JP2004028616A - Marine environment measuring interval determination method and device - Google Patents

Marine environment measuring interval determination method and device Download PDF

Info

Publication number
JP2004028616A
JP2004028616A JP2002181373A JP2002181373A JP2004028616A JP 2004028616 A JP2004028616 A JP 2004028616A JP 2002181373 A JP2002181373 A JP 2002181373A JP 2002181373 A JP2002181373 A JP 2002181373A JP 2004028616 A JP2004028616 A JP 2004028616A
Authority
JP
Japan
Prior art keywords
measurement interval
marine environment
rossby
correlation coefficient
sea area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002181373A
Other languages
Japanese (ja)
Other versions
JP4168235B2 (en
Inventor
Isao Umetsu
梅津 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002181373A priority Critical patent/JP4168235B2/en
Publication of JP2004028616A publication Critical patent/JP2004028616A/en
Application granted granted Critical
Publication of JP4168235B2 publication Critical patent/JP4168235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a marine environment measuring interval determination method and a device useful for improvement of forecast accuracy, and capable of collecting efficiently observation data used for data assimilation processing. <P>SOLUTION: A physical correlation coefficient on the marine environment which is a forecast object is calculated based on a numerical marine model, and a Gaussian correlation coefficient distribution is assumed by utilizing the calculated value, to thereby calculate a physical correlation distance. On the other hand, a Rossby radius of deformation which is a range on which a disturbance generated in the marine exerts an influence is calculated based on characteristics such as the depth of a sea area which is a measuring object, a Coriolis parameter, a gravitational acceleration. The prediction result of physical quantities by the numerical marine model or the calculation result of the Rossby radius of deformation is used as the measuring interval. Otherwise, the size relation between the correlation distance and the Rossby radius of deformation is compared, and the smaller one is selected therefor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、海洋環境を精度良く予報するために実際に計測する計測間隔を決定するための海洋環境計測間隔決定方法及び装置に関する。
【0002】
【従来の技術】
一般に、任意の海域における流速、水温、塩分、密度等の海洋環境の予報には、海洋環境の物理的な特性を数値的にモデル化する数値海洋モデルの作成処理と、予報精度を上げるために数値海洋モデルと実際に現場で計測した観測データとを統合するデータ同化処理の2段階の処理が必要である。
【0003】
このデータ同化処理で必要な観測データを得る際に、無駄のない効率的な計測間隔を決定する手法はこれまで提案されていなかった。
【0004】
【発明が解決しようとする課題】
上述した従来のデータ同化処理では、数値海洋モデルの精度を少しでも向上させることができればよいという程度の認識で、既に現存する観測データを利用していた。そのため、最終的に得られる予報精度に一貫性がなく、現存する観測データの観測点の時空間分布に予報精度が依存する問題があった。
【0005】
本発明は上記したような従来の技術が有する問題点を解決するためになされたものであり、予報精度の向上に役立つ、データ同化処理で用いる観測データを効率的に収集することが可能な海洋環境計測間隔決定方法及び装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため本発明の海洋環境計測間隔決定方法は、海洋環境を精度良く予報するために観測データの計測間隔を決定するための海洋環境計測間隔決定方法であって、
予報対象海域の数値海洋モデルに基づいて海洋環境の時空間データを予報し、前記時空間データを用いて任意の点とその近傍の点との相互相関係数を算出し、
前記相互相関係数を基にガウス型相関係数分布を仮定することにより、海域の特徴が現れる長さである相関距離を算出し、
前記相関距離の値を前記計測間隔として設定する方法である。
【0007】
または、海洋環境を精度良く予報するために観測データの計測間隔を決定するための海洋環境計測間隔決定方法であって、
予報対象海域の水深、コリオリパラメータ、及び重力加速度に基づいてロスビーの変形半径を算出し、
前記ロスビーの変形半径の値を前記計測間隔として設定する方法である。
【0008】
または、海洋環境を精度良く予報するために観測データの計測間隔を決定するための海洋環境計測間隔決定方法であって、
予報対象海域の数値海洋モデルに基づいて海洋環境の時空間データを予報し、
