに対して最小二乗法を用い、時間に係る近似式を算出し、前記近似式を基に、前記第1の2次元データと前記第2の2次元データとの少なくとも一方を3次元のデータに換算する。
【0008】
(2)本発明の面形状解析方法は上記(1)に記載の方法であり、かつ前記位置データをECEF座標系に変換した後、最小二乗法を用いる。
【0009】
(3)本発明の面形状解析方法は上記(2)に記載の方法であり、かつ前記近似式に対して線積分を行い、その結果が前記第1の2次元データと前記第2の2次元データとの少なくとも一方に係る計測距離間隔と等しくなる時間を求め、前記時間を基準として前記測定体の位置と姿勢を確定し、確定した前記位置と前記姿勢を基に前記測定体での計測点を3次元の位置データに換算する。
【0010】
(4)本発明の面形状計測装置は、測定体に、前記測定体の位置データを得る位置計測手段と、前記測定体の姿勢データを得る姿勢計測手段と、対象面の横断面の性状を示す第1の2次元データを得る第1の検出手段と、前記対象面の縦断面の性状を示す第2の2次元データを得る第2の検出手段と、を備え、一定時間間隔毎に得られた前記位置データ及び前記姿勢データと、一定距離間隔毎に得られた前記第1の2次元データ及び前記第2の2次元データとを収集する。
【0011】
(5)本発明の面形状計測装置は上記(4)に記載の装置であり、かつ前記測定体は車両である。
【0012】
【発明の実施の形態】
図1は、本発明の実施の形態に係る面形状計測装置を搭載した路面性状測定車両の構成を示す図である。
【0013】
図1に示すように、路面性状測定用の車両100に搭載された面形状計測装置は、絶対位置計測装置1、縦断凹凸測定装置2、わだち掘れ測定装置3、データ収録装置(コンピュータ)4、及び制御装置(CPU)5を備えている。車両100は、計測対象である路面(道路)上を走行する。車両100内の面形状計測装置は、路面の形状を計測し、路面性状を3次元で解析するためのデータを収集する。
【0014】
図2は、本発明の実施の形態に係る面形状計測装置の構成を示すブロック図である。図2に示すように面形状計測装置aでは、制御装置5に、絶対位置計測装置1、縦断凹凸測定装置2、わだち掘れ測定装置3、及びデータ収録装置4が接続されている。また、車両100から離れた所定の解析部門bには、面形状解析プログラムを内蔵した面形状解析装置(コンピュータ)10が備えられている。
【0015】
図1に示すように、絶対位置計測装置1は、第1GPSアンテナ111と第2GPSアンテナ112を接続したGPS装置本体11、ジャイロスコープ12、及び距離計13を有している。絶対位置計測装置1の制御部(不図示)は、GPS装置本体11から得られた位置情報、及び距離計13から得られた走行距離を基に、走行中の車両100の位置を一定時間間隔毎に計測し、車両位置データを得る。さらに上記制御部は、走行中の計測精度の劣化を補正するために、GPS基地局から静止状態の衛星観測データを取得し、前記車両位置データを補正する。この補正データは、制御装置5により車両絶対位置データとしてデータ収録装置4に記録される。また絶対位置計測装置1の上記制御部は、ジャイロスコープ12から上記一定時間間隔毎に姿勢データを得る。この姿勢データは、制御装置5によりデータ収録装置4に記録される。
【0016】
縦断凹凸測定装置2は、レーザ変位センサ21、速度計24、及び加速度計25を有している。縦断凹凸測定装置2の制御部(不図示)は、車両100の走行中、速度計24から走行距離を算出し、一定距離間隔毎にレーザ変位センサ21で路面の高さを計測する。これにより、車両100の進行方向に対する路面の縦断面の凹凸が2次元で測定される。この測定データは、制御装置5により縦断プロフィールデータとしてデータ収録装置4に記録される。
【0017】
わだち掘れ測定装置3は、レーザ投光器31とわだち用ラインセンサカメラ32を有している。わだち掘れ測定装置3の制御部(不図示)は、上記一定距離間隔毎にレーザ投光器31から路面へレーザ光を照射し、路面で反射されたレーザ光をわだち用ラインセンサカメラ32で受光することで、車両100の進行方向に対する路面の横断面の凹凸を2次元で測定する。この測定データは、制御装置5によりわだち掘れ計測データとしてデータ収録装置4に記録される。なお、縦断凹凸測定装置2とわだち掘れ測定装置3が一定距離間隔で測定を行うことで、測定に係る負荷が軽減される。
【0018】
以上のように、一定時間間隔毎に得られた車両絶対位置データ及び姿勢データと、一定距離間隔毎に得られたわだち掘れ計測データ及び縦断プロフィールデータは、車両100による対象路面の計測が終了した後、データ収録装置4から記憶媒体等を介して、解析部門bの面形状解析装置10に記憶される。
【0019】
図3は、面形状解析装置10の面形状解析プログラムによる処理手順を示すフローチャートである。
【0020】