前記時空間データを用いて任意の点とその近傍の点との相互相関係数を算出し、
前記相互相関係数を基にガウス型相関係数分布を仮定することにより、海域の特徴が現れる長さである相関距離を算出し、
予報対象海域の水深、コリオリパラメータ、及び重力加速度に基づいてロスビーの変形半径を算出し、
前記相関距離と前記ロスビーの変形半径の大小を比較し、その小さい方の値を前記計測間隔として設定する方法である。
【0009】
一方、本発明の海洋環境計測間隔決定装置は、海洋環境を精度良く予報するために観測データの計測間隔を決定する海洋環境計測間隔決定装置であって、
予報対象海域の数値海洋モデルに基づいて海洋環境の時空間データを予報し、前記時空間データを用いて任意の点とその近傍の点との相互相関係数を算出し、前記相互相関係数を基にガウス型相関係数分布を仮定することにより、海域の特徴が現れる長さである相関距離を算出し、前記相関距離の値を前記計測間隔として設定する処理装置と、
前記数値海洋モデル、並びに計算結果である前記時空間データ、前記相互相関係数、及び前記相関距離をそれぞれ蓄積する記憶装置と、
を有する構成である。
【0010】
または、海洋環境を精度良く予報するために観測データの計測間隔を決定する海洋環境計測間隔決定装置であって、
予報対象海域の水深、コリオリパラメータ、及び重力加速度に基づいてロスビーの変形半径を算出し、前記ロスビーの変形半径の値を前記計測間隔として設定する処理装置と、
前記海洋の水深、コリオリパラメータ、重力加速度、及び計算結果である前記ロスビーの変形半径をそれぞれ蓄積する記憶装置と、
を有する構成である。
【0011】
または、海洋環境を精度良く予報するために観測データの計測間隔を決定する海洋環境計測間隔決定装置であって、
予報対象海域の数値海洋モデルに基づいて海洋環境の時空間データを予報し、前記時空間データを用いて任意の点とその近傍の点との相互相関係数を算出し、前記相互相関係数を基にガウス型相関係数分布を仮定することにより、海域の特徴が現れる長さである相関距離を算出し、予報対象海域の水深、コリオリパラメータ、及び重力加速度に基づいてロスビーの変形半径を算出し、前記相関距離と前記ロスビーの変形半径の大小を比較し、その小さい方の値を前記計測間隔として設定する処理装置と、
前記数値海洋モデル、前記海洋の水深、コリオリパラメータ、及び重力加速度、並びに計算結果である前記時空間データ、前記相互相関係数、前記相関距離、及び前記ロスビーの変形半径をそれぞれ蓄積する記憶装置と、
を有する構成である。
【0012】
上記のような海洋環境計測間隔決定方法及び装置では、数値海洋モデルに基づいて予報対象となる海洋環境に関する物理的相関係数を算出し、この算出値を利用してガウス型相関係数分布を仮定することにより物理的相関距離を算出する。
【0013】
一方で、測定対象となる海域の水深、コリオリパラメータ、重力加速度等の特性に基づいて海洋に発生する擾乱が影響を及ぼす範囲であるロスビーの変形半径を算出する。
【0014】
これら数値海洋モデルによる物理量の予測結果、あるいはロスビーの変形半径の算出結果を計測間隔とすることで、海域毎に異なる物理的な特徴を反映した計測間隔を求めることが可能となる。
【0015】
あるいは相関距離とロスビーの変形半径の大小関係を比較し、より小さい方を選択することにより、最適な海洋環境計測間隔を提示することが可能になる。
【0016】
【発明の実施の形態】
次に本発明について図面を参照して説明する。
【0017】
図1は本発明の海洋環境計測間隔決定装置の一構成例を示すブロック図である。
【0018】
図1に示すように、本発明の海洋環境計測間隔決定装置は、EWS(Engineering Work Station)やスーパーコンピュータ等の情報処理装置であり、プログラムにしたがって所定の処理を実行する処理装置10と、処理装置10に対してコマンドや情報等を入力するための入力装置20と、処理装置10の処理結果をモニタするための出力装置30とを有する構成である。
【0019】
処理装置10は、CPU11と、CPU11の処理で必要な情報を一時的に記憶する主記憶装置12と、CPU11に本発明の海洋環境計測間隔決定処理を実行させるためのプログラムが記録された記録媒体13と、上述した数値海洋モデルや後述する各工程の算出結果を蓄積するデータ蓄積装置14と、主記憶装置12、記録媒体13、及びデータ蓄積装置14とのデータ転送を制御するメモリ制御インタフェース部15と、入力装置20及び出力装置30とのインタフェース装置であるI/Oインタフェース部16とを備え、それらがバス18を介して接続された構成である。なお、処理装置10には、ネットワークを介してデータを送受信するための通信制御装置17を有していてもよい。
【0020】
処理装置10は、記録媒体13に記録されたプログラムにしたがって以下に記載する数値予報工程、物理的相関係数算出工程、物理的相関距離算出工程、変形半径算出工程、及び計測間隔決定工程をそれぞれ実行する。なお、記録媒体13は、磁気ディスク、半導体メモリ、光ディスクあるいはその他の記録媒体であってもよい。また、処理装置10にはインターネット等のネットワークを介した通信を制御するインタフェースである通信制御装置を備えていてもよい。
【0021】
次に本発明の海洋環境計測間隔決定方法の手順について図2を用いて説明する。
【0022】
本発明の海洋環境計測間隔決定方法では、まず、数値予報工程として、周知の「Princeton Ocean Model」あるいは「Modular Ocean Model」等の数値海洋モデルを用いて、予報対象海域の水温、塩分、流速等の海洋環境データを、3次元空間で、かつ任意の時間間隔でそれぞれ算出する。そして、予め予報対象海域に設定した3次元格子上に、それらの算出結果を予報格子データとして配置する(ステップS1)。
【0023】
数値海洋モデルは、回転する地球上の海水の運動方程式、質量保存式、熱量保存式、塩分保存式等を用いて数値的に算出されたものであり、詳細は、例えば、“Mellor, G. L., Users guide for a three−dimensional, primitive equation, numerical ocean model (July 1998 version), 41 pp., Prog. in Atmos. andOcean. Sci, Princeton University, 1998.”、あるいは下記ホームページ上で開示されている。
【0024】
1.Princeton Ocean Model
HYPERLINK ”http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/” http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/
2.Modular Ocean Model
HYPERLINK ”http://www.gfdl.gov/ ̄smg/MOM/MOM.html” http://www.gfdl.gov/ ̄smg/MOM/MOM.html
次に、物理的相関係数算出工程として、数値海洋モデルに基づいて算出された予報格子データについて、例えば各交点とその近傍の点との相互相関係数を物理的相関係数として算出する(ステップS2)。
【0025】
本実施形態では、上記数値予報工程で算出された予報格子データについて、任意のi点と、その近傍j点との物理的相関係数を下記式(1)を用いて算出する。
【0026】
【数1】