まずステップS1で、面形状解析装置10は、データ収録装置4から記憶媒体等を介して、車両絶対位置データ(以下、位置データ)及び姿勢データと、わだち掘れ計測データ及び縦断プロフィールデータを入力する。なお、位置データは、車両100(面形状計測装置a)の時々刻々の緯度、経度、高度等を示し、姿勢データは、車両100(面形状計測装置a)の時々刻々のピッチ角、ロール角、ヘディング角等を示す。わだち掘れ計測データは道路横断面の性状を示す2次元データであり、縦断プロフィールデータは道路縦断面の性状を示す2次元データである。
【0021】
ステップS2で、面形状解析装置10は、位置データをECEF(Earth−Centered−Earth−Fixed)座標系のX,Y,Zに変換し、最小二乗法が適用できる区間に分割する。なお、ECEF座標系では、原点を地球の質量中心、X軸をグリニッジ子午線面と赤道面との交線、Y軸を赤道面上の東経90°方向の直線、Z軸を地球回転軸に一致した北極方向の直線としている。本実施の形態において計測点の変換基準とするECEF座標系は、衛星の測位に使用される単位であり、公共性を有する。また面形状解析装置10は、ピッチ(Pitch)、ロール(Roll)、ヘディング(Heading)で表される姿勢データを、最小二乗法が適用できる区間に分割する。
【0022】
ステップS3で、面形状解析装置10は、区間分割された各位置データに対して最小二乗法を適用し、それぞれを時間tの多項近似式(X(t),Y(t),Z(t))で表す。また同様に、面形状解析装置10は、区間分割された各姿勢データに対して最小二乗法を適用し、それぞれを時間tの多項近似式(Pitch(t),Roll(t),Heading(t))で表す。
【0023】
ステップS4で、面形状解析装置10は、ステップS3で算出した各区間の多項近似式(X(t),Y(t),Z(t))に対して線積分を行い、その結果がわだち掘れの計測距離間隔(上記一定距離間隔)と等しくなる時間Tを求める。ステップS5で、面形状解析装置10は、位置データと姿勢データを基に、各区間の時間nT(n=1,2,…)での各わだち掘れ計測における車両位置及び姿勢を確定する。ステップS6で、面形状解析装置10は、ステップS5で確定した車両位置及び姿勢を基に、各区間の時間nT(n=1,2,…)での各わだち掘れ計測における全ての計測点を、緯度、経度、高度等の3次元位置データに換算する。
【0024】
一方ステップS7で、面形状解析装置10は、ステップS3で算出した各区間の多項近似式(X(t),Y(t),Z(t))に対して線積分を行い、その結果が縦断プロフィールの計測距離間隔(上記一定距離間隔)と等しくなる時間Tを求める。ステップS8で、面形状解析装置10は、位置データと姿勢データを基に、各区間の時間nT(n=1,2,…)での各縦断プロフィール計測における車両位置及び姿勢を確定する。ステップS9で、面形状解析装置10は、ステップS8で確定した車両位置及び姿勢を基に、各区間の時間nT(n=1,2,…)での各縦断プロフィール計測における全ての計測点を、緯度、経度、高度等の3次元位置データに換算する。
【0025】
そしてステップS10で、面形状解析装置10は、3次元わだち掘れ計測データ、3次元縦断プロフィールデータ、及び3次元評価用データを、所定の記憶媒体に出力する。3次元わだち掘れ計測データは、入力したわだち掘れ計測データの全計測点に、緯度、経度、高度等からなる位置情報とピッチ角、ロール角、ヘディング角等からなる姿勢情報とを関連付け、付加したデータである。3次元縦断プロフィールデータは、入力した縦断プロフィールデータの全計測点に、緯度、経度、高度等からなる位置情報とピッチ角、ロール角、ヘディング角等からなる姿勢情報とを関連付け、付加したデータである。3次元評価用データは、各計測点を地球上の位置に結び付け、3次元空間情報に加工したデータである。このデータは、3次元表示機能の入力データとして使用される。
【0026】
なお、本発明は上記実施の形態のみに限定されず、要旨を変更しない範囲で適宜変形して実施できる。例えば、本発明は路面に限らず、あらゆる面形状の計測、解析に適用できる。
【0027】
【発明の効果】
本発明の面形状解析方法によれば、面の形状を3次元で解析することができる。
【0028】
すなわち本発明の面形状解析方法によれば、対象面の性状を示す2次元データを位置データ及び姿勢データと結びつけ3次元データに換算し、3次元の対象面を生成することで、対象面の形状を3次元で解析することができる。また、変換後の3次元データを一般的な3次元画像表示に使用することで、対象面の形状把握と評価を容易に行える。例えば、変換後の3次元データをGIS(地理情報システム)と組合せることも容易であり、当該対象面と、測量点をもつ構造物(橋や建物)等との絶対位置の比較が可能になる。
【0029】
また本発明の面形状解析方法によれば、公共性を有するECEF座標系を用いることで、信頼性、汎用性のある3次元データを得られる。
【0030】
本発明の面形状計測装置によれば、面の形状を3次元で計測することができ、例えばGPSによる位置データの精度と2次元データを得る速さを生かしたデータ収集が可能になる。
【0031】