Figure 2004028616
【0027】
ここで、rijは物理的相関係数、S、Sは、i点及びj点における海洋環境の予報格子データ、Eはアンサンブル平均を表す。
【0028】
この処理を予報対象海域内に設定した全ての格子について算出し、式(2)で示すように、点iとの距離xにおける平均値を算出し、これを点iにおける距離xの関数r(x)とする。
【0029】
【数2】
Figure 2004028616
【0030】
ここで、Nは点iに対して距離Xだけ離れている点の数を示している。
【0031】
続いて、物理的相関距離算出工程として、物理的相関係数算出工程で算出された物理的相関係数r(x)をガウス型の相関係数分布と仮定することにより、物理的相関距離を算出する(ステップS3)。
【0032】
具体的には、物理的相関係数算出工程で算出された物理的相関係数r(x)を下記式(3)の仮定のもとに、物理的相関距離lを算出する。
【0033】
【数3】
Figure 2004028616
【0034】
ここで、仮定するr(x)の関数形はガウス型に限定されるものではなく任意であるが、種々の分野で使用されるものであり、自然界においてよく見られる関数形を用いる(例えば、“Jcobs, G.A., H. T. Perkins, W. J.Teague, and P. J. Hogan, Summer transport through Tsushima−Korea Strait, J. Geophys. Res., 106, 6917−6929, 2001.”)。
【0035】
一方、上記物理的相関距離の算出工程とは別に、変形半径算出工程として、予報対象となる海域の水深、コリオリパラメータ、及び重力加速度に基づいてロスビーの変形半径を算出する(ステップS4)。
【0036】
ロスビーの変形半径は、海洋に発生する擾乱が影響を及ぼす範囲を示し、海洋の特徴的な水平スケールを表す物理量として知られている(宇野木早苗・久保田雅久,「海洋の波と流れの科学」,50−51頁,東海大学出版会,1996等)。
【0037】
本実施形態では、各点iにおけるロスビーの変形半径を下記式(4)を用いて算出し、2次元平面に表示する。
【0038】
【数4】
Figure 2004028616
【0039】
ここで、λRiは点iにおけるロスビーの変形半径、gは重力加速度、hは点iにおける水深、fは点iにおけるコリオリパラメータを示している。
【0040】
最後に、計測間隔決定工程として、物理的相関距離算出工程で算出した物理的相関距離lと変形半径算出工程で算出したロスビーの変形半径λRiとを比較し、物理特性の空間的な変化を取りこぼさないように、より小さい方の値を最適な海洋環境計測間隔として決定する(ステップS5)。
【0041】
したがって、本発明の海洋環境計測間隔決定方法によれば、データ同化処理のためのデータ収集の際に、数値海洋モデルによる物理量の予測結果に基づいて海域毎に異なる物理的な特徴を反映した計測間隔を求めることが可能となる。そのため、例えば、観測機器の最大敷設間隔や最大敷設個数の指針を与えることが可能となり、データ同化処理に必要な観測データを効率的に得ることができる。
【0042】
なお、上記説明では、コンピュータによって各工程を処理する例を示したが、例えば、上記各工程を実行する、DSP等のLSIから成る数値予報部、物理的相関係数算出部、物理的相関距離算出部、変形半径算出部、計測間隔決定部、データを入力するための入力部、及び処理結果を表示する表示部を有する構成であってもよい。
【0043】
【発明の効果】
本発明は以上説明したように構成されているので、以下に記載する効果を奏する。
【0044】
数値海洋モデルに基づいて予報対象となる海洋環境に関する物理的相関係数を算出し、この算出値を利用してガウス型相関係数分布を仮定することにより物理的相関距離を算出する。
【0045】
一方で、測定対象となる海域の水深、コリオリパラメータ、重力加速度等の特性に基づいて海洋に発生する擾乱が影響を及ぼす範囲であるロスビーの変形半径を算出する。
【0046】
これら数値海洋モデルによる物理量の予測結果、あるいはロスビーの変形半径の算出結果を計測間隔とすることで、海域毎に異なる物理的な特徴を反映した計測間隔を求めることが可能となる。
【0047】
あるいは相関距離とロスビーの変形半径の大小関係を比較し、より小さい方を選択することにより、最適な海洋環境計測間隔を提示することが可能になる。
【0048】
そのため、例えば、観測機器の最大敷設間隔や最大敷設個数の指針を与えることが可能となり、データ同化処理に必要な観測データを効率的に得ることができる。
【図面の簡単な説明】
【図1】本発明の海洋環境計測間隔決定装置の一構成例を示すブロック図である。
【図2】本発明の海洋環境計測間隔決定方法の手順を示すフローチャートである。
【符号の説明】
10  処理装置
11  CPU
12  主記憶装置
13  記録媒体
14  データ蓄積装置
15  メモリ制御インタフェース部
16  I/Oインタフェース部
17  通信制御装置
18  バス
20  入力装置
30  出力装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a marine environment measurement interval determination method and apparatus for determining a measurement interval to be actually measured in order to accurately forecast a marine environment.
[0002]
[Prior art]
In general, for forecasting the marine environment such as flow velocity, water temperature, salinity, density, etc. in any sea area, it is necessary to create a numerical ocean model that numerically models the physical characteristics of the marine environment and to improve the forecast accuracy A two-stage process of data assimilation is required to integrate the numerical ocean model and observation data actually measured on site.
[0003]
When obtaining the necessary observation data in this data assimilation process, a method of determining an efficient measurement interval without waste has not been proposed so far.
[0004]
[Problems to be solved by the invention]
In the above-described conventional data assimilation processing, existing observation data was used with the recognition that it was sufficient to improve the accuracy of the numerical ocean model as much as possible. For this reason, there is a problem that the prediction accuracy finally obtained is not consistent, and the prediction accuracy depends on the spatiotemporal distribution of the observation points of the existing observation data.
[0005]
The present invention has been made in order to solve the problems of the conventional technology as described above, and is useful for improving the accuracy of forecasting and is capable of efficiently collecting observation data used in data assimilation processing. An object of the present invention is to provide an environment measurement interval determination method and apparatus.
[0006]
[Means for Solving the Problems]
To achieve the above object, the marine environment measurement interval determination method of the present invention is a marine environment measurement interval determination method for determining the measurement interval of observation data to accurately forecast the marine environment,
Forecasting spatio-temporal data of the marine environment based on the numerical ocean model of the forecast target sea area, calculate a cross-correlation coefficient between an arbitrary point and a nearby point using the spatio-temporal data,
By assuming a Gaussian correlation coefficient distribution based on the cross-correlation coefficient, calculate a correlation distance that is a length at which a feature of the sea area appears,
This is a method of setting the value of the correlation distance as the measurement interval.
[0007]
Alternatively, a marine environment measurement interval determination method for determining the measurement interval of observation data to accurately forecast the marine environment,
Calculate the deformation radius of Rossby based on the water depth, Coriolis parameter, and gravitational acceleration of the forecast target sea area,
A method of setting a value of the deformation radius of the Rossby as the measurement interval.
[0008]
Alternatively, a marine environment measurement interval determination method for determining the measurement interval of observation data to accurately forecast the marine environment,
Forecasting spatio-temporal data of the marine environment based on a numerical ocean model of the forecasted sea area,
Using the spatio-temporal data to calculate a cross-correlation coefficient between an arbitrary point and points in the vicinity thereof,
By assuming a Gaussian correlation coefficient distribution based on the cross-correlation coefficient, calculate a correlation distance that is a length at which a feature of the sea area appears,
Calculate the deformation radius of Rossby based on the water depth, Coriolis parameter, and gravitational acceleration of the forecast target sea area,
A method of comparing the correlation distance with the deformation radius of the Rossby and setting the smaller value as the measurement interval.
[0009]
On the other hand, the marine environment measurement interval determination device of the present invention is a marine environment measurement interval determination device that determines the measurement interval of observation data in order to accurately forecast the marine environment,
Forecasting spatio-temporal data of the marine environment based on a numerical ocean model of the forecast target sea area, calculating a cross-correlation coefficient between an arbitrary point and a point in the vicinity thereof using the spatio-temporal data, By assuming a Gaussian correlation coefficient distribution based on, a processing device that calculates a correlation distance that is a length at which a feature of the sea area appears, and sets the value of the correlation distance as the measurement interval,
The numerical ocean model, and a storage device that accumulates the spatio-temporal data as a calculation result, the cross-correlation coefficient, and the correlation distance, respectively.
It is a structure which has.
[0010]
Or, a marine environment measurement interval determination device that determines the measurement interval of observation data to accurately forecast the marine environment,
A processing device that calculates the deformation radius of Rossby based on the water depth of the forecast target sea area, the Coriolis parameter, and the gravitational acceleration, and sets the value of the deformation radius of the Rossby as the measurement interval,
A storage device for storing the depth of the ocean, the Coriolis parameter, the gravitational acceleration, and the deformation radius of the Rossby, which is the calculation result, respectively,
It is a structure which has.
[0011]
Or, a marine environment measurement interval determination device that determines the measurement interval of observation data to accurately forecast the marine environment,
Forecasting spatio-temporal data of the marine environment based on a numerical ocean model of the forecast target sea area, calculating a cross-correlation coefficient between an arbitrary point and a point in the vicinity thereof using the spatio-temporal data, By assuming a Gaussian correlation coefficient distribution based on, the correlation distance, which is the length at which the characteristics of the sea area appear, is calculated, and the deformation radius of Rossby is calculated based on the water depth, Coriolis parameter, and gravitational acceleration of the forecasted sea area Computing, comparing the correlation distance and the magnitude of the deformation radius of the Rossby, a processing device that sets the smaller value as the measurement interval,
The numerical ocean model, the depth of the ocean, the Coriolis parameter, and the gravitational acceleration, and the spatio-temporal data as a calculation result, the cross-correlation coefficient, the correlation distance, and a storage device for storing the deformation radius of the Rossby, respectively. ,
It is a structure which has.
[0012]
In the marine environment measurement interval determination method and apparatus as described above, a physical correlation coefficient regarding a marine environment to be predicted is calculated based on a numerical marine model, and a Gaussian correlation coefficient distribution is calculated using the calculated value. The physical correlation distance is calculated by assuming.
[0013]
On the other hand, a deformation radius of Rossby, which is a range affected by disturbance occurring in the ocean, is calculated based on characteristics such as water depth, Coriolis parameters, and gravitational acceleration of the sea area to be measured.
[0014]
By using the prediction result of the physical quantity by these numerical ocean models or the calculation result of the deformation radius of Rossby as the measurement interval, it becomes possible to obtain the measurement interval reflecting different physical characteristics for each sea area.
[0015]
Alternatively, by comparing the magnitude relationship between the correlation distance and the deformation radius of Rossby and selecting the smaller one, it becomes possible to present an optimal marine environment measurement interval.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a block diagram showing one configuration example of the marine environment measurement interval determination device of the present invention.
[0018]
As shown in FIG. 1, a marine environment measurement interval determination device of the present invention is an information processing device such as an EWS (Engineering Work Station) or a supercomputer. The configuration includes an input device 20 for inputting commands, information, and the like to the device 10, and an output device 30 for monitoring a processing result of the processing device 10.
[0019]
The processing device 10 includes a CPU 11, a main storage device 12 for temporarily storing information necessary for the processing of the CPU 11, and a recording medium on which a program for causing the CPU 11 to execute the marine environment measurement interval determination process of the present invention is recorded. 13, a data storage device 14 for storing the above-mentioned numerical ocean model and calculation results of each process described later, and a memory control interface unit for controlling data transfer between the main storage device 12, the recording medium 13, and the data storage device 14. 15 and an I / O interface unit 16 which is an interface device between the input device 20 and the output device 30, and are connected via a bus 18. Note that the processing device 10 may include a communication control device 17 for transmitting and receiving data via a network.
[0020]
The processing device 10 performs a numerical prediction step, a physical correlation coefficient calculation step, a physical correlation distance calculation step, a deformation radius calculation step, and a measurement interval determination step described below according to a program recorded on the recording medium 13. Execute. Note that the recording medium 13 may be a magnetic disk, a semiconductor memory, an optical disk, or another recording medium. Further, the processing device 10 may include a communication control device that is an interface for controlling communication via a network such as the Internet.
[0021]
Next, the procedure of the marine environment measurement interval determination method of the present invention will be described with reference to FIG.
[0022]
In the marine environment measurement interval determination method of the present invention, first, as a numerical forecasting step, using a well-known numerical ocean model such as “Princeton Ocean Model” or “Modular Ocean Model”, the water temperature, salinity, flow velocity, etc. of the forecast target sea area. Are calculated in three-dimensional space and at arbitrary time intervals. Then, the calculation results are arranged as forecast grid data on a three-dimensional grid set in advance in the forecast target sea area (step S1).
[0023]
The numerical ocean model is numerically calculated using a motion equation of seawater on the rotating earth, a mass conservation equation, a calorie conservation equation, a salt conservation equation, and the like. L., Users guide for a three-dimensional, primitive equation, numerical ocean model (July 1998 version), 41 pp., Proc. In O., Inc., Inc. ing.
[0024]