また本発明の面形状計測装置によれば、車両を用いることで、道路等を走行し、路面の形状を容易に計測することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る面形状計測装置を搭載した路面性状測定車両の構成を示す図。
【図2】本発明の実施の形態に係る面形状計測装置の構成を示すブロック図。
【図3】本発明の実施の形態に係る面形状解析装置の面形状解析プログラムによる処理手順を示すフローチャート。
【符号の説明】
100…車両
1…絶対位置計測装置
11…GPS装置本体
111…第1GPSアンテナ
112…第2GPSアンテナ
12…ジャイロスコープ
13…距離計
2…縦断凹凸測定装置
21…レーザ変位センサ
24…速度計
25…加速度計
3…わだち掘れ測定装置
31…レーザ投光器
32…わだち用ラインセンサカメラ
4…データ収録装置
5…制御装置
10…面形状解析装置
a…面形状計測装置
b…解析部門
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface shape analysis method for analyzing a shape such as a road surface, and a surface shape measurement device for measuring a shape such as a road surface.
[0002]
[Prior art]
Conventionally, when recognizing the shape of a road surface such as a road, for example, a mechanical measuring instrument is used. In this case, the cross section and the vertical section of the road surface are measured on a virtual reference plane (reference position of a measuring instrument), and the unevenness of the road surface is evaluated from the measurement result. Alternatively, rutting and longitudinal irregularities on the road surface are measured by a road surface property measuring vehicle, and the irregularities on the road surface are evaluated from the measurement results.
[0003]
[Problems to be solved by the invention]
When a road surface is measured by the above-described measuring instrument or a road surface property measuring vehicle, the obtained measurement result is a relative value to a reference surface and is not an absolute value. For this reason, there is a problem that the measurement result cannot be applied to the evaluation of the unevenness affected by the water gradient generated on the road surface, the continuous slope, the curve, or the like, or the determination of the aging of the road surface.
[0004]
An object of the present invention is to provide a surface shape analysis method for analyzing a surface shape in three dimensions.
[0005]
It is another object of the present invention to provide a surface shape measuring device for measuring the shape of a surface in three dimensions.
[0006]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, a surface shape analysis method and a surface shape measurement device of the present invention are configured as follows.