1. Princeton Ocean Model
HYPERLINK "http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/" http: // www. aos. Princeton. edu / WWWWPUBLIC / htdocs. pom /
2. Modular Ocean Model
HYPERLINK "http://www.gfdl.gov/@smg/MOM/MOM.html" http: // www. gfdl. gov /  ̄smg / MOM / MOM. html
Next, as a physical correlation coefficient calculating step, for the forecast grid data calculated based on the numerical ocean model, for example, a cross-correlation coefficient between each intersection and a point in the vicinity thereof is calculated as a physical correlation coefficient ( Step S2).
[0025]
In the present embodiment, a physical correlation coefficient between an arbitrary i point and a nearby j point is calculated using the following equation (1) for the forecast grid data calculated in the numerical forecast step.
[0026]
(Equation 1)
Figure 2004028616
[0027]
Here, r ij is a physical correlation coefficient, S i and S j are forecast grid data of the marine environment at points i and j, and E is an ensemble average.
[0028]
Calculated for all lattice setting this process to forecast target the sea, as shown in equation (2), calculates an average value of the distance x j between the point i, the function r of the distance x so at point i i (x).
[0029]
(Equation 2)
Figure 2004028616
[0030]
Here, N indicates the number of points separated by a distance Xj from the point i.
[0031]
Subsequently, as a physical correlation distance calculation step, the physical correlation coefficient r i (x) calculated in the physical correlation coefficient calculation step is assumed to be a Gaussian correlation coefficient distribution, thereby obtaining a physical correlation distance. Is calculated (step S3).
[0032]
Specifically, it calculated in physical correlation coefficient calculation process physical correlation coefficient r i (x) is on the assumption of the formula (3) to calculate the physical correlation length l i.
[0033]
[Equation 3]
Figure 2004028616
[0034]
Here, the assumed function form of r i (x) is not limited to the Gaussian form, but is arbitrary, but is used in various fields, and uses a function form that is often found in the natural world (for example, "Jcobs, GA, H.T. Perkins, W. J. Teague, and PJ. Hogan, Summer transport through Tushishima-Korea Strait, J.69. . ”).
[0035]
On the other hand, a deformation radius of the Rossby is calculated based on the water depth, the Coriolis parameter, and the gravitational acceleration of the sea area to be predicted, as a deformation radius calculation step, separately from the physical correlation distance calculation step (step S4).
[0036]
The radius of deformation of Rossby indicates the range affected by disturbances occurring in the ocean, and is known as a physical quantity representing the characteristic horizontal scale of the ocean (Sanae Unoki, Masahisa Kubota, "Science of Ocean Waves and Currents") , Pp. 50-51, Tokai University Press, 1996, etc.).
[0037]
In the present embodiment, the deformation radius of Rossby at each point i is calculated using the following equation (4) and displayed on a two-dimensional plane.
[0038]
(Equation 4)
Figure 2004028616
[0039]
Here, lambda Ri is deformed radius of Rossby at the point i, g is the gravitational acceleration, h i is the water depth at the point i, the f i indicates the Coriolis parameter at point i.
[0040]
Finally, compared as the measurement interval determination step, and a deformation radius lambda Ri Rossby calculated in physical correlation length calculated in the calculation step the physical correlation length l i and deformation radius calculation process, spatial variation of physical properties The smaller value is determined as the optimal marine environment measurement interval so that is not missed (step S5).
[0041]
Therefore, according to the marine environment measurement interval determination method of the present invention, at the time of data collection for data assimilation processing, measurement reflecting physical characteristics different for each sea area based on the prediction result of the physical quantity by the numerical ocean model. The interval can be obtained. Therefore, for example, it is possible to give a guideline for the maximum laying interval and the maximum laying number of observation devices, and it is possible to efficiently obtain observation data necessary for data assimilation processing.
[0042]
In the above description, an example in which each step is processed by a computer has been described, but, for example, a numerical forecasting unit composed of an LSI such as a DSP, a physical correlation coefficient calculation unit, a physical correlation distance The configuration may include a calculation unit, a deformation radius calculation unit, a measurement interval determination unit, an input unit for inputting data, and a display unit for displaying a processing result.
[0043]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0044]
Based on the numerical ocean model, a physical correlation coefficient relating to the marine environment to be predicted is calculated, and a physical correlation distance is calculated by assuming a Gaussian correlation coefficient distribution using the calculated value.
[0045]
On the other hand, a deformation radius of Rossby, which is a range affected by disturbance occurring in the ocean, is calculated based on characteristics such as water depth, Coriolis parameters, and gravitational acceleration of the sea area to be measured.
[0046]
By using the prediction result of the physical quantity by these numerical ocean models or the calculation result of the deformation radius of Rossby as the measurement interval, it becomes possible to obtain the measurement interval reflecting different physical characteristics for each sea area.
[0047]
Alternatively, by comparing the magnitude relationship between the correlation distance and the deformation radius of Rossby and selecting the smaller one, it becomes possible to present an optimal marine environment measurement interval.
[0048]
Therefore, for example, it is possible to give a guideline for the maximum laying interval and the maximum laying number of observation devices, and it is possible to efficiently obtain observation data necessary for data assimilation processing.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration example of a marine environment measurement interval determination device according to the present invention.
FIG. 2 is a flowchart showing a procedure of a marine environment measurement interval determination method of the present invention.
[Explanation of symbols]
10 processing unit 11 CPU
REFERENCE SIGNS LIST 12 Main storage device 13 Recording medium 14 Data storage device 15 Memory control interface unit 16 I / O interface unit 17 Communication control device 18 Bus 20 Input device 30 Output device

Claims (9)

海洋環境を精度良く予報するために観測データの計測間隔を決定するための海洋環境計測間隔決定方法であって、
予報対象海域の数値海洋モデルに基づいて海洋環境の時空間データを予報し、前記時空間データを用いて任意の点とその近傍の点との相互相関係数を算出し、
前記相互相関係数を基にガウス型相関係数分布を仮定することにより、海域の特徴が現れる長さである相関距離を算出し、
前記相関距離の値を前記計測間隔として設定する海洋環境計測間隔決定方法。
A marine environment measurement interval determination method for determining a measurement interval of observation data in order to accurately forecast a marine environment,
Forecasting spatio-temporal data of the marine environment based on the numerical ocean model of the forecast target sea area, calculate a cross-correlation coefficient between an arbitrary point and a nearby point using the spatio-temporal data,
By assuming a Gaussian correlation coefficient distribution based on the cross-correlation coefficient, calculate a correlation distance that is a length at which a feature of the sea area appears,
A marine environment measurement interval determination method for setting the value of the correlation distance as the measurement interval.
海洋環境を精度良く予報するために観測データの計測間隔を決定するための海洋環境計測間隔決定方法であって、
予報対象海域の水深、コリオリパラメータ、及び重力加速度に基づいてロスビーの変形半径を算出し、
前記ロスビーの変形半径の値を前記計測間隔として設定する海洋環境計測間隔決定方法。
A marine environment measurement interval determination method for determining a measurement interval of observation data in order to accurately forecast a marine environment,
Calculate the deformation radius of Rossby based on the water depth, Coriolis parameter, and gravitational acceleration of the forecast target sea area,
A marine environment measurement interval determination method, wherein a value of the deformation radius of the Rossby is set as the measurement interval.
海洋環境を精度良く予報するために観測データの計測間隔を決定するための海洋環境計測間隔決定方法であって、
予報対象海域の数値海洋モデルに基づいて海洋環境の時空間データを予報し、
前記時空間データを用いて任意の点とその近傍の点との相互相関係数を算出し、
前記相互相関係数を基にガウス型相関係数分布を仮定することにより、海域の特徴が現れる長さである相関距離を算出し、
予報対象海域の水深、コリオリパラメータ、及び重力加速度に基づいてロスビーの変形半径を算出し、
前記相関距離と前記ロスビーの変形半径の大小を比較し、その小さい方の値を前記計測間隔として設定する海洋環境計測間隔決定方法。
A marine environment measurement interval determination method for determining a measurement interval of observation data in order to accurately forecast a marine environment,
Forecasting spatio-temporal data of the marine environment based on a numerical ocean model of the forecasted sea area,
Using the spatio-temporal data to calculate a cross-correlation coefficient between an arbitrary point and points in the vicinity thereof,
By assuming a Gaussian correlation coefficient distribution based on the cross-correlation coefficient, calculate a correlation distance that is a length at which a feature of the sea area appears,
Calculate the deformation radius of Rossby based on the water depth, Coriolis parameter, and gravitational acceleration of the forecast target sea area,
A marine environment measurement interval determination method, wherein the correlation distance is compared with the deformation radius of the Rossby, and the smaller value is set as the measurement interval.
海洋環境を精度良く予報するために観測データの計測間隔を決定する海洋環境計測間隔決定装置であって、
予報対象海域の数値海洋モデルに基づいて海洋環境の時空間データを予報し、前記時空間データを用いて任意の点とその近傍の点との相互相関係数を算出し、前記相互相関係数を基にガウス型相関係数分布を仮定することにより、海域の特徴が現れる長さである相関距離を算出し、前記相関距離の値を前記計測間隔として設定する処理装置と、
前記数値海洋モデル、並びに計算結果である前記時空間データ、前記相互相関係数、及び前記相関距離をそれぞれ蓄積する記憶装置と、
を有する海洋環境計測間隔決定装置。
A marine environment measurement interval determination device that determines a measurement interval of observation data in order to accurately forecast a marine environment,
Forecasting spatio-temporal data of the marine environment based on a numerical ocean model of the forecast target sea area, calculating a cross-correlation coefficient between an arbitrary point and a point in the vicinity thereof using the spatio-temporal data, By assuming a Gaussian correlation coefficient distribution based on, a processing device that calculates a correlation distance that is a length at which a feature of the sea area appears, and sets the value of the correlation distance as the measurement interval,
The numerical ocean model, and a storage device that accumulates the spatio-temporal data as a calculation result, the cross-correlation coefficient, and the correlation distance, respectively.
A marine environment measurement interval determination device having:
海洋環境を精度良く予報するために観測データの計測間隔を決定する海洋環境計測間隔決定装置であって、
予報対象海域の水深、コリオリパラメータ、及び重力加速度に基づいてロスビーの変形半径を算出し、前記ロスビーの変形半径の値を前記計測間隔として設定する処理装置と、
前記海洋の水深、コリオリパラメータ、重力加速度、及び計算結果である前記ロスビーの変形半径をそれぞれ蓄積する記憶装置と、
を有する海洋環境計測間隔決定装置。
A marine environment measurement interval determination device that determines a measurement interval of observation data in order to accurately forecast a marine environment,
A processing device that calculates the deformation radius of Rossby based on the water depth of the forecast target sea area, the Coriolis parameter, and the gravitational acceleration, and sets the value of the deformation radius of the Rossby as the measurement interval,
A storage device for storing the depth of the ocean, the Coriolis parameter, the gravitational acceleration, and the deformation radius of the Rossby, which is the calculation result, respectively,
A marine environment measurement interval determination device having:
海洋環境を精度良く予報するために観測データの計測間隔を決定する海洋環境計測間隔決定装置であって、