[0007]
(1) The surface shape analysis method of the present invention is a surface shape analysis method for analyzing the shape of the target surface based on data relating to the shape of the target surface measured by the measurement object, and determines the absolute position of the measurement object. Position data indicating the orientation of the measuring object, first two-dimensional data indicating the characteristics of the cross section of the target surface, and second two-dimensional data indicating the characteristics of the vertical cross section of the target surface. At least one is input, an approximate expression relating to time is calculated using the least squares method for the position data and the attitude data, and the first two-dimensional data and the second At least one of the two-dimensional data is converted into three-dimensional data.
[0008]
(2) The surface shape analysis method of the present invention is the method described in (1) above, and uses the least squares method after converting the position data into an ECEF coordinate system.
[0009]
(3) The surface shape analysis method of the present invention is the method described in (2) above, and performs a line integration on the approximate expression, and obtains the first two-dimensional data and the second two-dimensional data. Obtain a time that is equal to the measurement distance interval related to at least one of the dimensional data, determine the position and orientation of the measurement object based on the time, and measure the measurement object based on the determined position and orientation. Convert points to three-dimensional position data.
[0010]
(4) The surface shape measuring device according to the present invention includes: a position measuring means for obtaining position data of the measuring object; a position measuring means for obtaining posture data of the measuring object; First detecting means for obtaining first two-dimensional data shown in the table, and second detecting means for obtaining second two-dimensional data indicating the properties of the longitudinal section of the target surface. The obtained position data and the attitude data, and the first two-dimensional data and the second two-dimensional data obtained at regular intervals are collected.
[0011]
(5) The surface shape measuring device of the present invention is the device described in (4) above, and the measuring object is a vehicle.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a diagram showing a configuration of a road surface property measuring vehicle equipped with a surface shape measuring device according to an embodiment of the present invention.
[0013]
As shown in FIG. 1, a surface shape measuring device mounted on a vehicle 100 for measuring road surface properties includes an absolute position measuring device 1, a longitudinal unevenness measuring device 2, a rut digging measuring device 3, a data recording device (computer) 4, And a control device (CPU) 5. The vehicle 100 travels on a road surface (road) to be measured. The surface shape measuring device in the vehicle 100 measures the shape of the road surface and collects data for analyzing the road surface properties in three dimensions.
[0014]
FIG. 2 is a block diagram showing a configuration of the surface shape measuring device according to the embodiment of the present invention. As shown in FIG. 2, in the surface shape measuring device a, a control device 5 is connected to an absolute position measuring device 1, a longitudinal unevenness measuring device 2, a rutting measuring device 3, and a data recording device 4. Further, a predetermined analysis section b remote from the vehicle 100 is provided with a surface shape analysis device (computer) 10 having a built-in surface shape analysis program.
[0015]
As shown in FIG. 1, the absolute position measuring device 1 includes a GPS device main body 11 having a first GPS antenna 111 and a second GPS antenna 112 connected thereto, a gyroscope 12, and a distance meter 13. The control unit (not shown) of the absolute position measurement device 1 determines the position of the running vehicle 100 at fixed time intervals based on the position information obtained from the GPS device main body 11 and the travel distance obtained from the distance meter 13. Measurement is performed every time to obtain vehicle position data. Further, the control unit obtains stationary satellite observation data from a GPS base station and corrects the vehicle position data in order to correct the deterioration of the measurement accuracy during traveling. This correction data is recorded in the data recording device 4 by the control device 5 as vehicle absolute position data. In addition, the control unit of the absolute position measuring device 1 obtains posture data from the gyroscope 12 at each of the predetermined time intervals. This attitude data is recorded in the data recording device 4 by the control device 5.
[0016]
The vertical section unevenness measuring device 2 includes a laser displacement sensor 21, a speedometer 24, and an accelerometer 25. The control unit (not shown) of the longitudinal unevenness measuring device 2 calculates the traveling distance from the speedometer 24 while the vehicle 100 is traveling, and measures the height of the road surface with the laser displacement sensor 21 at regular intervals. Thereby, the unevenness of the vertical section of the road surface with respect to the traveling direction of the vehicle 100 is measured two-dimensionally. The measurement data is recorded in the data recording device 4 by the control device 5 as longitudinal profile data.