予報対象海域の数値海洋モデルに基づいて海洋環境の時空間データを予報し、前記時空間データを用いて任意の点とその近傍の点との相互相関係数を算出し、前記相互相関係数を基にガウス型相関係数分布を仮定することにより、海域の特徴が現れる長さである相関距離を算出し、予報対象海域の水深、コリオリパラメータ、及び重力加速度に基づいてロスビーの変形半径を算出し、前記相関距離と前記ロスビーの変形半径の大小を比較し、その小さい方の値を前記計測間隔として設定する処理装置と、
前記数値海洋モデル、前記海洋の水深、コリオリパラメータ、及び重力加速度、並びに計算結果である前記時空間データ、前記相互相関係数、前記相関距離、及び前記ロスビーの変形半径をそれぞれ蓄積する記憶装置と、
を有する海洋環境計測間隔決定装置。
A marine environment measurement interval determination device that determines a measurement interval of observation data in order to accurately forecast a marine environment,
Forecasting spatio-temporal data of the marine environment based on a numerical ocean model of the forecast target sea area, calculating a cross-correlation coefficient between an arbitrary point and a point in the vicinity thereof using the spatio-temporal data, By assuming a Gaussian correlation coefficient distribution based on, the correlation distance, which is the length at which the characteristics of the sea area appear, is calculated, and the deformation radius of Rossby is calculated based on the water depth, Coriolis parameter, and gravitational acceleration of the forecasted sea area Computing, comparing the correlation distance and the magnitude of the deformation radius of the Rossby, a processing device that sets the smaller value as the measurement interval,
The numerical ocean model, the depth of the ocean, the Coriolis parameter, and the gravitational acceleration, and the spatio-temporal data as a calculation result, the cross-correlation coefficient, the correlation distance, and a storage device for storing the deformation radius of the Rossby, respectively. ,
A marine environment measurement interval determination device having:
海洋環境を精度良く予報するために観測データの計測間隔をコンピュータに決定させるためのプログラムであって、
予め記憶装置に蓄積された予報対象海域の数値海洋モデルに基づいて海洋環境の時空間データを予報させ、
前記時空間データを用いて任意の点とその近傍の点との相互相関係数を算出させ、
前記相互相関係数を基にガウス型相関係数分布を仮定することにより、海域の特徴が現れる長さである相関距離を算出させ、
前記相関距離の値を前記計測間隔として設定させる処理をコンピュータに実行させるためのプログラム。
A program for allowing a computer to determine the measurement interval of observation data in order to accurately forecast the marine environment,
Forecasting spatio-temporal data of the marine environment based on a numerical ocean model of the sea area to be forecast previously stored in the storage device,
Using the spatio-temporal data to calculate a cross-correlation coefficient between an arbitrary point and a point in the vicinity thereof,
By assuming a Gaussian correlation coefficient distribution based on the cross-correlation coefficient, a correlation distance that is a length at which a feature of the sea area appears,
A program for causing a computer to execute a process of setting the value of the correlation distance as the measurement interval.
海洋環境を精度良く予報するために観測データの計測間隔をコンピュータに決定させるためのプログラムであって、
予め記憶装置に蓄積された予報対象海域の水深、コリオリパラメータ、及び重力加速度に基づいてロスビーの変形半径を算出させ、
前記ロスビーの変形半径の値を前記計測間隔として設定させる処理をコンピュータに実行させるためのプログラム。
A program for allowing a computer to determine the measurement interval of observation data in order to accurately forecast the marine environment,
The depth of deformation of the Rossby based on the water depth of the forecast target sea area, the Coriolis parameter, and the gravitational acceleration stored in the storage device in advance,
A program for causing a computer to execute a process of setting a value of a deformation radius of the Rossby as the measurement interval.
海洋環境を精度良く予報するために観測データの計測間隔をコンピュータに決定させるためのプログラムであって、
予め記憶装置に蓄積された予報対象海域の数値海洋モデルに基づいて海洋環境の時空間データを予報させ、
前記時空間データを用いて任意の点とその近傍の点との相互相関係数を算出させ、
前記相互相関係数を基にガウス型相関係数分布を仮定することにより、海域の特徴が現れる長さである相関距離を算出させ、
予め記憶装置に蓄積された予報対象海域の水深、コリオリパラメータ、及び重力加速度に基づいてロスビーの変形半径を算出させ、
前記相関距離と前記ロスビーの変形半径の大小を比較させ、その小さい方の値を前記計測間隔として設定させる処理をコンピュータに実行させるためのプログラム。
A program for allowing a computer to determine the measurement interval of observation data in order to accurately forecast the marine environment,
Forecasting spatio-temporal data of the marine environment based on a numerical ocean model of the sea area to be forecast previously stored in the storage device,
Using the spatio-temporal data to calculate a cross-correlation coefficient between an arbitrary point and a point in the vicinity thereof,
By assuming a Gaussian correlation coefficient distribution based on the cross-correlation coefficient, a correlation distance that is a length at which a feature of the sea area appears,
The depth of deformation of the Rossby based on the water depth of the forecast target sea area, the Coriolis parameter, and the gravitational acceleration stored in the storage device in advance,
A program for causing a computer to execute a process of comparing the correlation distance with the magnitude of the deformation radius of the Rossby and setting the smaller value as the measurement interval.
JP2002181373A 2002-06-21 2002-06-21 Marine environment measurement interval determination method and apparatus Expired - Fee Related JP4168235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181373A JP4168235B2 (en) 2002-06-21 2002-06-21 Marine environment measurement interval determination method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181373A JP4168235B2 (en) 2002-06-21 2002-06-21 Marine environment measurement interval determination method and apparatus