[0017]
The rutting measuring device 3 has a laser projector 31 and a line sensor camera 32 for rutting. The control unit (not shown) of the rutting measurement device 3 irradiates the laser light from the laser projector 31 to the road surface at regular intervals, and receives the laser light reflected on the road surface by the line sensor camera 32 for rutting. Then, the unevenness of the cross section of the road surface in the traveling direction of the vehicle 100 is measured two-dimensionally. This measurement data is recorded in the data recording device 4 by the control device 5 as rutting measurement data. In addition, the load related to the measurement is reduced by the vertical unevenness measuring device 2 and the rutting measuring device 3 performing the measurement at regular intervals.
[0018]
As described above, the vehicle absolute position data and the attitude data obtained at regular time intervals, the rutting measurement data and the longitudinal profile data obtained at regular time intervals have been measured by the vehicle 100 on the target road surface. Thereafter, the data is stored in the surface shape analysis device 10 of the analysis section b from the data recording device 4 via a storage medium or the like.
[0019]
FIG. 3 is a flowchart illustrating a processing procedure of the surface shape analysis device 10 according to the surface shape analysis program.
[0020]
First, in step S1, the surface shape analysis device 10 inputs vehicle absolute position data (hereinafter, position data) and attitude data, rutting measurement data, and longitudinal profile data from the data recording device 4 via a storage medium or the like. . Note that the position data indicates the instantaneous latitude, longitude, altitude, and the like of the vehicle 100 (surface shape measuring device a), and the attitude data indicates the instantaneous pitch angle and roll angle of the vehicle 100 (surface shape measuring device a). , Heading angle and the like. The rutting measurement data is two-dimensional data indicating the properties of the road cross section, and the longitudinal profile data is two-dimensional data indicating the properties of the road vertical section.
[0021]
In step S2, the surface shape analysis device 10 converts the position data into X, Y, and Z in an ECEF (Earth-Centered-Earth-Fixed) coordinate system, and divides the data into sections to which the least squares method can be applied. In the ECEF coordinate system, the origin is the center of mass of the earth, the X axis is the intersection of the Greenwich meridian plane and the equatorial plane, the Y axis is a straight line in the 90 ° east longitude direction on the equatorial plane, and the Z axis is the earth's rotation axis. Arctic straight line. In this embodiment, the ECEF coordinate system used as the conversion reference of the measurement point is a unit used for satellite positioning, and has a public nature. In addition, the surface shape analysis device 10 divides the posture data represented by the pitch (Pitch), the roll (Roll), and the heading (Heading) into sections to which the least squares method can be applied.
[0022]
In step S3, the surface shape analysis apparatus 10 applies the least squares method to each of the position data obtained by section division, and performs a polynomial approximation expression (X (t), Y (t), Z (t )). Similarly, the surface shape analysis apparatus 10 applies the least-squares method to each of the section-divided posture data, and calculates a polynomial approximation of time t (Pitch (t), Roll (t), Heading (t) )).
[0023]
In step S4, the surface shape analysis device 10 performs line integration on the polynomial approximation formula (X (t), Y (t), Z (t)) of each section calculated in step S3, and the result is obtained. A time T that is equal to the digging measurement distance interval (the constant distance interval described above) is obtained. In step S5, the surface shape analysis device 10 determines the vehicle position and posture in each rutting measurement at the time nT (n = 1, 2,...) Of each section based on the position data and the posture data. In step S6, the surface shape analysis device 10 determines all measurement points in each rutting measurement at time nT (n = 1, 2,...) In each section based on the vehicle position and attitude determined in step S5. , Latitude, longitude, altitude and the like.
[0024]
On the other hand, in step S7, the surface shape analysis device 10 performs line integration on the polynomial approximations (X (t), Y (t), Z (t)) of each section calculated in step S3, and the result is A time T that is equal to the measured distance interval of the longitudinal profile (the constant distance interval described above) is obtained. In step S8, the surface shape analysis device 10 determines the vehicle position and posture in each longitudinal profile measurement at the time nT (n = 1, 2,...) Of each section based on the position data and the posture data. In step S9, the surface shape analysis device 10 determines all measurement points in each longitudinal profile measurement at time nT (n = 1, 2,...) In each section based on the vehicle position and attitude determined in step S8. , Latitude, longitude, altitude and the like.
[0025]
Then, in step S10, the surface shape analysis device 10 outputs the three-dimensional rutting measurement data, the three-dimensional longitudinal profile data, and the three-dimensional evaluation data to a predetermined storage medium. The three-dimensional rutting measurement data is obtained by associating all measurement points of the inputted rutting measurement data with positional information including latitude, longitude, altitude, and posture information including pitch angle, roll angle, heading angle, and the like. Data. The three-dimensional longitudinal profile data is data obtained by associating all measurement points of the inputted longitudinal profile data with positional information such as latitude, longitude and altitude and posture information such as pitch angle, roll angle, heading angle and the like, and adding them. is there. The three-dimensional evaluation data is data in which each measurement point is linked to a position on the earth and processed into three-dimensional spatial information. This data is used as input data for the three-dimensional display function.
[0026]
The present invention is not limited to the above-described embodiment, and can be appropriately modified and implemented without changing the gist. For example, the present invention is not limited to a road surface, but can be applied to measurement and analysis of any surface shape.
[0027]
【The invention's effect】
According to the surface shape analysis method of the present invention, the shape of a surface can be analyzed in three dimensions.
[0028]
That is, according to the surface shape analysis method of the present invention, the two-dimensional data indicating the properties of the target surface is linked to the position data and the posture data, converted into three-dimensional data, and the three-dimensional target surface is generated. Shapes can be analyzed in three dimensions. In addition, by using the converted three-dimensional data for general three-dimensional image display, the shape of the target surface can be easily grasped and evaluated. For example, it is easy to combine the converted three-dimensional data with GIS (Geographic Information System), making it possible to compare the absolute position of the target surface with a structure (bridge or building) having a survey point. Become.
[0029]
Further, according to the surface shape analysis method of the present invention, three-dimensional data having reliability and versatility can be obtained by using the public ECEF coordinate system.
[0030]
ADVANTAGE OF THE INVENTION According to the surface shape measuring device of this invention, the shape of a surface can be measured three-dimensionally, for example, it becomes possible to collect data utilizing the accuracy of position data by GPS and the speed of obtaining two-dimensional data.
[0031]
Further, according to the surface shape measuring device of the present invention, by using a vehicle, it is possible to travel on a road or the like and easily measure the shape of the road surface.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a road surface property measuring vehicle equipped with a surface shape measuring device according to an embodiment of the present invention.
FIG. 2 is a block diagram showing a configuration of a surface shape measuring device according to the embodiment of the present invention.
FIG. 3 is a flowchart showing a processing procedure by a surface shape analysis program of the surface shape analysis device according to the embodiment of the present invention.
[Explanation of symbols]
Reference Signs List 100 vehicle 1 absolute position measuring device 11 GPS device main body 111 first GPS antenna 112 second GPS antenna 12 gyroscope 13 distance meter 2 longitudinal profile unevenness measuring device 21 laser displacement sensor 24 speedometer 25 acceleration 3: Rutting measuring device 31: Laser projector 32 ... Line sensor camera for rutting 4 ... Data recording device 5 ... Control device 10 ... Surface shape analyzing device a ... Surface shape measuring device b ... Analysis section

Claims (5)

測定体により測定された対象面の形状に係るデータを基に前記対象面の形状を解析する面形状解析方法であり、
前記測定体の絶対位置を示す位置データ、前記測定体の姿勢を示す姿勢データ、及び前記対象面の横断面の性状を示す第1の2次元データと前記対象面の縦断面の性状を示す第2の2次元データとの少なくとも一方を入力し、
前記位置データ及び前記姿勢データに対して最小二乗法を用い、時間に係る近似式を算出し、
前記近似式を基に、前記第1の2次元データと前記第2の2次元データとの少なくとも一方を3次元のデータに換算することを特徴とする面形状解析方法。
A surface shape analysis method for analyzing the shape of the target surface based on data related to the shape of the target surface measured by the measurement object,
Position data indicating the absolute position of the measurement object, posture data indicating the posture of the measurement object, first two-dimensional data indicating the properties of the cross section of the target surface, and second data indicating the properties of the vertical cross section of the target surface. And input at least one of the two two-dimensional data,
Using the least squares method for the position data and the attitude data, calculate an approximate expression related to time,
A surface shape analysis method, wherein at least one of the first two-dimensional data and the second two-dimensional data is converted into three-dimensional data based on the approximate expression.
前記位置データをECEF座標系に変換した後、最小二乗法を用いることを特徴とする請求項1に記載の面形状解析方法。2. The method according to claim 1, wherein the least squares method is used after converting the position data into an ECEF coordinate system. 前記近似式に対して線積分を行い、その結果が前記第1の2次元データと前記第2の2次元データとの少なくとも一方に係る計測距離間隔と等しくなる時間を求め、
前記時間を基準として前記測定体の位置と姿勢を確定し、
確定した前記位置と前記姿勢を基に前記測定体での計測点を3次元の位置データに換算することを特徴とする請求項2に記載の面形状解析方法。
Line integration is performed on the approximation formula, and a time at which the result is equal to a measurement distance interval related to at least one of the first two-dimensional data and the second two-dimensional data is obtained;
Determine the position and orientation of the measurement object based on the time,
The surface shape analysis method according to claim 2, wherein a measurement point on the measurement object is converted into three-dimensional position data based on the determined position and posture.
測定体に、
前記測定体の位置データを得る位置計測手段と、
前記測定体の姿勢データを得る姿勢計測手段と、
対象面の横断面の性状を示す第1の2次元データを得る第1の検出手段と、
前記対象面の縦断面の性状を示す第2の2次元データを得る第2の検出手段と、を備え、
一定時間間隔毎に得られた前記位置データ及び前記姿勢データと、一定距離間隔毎に得られた前記第1の2次元データ及び前記第2の2次元データとを収集することを特徴とする面形状計測装置。
For the measuring object,
Position measurement means for obtaining position data of the measurement object,
Attitude measuring means for obtaining attitude data of the measurement object,
First detection means for obtaining first two-dimensional data indicating properties of a cross section of the target surface;
Second detection means for obtaining second two-dimensional data indicating the properties of the longitudinal section of the target surface,
A plane collecting the position data and the posture data obtained at regular time intervals, and the first two-dimensional data and the second two-dimensional data obtained at regular distance intervals. Shape measuring device.
前記測定体は車両であることを特徴とする請求項4に記載の面形状計測装置。The surface shape measuring device according to claim 4, wherein the measuring object is a vehicle.
JP2002186455A 2002-06-26 2002-06-26 Surface shape analysis method Expired - Lifetime JP3794988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002186455A JP3794988B2 (en) 2002-06-26 2002-06-26 Surface shape analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002186455A JP3794988B2 (en) 2002-06-26 2002-06-26 Surface shape analysis method

Publications (2)

Publication Number Publication Date
JP2004028829A true JP2004028829A (en) 2004-01-29
JP3794988B2 JP3794988B2 (en) 2006-07-12

Family

ID=31181807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002186455A Expired - Lifetime JP3794988B2 (en) 2002-06-26 2002-06-26 Surface shape analysis method

Country Status (1)

Country Link
JP (1) JP3794988B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053531A (en) * 2005-08-17 2007-03-01 Mitsubishi Electric Corp Object existence certification service system
JP2008089307A (en) * 2006-09-29 2008-04-17 Mitsubishi Electric Corp Measuring carriage, layer thickness measuring apparatus, method and program of layer thickness measurement of the same, and layer thickness measuring method of layer thickness measuring system
JP2010038822A (en) * 2008-08-07 2010-02-18 Topcon Corp All-azimuth camera with gps (global positioning system), and spatial data collector
JP2011242293A (en) * 2010-05-19 2011-12-01 Hanshin Expressway Engineering Co Ltd Road inspection method and road inspection vehicle
CN102277823A (en) * 2011-05-03 2011-12-14 北京航空航天大学 Vehicle-mounted pavement detection system based on inertia measurement unit and laser range finder
CN103758016A (en) * 2014-01-02 2014-04-30 华南理工大学 Three-dimensional pavement structure detection device and detection method thereof
CN104005324A (en) * 2014-04-25 2014-08-27 江宏 Pavement texture information detection system
JP5602324B1 (en) * 2014-04-01 2014-10-08 阪神高速技術株式会社 Road measurement system
GB2564423A (en) * 2017-07-07 2019-01-16 Mattest Southern Ltd Apparatus and method for determining an indicator of the macrotexture of a road surface

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053531A (en) * 2005-08-17 2007-03-01 Mitsubishi Electric Corp Object existence certification service system
JP4613746B2 (en) * 2005-08-17 2011-01-19 三菱電機株式会社 Subject verification service system
JP2008089307A (en) * 2006-09-29 2008-04-17 Mitsubishi Electric Corp Measuring carriage, layer thickness measuring apparatus, method and program of layer thickness measurement of the same, and layer thickness measuring method of layer thickness measuring system
JP2010038822A (en) * 2008-08-07 2010-02-18 Topcon Corp All-azimuth camera with gps (global positioning system), and spatial data collector
JP2011242293A (en) * 2010-05-19 2011-12-01 Hanshin Expressway Engineering Co Ltd Road inspection method and road inspection vehicle
CN102277823A (en) * 2011-05-03 2011-12-14 北京航空航天大学 Vehicle-mounted pavement detection system based on inertia measurement unit and laser range finder
CN103758016A (en) * 2014-01-02 2014-04-30 华南理工大学 Three-dimensional pavement structure detection device and detection method thereof
CN103758016B (en) * 2014-01-02 2016-06-22 华南理工大学 A kind of three-dimensional pavement structure detecting device and detection method thereof
JP5602324B1 (en) * 2014-04-01 2014-10-08 阪神高速技術株式会社 Road measurement system
JP2015197804A (en) * 2014-04-01 2015-11-09 阪神高速技術株式会社 Road measurement system
CN104005324A (en) * 2014-04-25 2014-08-27 江宏 Pavement texture information detection system
CN104005324B (en) * 2014-04-25 2016-02-24 湖南晨皓科技有限公司 A kind of detection system of pavement structure information
GB2564423A (en) * 2017-07-07 2019-01-16 Mattest Southern Ltd Apparatus and method for determining an indicator of the macrotexture of a road surface

Also Published As

Publication number Publication date
JP3794988B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
US6820002B2 (en) Moving direction detection method, moving direction detection apparatus, and program code
JP5589900B2 (en) Local map generation device, global map generation device, and program
JP4746374B2 (en) Position correction method and navigation apparatus
KR100587405B1 (en) Method of updating gis numerical map of surveying information structural facilities along road by using vehicle with gps receiver, laser measuring instrument and camera
CN106842271B (en) Navigation positioning method and device
KR20110043538A (en) Method and systems for the building up of a roadmap and for the determination of the position of a vehicle
JP2018523104A (en) Method and apparatus for locating a vehicle
JP2019074532A (en) Method for giving real dimensions to slam data and position measurement using the same
CN108759815B (en) Information fusion integrated navigation method used in global visual positioning method
CN110998229A (en) Structure measuring device, measuring point correcting device, and measuring point correcting method
JP4596566B2 (en) Self-vehicle information recognition device and self-vehicle information recognition method
JP5680476B2 (en) Method and apparatus for measuring vibration and dimensions of structures by non-contact measurement
JP4845068B2 (en) Dead reckoning equipment
JP6465421B1 (en) Structural deformation detector
JP2004028829A (en) Method for analyzing surface form, and instrument for measuring surface form
JP4986883B2 (en) Orientation device, orientation method and orientation program
US7832111B2 (en) Magnetic sensing device for navigation and detecting inclination
JP2000338865A (en) Data gathering device for digital road map
CN101581583B (en) Navigation positioning system for moving object
JP4714853B2 (en) Dead reckoning equipment
KR100587411B1 (en) Method for obtaining building size information using laser
JPH0566713A (en) Navigation device
JP3570121B2 (en) Navigation device
KR100581235B1 (en) Method for updating gis numerical map of surveying information structural facilities along road by using aerial photograph as well as vehicle with gps receiver and laser measuring instrument
JPH09318373A (en) Navigator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060411

R151 Written notification of patent or utility model registration

Ref document number: 3794988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term