Publications (2)

Publication Number Publication Date
JP2004028616A true JP2004028616A (en) 2004-01-29
JP4168235B2 JP4168235B2 (en) 2008-10-22

Family

ID=31178229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181373A Expired - Fee Related JP4168235B2 (en) 2002-06-21 2002-06-21 Marine environment measurement interval determination method and apparatus

Country Status (1)

Country Link
JP (1) JP4168235B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321269A (en) * 2004-05-07 2005-11-17 Nec Corp Ocean model steady state determination method, ocean model steady state determination device and its program
JP2009058295A (en) * 2007-08-30 2009-03-19 Chugoku Electric Power Co Inc:The System, method and program for predicting wind situation
JP2012159344A (en) * 2011-01-31 2012-08-23 Mitsubishi Electric Corp Calculation device
CN106597575A (en) * 2016-11-14 2017-04-26 中国环境科学研究院 Precipitation spatial interpolation method based on cross validation and two-dimensional Gaussian distribution weighting
KR20180104234A (en) * 2017-03-10 2018-09-20 포항공과대학교 산학협력단 Method for mathematical formulation of current velocity profile by probabilistic assessment
CN110598860A (en) * 2019-08-06 2019-12-20 山东省科学院海洋仪器仪表研究所 Multi-station online wave cycle data prediction diagnosis method
KR102156107B1 (en) * 2020-01-10 2020-09-15 서울대학교산학협력단 A method of predicting changes on primary production of marine ecosystem during offshore sand mining and a computer readable medium thereof
CN112834577A (en) * 2019-11-22 2021-05-25 中国船舶重工集团公司第七六研究所 Correlation method for judging marine environment magnetic field and seawater conductivity
CN116644608A (en) * 2023-06-14 2023-08-25 青岛哈尔滨工程大学创新发展中心 Real sea area ship motion forecasting method and system based on marine environment data
CN117706045A (en) * 2024-02-06 2024-03-15 四川省德阳生态环境监测中心站 Combined control method and system for realizing atmospheric ozone monitoring equipment based on Internet of things

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321269A (en) * 2004-05-07 2005-11-17 Nec Corp Ocean model steady state determination method, ocean model steady state determination device and its program
JP4525163B2 (en) * 2004-05-07 2010-08-18 日本電気株式会社 Ocean model steady state determination method, ocean model steady state determination device and program thereof
JP2009058295A (en) * 2007-08-30 2009-03-19 Chugoku Electric Power Co Inc:The System, method and program for predicting wind situation
JP2012159344A (en) * 2011-01-31 2012-08-23 Mitsubishi Electric Corp Calculation device
CN106597575A (en) * 2016-11-14 2017-04-26 中国环境科学研究院 Precipitation spatial interpolation method based on cross validation and two-dimensional Gaussian distribution weighting
KR20180104234A (en) * 2017-03-10 2018-09-20 포항공과대학교 산학협력단 Method for mathematical formulation of current velocity profile by probabilistic assessment
KR101951098B1 (en) 2017-03-10 2019-04-30 포항공과대학교 산학협력단 Method for mathematical formulation of current velocity profile by probabilistic assessment
CN110598860B (en) * 2019-08-06 2023-02-24 山东省科学院海洋仪器仪表研究所 Multi-station online wave cycle data prediction diagnosis method
CN110598860A (en) * 2019-08-06 2019-12-20 山东省科学院海洋仪器仪表研究所 Multi-station online wave cycle data prediction diagnosis method
CN112834577A (en) * 2019-11-22 2021-05-25 中国船舶重工集团公司第七六研究所 Correlation method for judging marine environment magnetic field and seawater conductivity
CN112834577B (en) * 2019-11-22 2022-12-02 中国船舶重工集团公司第七六研究所 Correlation method for judging marine environment magnetic field and seawater conductivity
KR102156107B1 (en) * 2020-01-10 2020-09-15 서울대학교산학협력단 A method of predicting changes on primary production of marine ecosystem during offshore sand mining and a computer readable medium thereof
WO2021141310A1 (en) * 2020-01-10 2021-07-15 서울대학교 산학협력단 Method and computer-readable recording medium for predicting changes in amount of primary production of marine ecosystem during sea sand mining
CN116644608A (en) * 2023-06-14 2023-08-25 青岛哈尔滨工程大学创新发展中心 Real sea area ship motion forecasting method and system based on marine environment data
CN116644608B (en) * 2023-06-14 2023-12-19 青岛哈尔滨工程大学创新发展中心 Real sea area ship motion forecasting method and system based on marine environment data
CN117706045A (en) * 2024-02-06 2024-03-15 四川省德阳生态环境监测中心站 Combined control method and system for realizing atmospheric ozone monitoring equipment based on Internet of things
CN117706045B (en) * 2024-02-06 2024-05-10 四川省德阳生态环境监测中心站 Combined control method and system for realizing atmospheric ozone monitoring equipment based on Internet of things

Also Published As

Publication number Publication date
JP4168235B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
Cummings et al. Variational data assimilation for the global ocean
Shen et al. Broadening the use of machine learning in hydrology
Zadra et al. The next Canadian regional climate model
Haley Jr et al. Forecasting and reanalysis in the Monterey Bay/California current region for the autonomous ocean sampling network-II experiment
JP4431545B2 (en) Inundation simulation device and program
Samui Application of least square support vector machine (LSSVM) for determination of evaporation losses in reservoirs
JP4998039B2 (en) Observation data assimilation method
Aijaz et al. Wave spectral response to sudden changes in wind direction in finite-depth waters
JP2004028616A (en) Marine environment measuring interval determination method and device
JP5433913B2 (en) Wave prediction system
JP6949644B2 (en) Wind environment learning device, wind environment evaluation system, wind environment learning method and wind environment evaluation method
KR20160060793A (en) Typhoon surge automatic forecasting method using active data collection type script and numerical model
KR20200119732A (en) Method and device for generating high-resolution ocean data
Han et al. Numerical simulation for run-out extent of debris flows using an improved cellular automaton model
Iafrati et al. Modeling of ocean–atmosphere interaction phenomena during the breaking of modulated wave trains
Neal et al. Adaptive space–time sampling with wireless sensor nodes for flood forecasting
Renard et al. Change of support: an inter-disciplinary challenge
JP2024067277A (en) Water level measurement device, water level measurement method, and program
JP4525163B2 (en) Ocean model steady state determination method, ocean model steady state determination device and program thereof
Sannasiraj et al. Wave data assimilation using ensemble error covariances for operational wave forecast
Heyns et al. Terrain visibility-dependent facility location through fast dynamic step-distance viewshed estimation within a raster environment
KR101513592B1 (en) System for providing tidal current diagram with monitoring long period wave
Mercatini et al. Estimating surface velocities from satellite data and numerical models: Implementation and testing of a new simple method
Copeland et al. Current data assimilation modelling for oil spill contingency planning
CN116823891B (en) Method and system for tracking twin hyperspectral image based on attention and knowledge distillation

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees