JP2004028465A - Inspecting/repairing method of waste treatment facility - Google Patents

Inspecting/repairing method of waste treatment facility Download PDF

Info

Publication number
JP2004028465A
JP2004028465A JP2002186420A JP2002186420A JP2004028465A JP 2004028465 A JP2004028465 A JP 2004028465A JP 2002186420 A JP2002186420 A JP 2002186420A JP 2002186420 A JP2002186420 A JP 2002186420A JP 2004028465 A JP2004028465 A JP 2004028465A
Authority
JP
Japan
Prior art keywords
waste
inspection
treatment facility
carbide
repair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002186420A
Other languages
Japanese (ja)
Inventor
Yasuyuki Yamaguchi
山口 安幸
Masayasu Fukui
福井 雅康
Ryoichi Nagata
永田 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2002186420A priority Critical patent/JP2004028465A/en
Publication of JP2004028465A publication Critical patent/JP2004028465A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/007Screw type gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of speedily and certainly stopping combustion generated by smoldering or incomplete combustion gas and terminating inspection/repairing of a waste treatment facility without causing environmental pollution in a short period. <P>SOLUTION: The waste treatment facility mainly comprising a waste compressor, a heating furnace of the compressed waste, a high temperature reactor, and a rapid cooling tower and a homogenizing furnace included in the high temperature reactor is inspected or repaired. In the inspection/repairing method of the waste treatment facility, the waste and the compressed waste in the heating furnace is firstly substituted by carbide prior to the inspection or the repairing, the treatment facility is then stopped, and the treatment facility is inspected or repaired. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物を溶融、ガス化処理する廃棄物処理設備において、一定の期間毎に行われる点検・修理を、環境への配慮の下で迅速に開始させるための点検・修理の方法に関するものである。
【0002】
【従来の技術】
現在、産業廃棄物あるいは一般廃棄物の多くは、発生したままの姿で、あるいは何らかの事前処理を施した上、焼却による減容化処理の後に埋立てなどの最終処分を行うのが普通である。このような廃棄物処理の方法としては、種々の方法が挙げられるが、近年、焼却場における発生ガス中のダイオキシンなど有害物質の管理が問題となっていることから、こうした有害物を無害化した上で処理できる方法が検討対象となっている。
【0003】
このような廃棄物処理方法としては、特開2001−132920号公報、特開2001−205244号公報、特開2001−259600号公報、特開2001−276790号公報あるいは特開2001−289412号公報などに開示された、高温処理可能な廃棄物処理プロセスがある。これらの処理方法は、廃棄物を圧縮成形後、乾燥し、熱分解させて、炭化することにより炭化物を生成させ、次いで、溶融し、ガス化する処理プロセスである。
【0004】
図1は、こうした廃棄物処理設備の一例を示す設備側断面図である。図示の1は、廃棄物を回分的(バッチ的)に加圧、圧縮する圧縮装置、2はその圧縮用ピストン、3は圧縮支持盤、4は圧縮された廃棄物(圧縮成形物)を乾燥し、乾留し、そして炭化するための乾留・炭化機能をもつトンネル式加熱炉(以下、単に「加熱炉」という)であり、そのうち4aは圧縮成形物の乾燥領域、4bは圧縮成形物の乾留領域、4eは加熱炉4の加熱帯の入口、4fはトンネル式加熱炉4の加熱帯の出口、5は高温反応炉、6は加熱炉内に配置された高温ガスが流通する加熱用パイプ、7はガス昇温装置、10は圧縮廃棄物(圧縮成形物)、11は乾留した乾留生成物、12は乾留生成物と燃焼残渣の混合物、13a,13bは酸素含有ガスの吹込み口、14は溶融物、14Hは溶融物排出口、20は廃棄物投入用ホッパー、22は加熱炉4の乾留生成物の押出し口(高温反応炉5内への乾留生成物の装入口)、30は高温反応炉5から排出される高温反応炉発生ガスの急冷装置、31はガス精製装置、33は精製ガスである。なお、急冷装置30には急冷する水および急冷した水の水処理装置(図示せず)などが接続されており、溶融物排出口14H端は水封装置34が設けられている。
【0005】
このような廃棄物処理設備の点検あるいは修理に当たっては、まず、酸素含有ガスの供給を停止し、次いで、設備内各装置の停止を行っている。しかし、もともとこの設備は大型であり、しかも高温下で運転されているため、設備の運転停止後も高温状態である。そのため、高温反応炉5内に滞留している乾留生成物11からは燻りによる、燃焼・不完全燃焼のガスが多量に発生しているので、該廃棄物処理設備の点検あるいは修理は、このガスの沈静化を待って開始することとしており、この作業に時間がかかるという問題があった。
【0006】
そこで、従来、このような問題を回避すべく、加熱炉4の押出し口22に高温反応炉5の対向する壁面に常時は気密下に閉鎖されている開口5aを設け、この開口5aから前記押出し口22に臨んで露出している乾留生成物11のその露出面に対し、不定形耐火物を吹付けてこれを覆うことで、露出した乾留生成物から発生している前記の燃焼・不完全燃焼ガスの迅速な停止(燃焼の遮断)を行い、このことによって点検・修理開始の時間を早めるという方法をとっていた。しかしながら、この方法についても、前記開口5aの開放に長時間を要すること、および押出し口22部の乾留生成物11露出面への不定形耐火物の吹付けは、炉内が高温(運転中は炉内に酸素が吹込まれ、乾留生成物11を燃焼させているため、2000℃近傍の運転温度である)であることから、高熱作業であり、かつ熟練を要するという課題を残していた。
【0007】
また、廃棄物処理設備の反応ガスの処理設備は、大気への漏れのない水封構造の下に管理されており、点検・修理の際にその水封を解除して、大気開放下で始めて、下流装置の点検あるいは修理が可能になるため、炉内で乾留生成物11の露出面から前記ガスが発生している期間は、その発生ガスが下流装置に流れるために、下流装置の点検・修理が不可能であるという点についても、解決が必要な課題となっていた。
【0008】
【発明が解決しようとする課題】
本発明は、廃棄物処理設備の点検あるいは修理に当たっての、従来技術が抱えている上述した課題を解決すること、すなわち、燻りにより発生する燃焼あるいは不完全燃焼ガスの停止を迅速かつ安全に実現して、廃棄物処理設備の点検・修理を環境汚染を招くことなく短期間で終了させることのできる方法を提案することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を実現する方法として、本発明は、廃棄物の圧縮装置、圧縮廃棄物の加熱炉、高温反応炉およびこの高温反応炉に付帯して設けられた急速冷却塔ならびに均質化炉から主としてなる廃棄物処理設備の点検・修理に当たり、その点検・修理に先立ち、前記加熱炉内にある廃棄物・圧縮廃棄物をまず炭化物で置換し、その後、当該処理設備の停止を行ってから前記点検や修理を行うようにしたことを特徴とする廃棄物処理設備の点検・修理方法を提案する。
なお、上記の本発明方法において、前記炭化物として、ごみ固形燃料(RDF)を酸素含有量1%以下の雰囲気下で、500 ℃以上の温度で乾留して得られる炭素質粒子を用いることが好ましい。
【0010】
以上説明した本発明方法を採用すると、廃棄物処理設備の点検あるいは修理の際に、設備の運転停止の前に、加熱炉内圧縮成形物が高温反応炉内に押し出される乾留生成物を、炭化物、たとえば高温の低酸素雰囲気下で予め炭化させた炭化物、と置換するために、問題の根源となる前記燻り現象を抑えることができ、このことによって、前記燃焼、不完全燃焼ガスの発生を効果的に阻止することができる。なお、この方法において、予め炭化させた炭化物というのは、点検・修理後の運転開始に当たっては、主成分が炭素であることから燃料ともなるので、速やかな運転再開に寄与でき好都合である。
【0011】
本発明において、予め炭化させた炭化物の装入、置換の領域は、圧縮成形物を加熱し、乾燥し、熱分解し、炭化しながら乾燥によって発生したガスを抜き出すまでの工程、すなわち、圧縮成形物の乾燥領域(≦300 ℃)4aおよび圧縮成形物の乾留領域(400 〜 500 ℃)4bとする。少なくともこの部分の領域が炭化物で置換されていれば、たとえ前記押出し口22に炭化物が露出していたとしても、前記ガスの発生がなく、圧縮成形物の乾燥領域および圧縮成形物の乾留領域で加えられる残余の熱によってもガスが発生するようなことはなくなる。
【0012】
なお、以上の説明からわかるように、本発明において用いる予め炭化させた炭化物とは、低酸素雰囲気(≦1%)、高温(乾留温度500 ℃以上)で炭化処理された炭化物を意味しており、このような処理を経て製造された炭化物は、高温下におかれても前記ガスが発生するようなことはない。こうした炭化物としては、とくに、特開2000−109935号公報、特開2001−269681号公報、特開2002−35729号公報に開示されているような、ごみ固形燃料(RDF、WDF)を、上記処理条件で乾留し炭化して得られた、後述する完全な炭化物を用いることが好ましい。
【0013】
【発明の実施の形態】
図1は、本発明方法の実施対象となる廃棄物を溶融、ガス化処理する廃棄物処理設備の一例を示す図である。この図において、廃棄物処理設備の点検・修理のための停止に先立ち、廃棄物を溶融、ガス化処理する廃棄物処理設備の廃棄物投入用ホッパー20からは、上述した炭化物が装入される。装入された炭化物は、圧縮用ピストン2により圧縮され、その圧縮成形物10は、加熱炉4内を図中右方に順次に移動する。このような操作が繰返されることにより、すでに先行して装入されていた乾留生成物(廃棄物)は図中右方の高温反応炉5側に送り込まれる。
【0014】
本発明では、設備の停止の前に、前記圧縮装置1と加熱炉4、とくに圧縮成形物10を加熱乾燥し、熱分解して乾留すると同時に、この間に発生したガスを抜き出す工程、すなわち該圧縮成形物10の乾燥領域4aおよび圧縮成形物10の乾留領域4bの部分が、前記炭化物にて置換できればよい。とくに、前記乾留成形物11に加熱を加える領域が炭化物によって置換が終われば、高温反応炉5の押出し口22にたとえ炭化物が露出していても、上述したガスの発生はなく、圧縮成形物の乾燥領域および乾留領域で加えられる残余の熱があったとしても、不完全燃焼などのガス発生をなくすことができる。
【0015】
そして、もし圧縮成形物の乾燥領域4aおよび乾留領域4bでの置換が終われば、いわゆる点検・修理後の運転再開に伴なう準備として、その炭化物に代えて廃棄物の装入を行ってもよい。
【0016】
上述したとおり、圧縮成形物と置換する予め炭化させた炭化物としては、上述したように、酸素を1%以下含有する温度500 ℃以上の雰囲気中で炭化したものがよい。低酸素、高温雰囲気中で製造されたこのような炭化物というのは、たとえその後に高温下におかれたとしも、前記ガスの発生はない。こうした炭化物としては、木炭、竹炭、あるいはモミガラなどの炭化物等が使用できるが、特に、ごみ固形燃料(RDF)を乾留し、炭化して得られる炭素質粒状物(炭化物)が安価で好適である。ごみ固形燃料からの炭化物の製造工程の一例あげると以下のとおりである。
【0017】
前記ごみ固形燃料からの炭化物とは、次のようなものを言う、都市ごみ、家庭ごみ、産業廃棄物、一般廃棄物、シュレッダーダスト(家電製品、自動車部品などの破砕品)などのごみは、破袋、異物分別、磁選によってガラス、陶磁器類、金属類を除去し、このようにして得られた可燃物を主体とするごみを、破砕もしくは粉砕し、ごみ固形燃料の炭化工程におけるボイラからの蒸気を熱源として乾燥する。乾燥後のごみは再度破砕もしくは粉砕した後、脱塩素剤、水分除去剤、固化剤として使用される石灰、消石灰などを必要に応じて添加した後、成形し、例えば外形がクレヨン状(φ15〜20 mm)のごみ固形燃料(RDF)が製造される。本発明において用いる炭化物とするには、上記ごみ固形燃料を、さらに上記雰囲気下で乾留炭化することにより、ごみ固形燃料の炭化物が得られる。
【0018】
以上の説明から理解できるように、圧縮成形物を加熱炉4内に順次に送り込んで加熱し、乾燥し、熱分解し、乾留しながら炭化させると同時に、この処理時のとくに乾燥工程で発生したガスを抜き出す工程を含む設備中に存在する廃棄物と、予め炭化させた前記炭化物とを置換することにより、ガスの発生がなくなるのである。
【0019】
なお、廃棄物の圧縮成形物もまた、従来の加熱炉によって、乾燥し、熱分解し、乾留しながら、この過程で発生したガスを抜き出す工程において、一応の炭化は受けるが、加熱炉4の圧縮成形物を乾燥し、乾留し、炭化するための高温ガスとの熱交換を行う隔壁は、熱効率を上げるため熱伝導率の良い金属板で形成されているため高温での処理ができず、この工程では圧縮成形物の温度履歴が低く、十分な炭化が進まない他、この廃棄物は圧縮されているため内部までの完全な炭化は困難である。つまり、従来技術の場合、高温反応炉で酸素を吹込み燃焼させているため、廃棄物を溶融、ガス化処理する廃棄物処理設備では、本発明で求めているような炭化物とする必要はなかった。
【0020】
【実施例】
(比較例)
廃棄物を溶融、ガス化処理する廃棄物処理設備(廃棄物処理能力300 t/日)を1ケ月運転した後、定期検査のため停止した。押出し口22からガスが発生しており(押出し口22に達している廃棄物先端部分の燃焼により)、燃焼部分を高温反応炉内に送り込んでも、新たに押出し口22に達した廃棄物からのガス発生は停止できなかった。そのため、高温反応炉5に設けた開口5aの開口準備にはいり、開口後、該開口5aより、不定形耐火物吹付けようランスパイプを挿入して、押出し口22と開口内の廃棄物表面に不定形耐火物を吹付け、表面を被覆し、ガス発生を阻止した。検査が開始可能になった時期は、運転停止から1日経過後であった。
【0021】
(実施例1)
運転停止に先立ち、ごみ固形燃料を炭化して得た炭化物を、廃棄物(圧縮成形物10)を溶融、ガス化処理する廃棄物処理設備に装入する炭化物として選定し、5t準備した。
廃棄物処理設備の運転に合わせて、廃棄物装入口から前記炭化物の装入を開始し、圧縮成形物の乾燥領域4aおよび圧縮成形物の乾留領域4bである、高さ600 mm×幅1300 mm×長さ6000 mmの領域を充填できる充填量を超えた段階で、炭化物装入を停止した。その後、炭化物から廃棄物の装入に切替え、廃棄物処理設備の運転に合わせて、廃棄物装入を開始し、押出し口22から装入済廃棄物が高温反応炉内に達した段階で装入を停止し、廃棄物を溶融、ガス化処理する廃棄物処理設備(廃棄物処理能力300 t/日)の運転を停止した。停止直後からガス発生はなく、点検を開始した。
【0022】
(実施例2)
運転停止に先立ち、ごみ固形燃料を炭化して得た炭化物を、廃棄物を溶融、ガス化処理する廃棄物処理設備に予め装入する炭化物として選定し、7t準備した。
廃棄物装入口から前記炭化物の装入を開始し、廃棄物を順次高温反応炉に送り込み、廃棄物処理の促進を図った。押出し口22の排出端に装入炭化物が達した段階で炭化物装入を停止し、廃棄物を溶融、ガス化処理する廃棄物処理設備(廃棄物処理能力300 t/日)の運転を停止した。停止直後からガス発生はなく、点検を開始した。
【0023】
【発明の効果】
以上説明したように、本発明によれば、廃棄物を溶融、ガス化処理する廃棄物処理設備の点検あるいは修理のための設備停止に当たり、とくに従来の高温反応炉で生じていた問題を、廃棄物の圧縮成形物の乾燥領域および圧縮成形物の乾留領域を予め炭化した炭化物で置換して停止するようにしたので、燻り現象によるガス発生がなくなり、設備停止後の速やかな点検あるいは修理開始を可能とすると共に、環境上の配慮もでき、工業上頗る有益である。
【図面の簡単な説明】
【図1】廃棄物を溶融・ガス化処理するための廃棄物処理設備の略線図である。
【符号の説明】
1 圧縮装置
2 圧縮用ピストン
3 圧縮支持盤
4 加熱炉
4a 圧縮成形物の乾燥領域
4b 圧縮成形物の乾留領域
4e 加熱炉の加熱帯の入口
4f 加熱炉の加熱帯の出口
5 高温反応炉
5a 開口
6 加熱用パイプ
7 ガス昇温装置
10 圧縮廃棄物(圧縮成形物)
11 乾留生成物
12 乾留生成物と燃焼残渣の混合物
13a,13b 吹込み口
14 溶融物
14H 溶融物排出口
20 廃棄物投入用ホッパー
22 押出し口
30 急冷装置
31 ガス精製装置
33 精製ガス
34 水封装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inspection and repair method for starting inspection and repair performed at regular intervals in a waste treatment facility for melting and gasifying waste, with due consideration for the environment. Things.
[0002]
[Prior art]
At present, most industrial and general wastes are usually disposed of as they are, or after some kind of pre-treatment, after volume reduction by incineration, landfill or other final disposal. . Various methods can be cited as such a waste disposal method. In recent years, however, since the management of harmful substances such as dioxin in generated gas in incineration plants has become a problem, these harmful substances have been detoxified. Methods that can be processed above are under consideration.
[0003]
Examples of such a waste disposal method include JP-A-2001-132920, JP-A-2001-205244, JP-A-2001-259600, JP-A-2001-276790, and JP-A-2001-289412. , There is a waste treatment process capable of high temperature treatment. These treatment methods are treatment processes in which a waste is compression-molded, dried, thermally decomposed, carbonized to produce a carbide, and then melted and gasified.
[0004]
FIG. 1 is an equipment side sectional view showing an example of such a waste treatment equipment. 1 is a compression device for pressurizing and compressing waste in a batch (batch) manner, 2 is a compression piston, 3 is a compression support plate, and 4 is a device for drying compressed waste (compression molded product). A tunnel-type heating furnace (hereinafter simply referred to as a "heating furnace") having a carbonization / carbonization function for carbonizing and carbonizing, of which 4a is a dry region of a compression molded product and 4b is a carbonization of a compression molded product. The area, 4e is the entrance of the heating zone of the heating furnace 4, 4f is the exit of the heating zone of the tunnel heating furnace 4, 5 is a high-temperature reactor, 6 is a heating pipe through which a high-temperature gas arranged in the heating furnace flows, 7 is a gas heating device, 10 is a compressed waste (compression molded product), 11 is a dry-distilled product, 12 is a mixture of a dry-distilled product and a combustion residue, 13a and 13b are oxygen-containing gas blowing ports, 14 Is a melt, 14H is a melt outlet, and 20 is a waste input hopper. Reference numeral 22 denotes an outlet for the dry distillation product of the heating furnace 4 (a charging port for the dry distillation product into the high-temperature reactor 5), 30 denotes a quenching device for the high-temperature reactor generated gas discharged from the high-temperature reactor 5, 31 Is a gas purification device, and 33 is a purified gas. The quenching device 30 is connected to a water treatment device (not shown) for quenching water and quenched water, and a water sealing device 34 is provided at the end of the melt outlet 14H.
[0005]
In checking or repairing such a waste treatment facility, first, the supply of the oxygen-containing gas is stopped, and then each device in the facility is stopped. However, since the equipment is originally large and operated at a high temperature, it is still in a high temperature state even after the operation of the equipment is stopped. Because of this, a large amount of combustion / incomplete combustion gas is generated from the dry distillation product 11 stagnating in the high temperature reactor 5 due to smoking. The process is started after waiting for the calming down, and there is a problem that this work takes time.
[0006]
Therefore, conventionally, in order to avoid such a problem, an opening 5a, which is always airtightly closed, is provided on the opposite wall of the high-temperature reactor 5 at the extrusion port 22 of the heating furnace 4, and the extrusion 5 By spraying an amorphous refractory on the exposed surface of the dry distillation product 11 exposed to the opening 22 to cover the exposed surface, the combustion / incompleteness generated from the exposed dry distillation product is obtained. In this method, the combustion gas is quickly stopped (combustion is shut off), thereby shortening the time for starting inspection and repair. However, also in this method, it takes a long time to open the opening 5a, and the blowing of the amorphous refractory onto the exposed surface of the dry distillation product 11 at the extruding port 22 requires a high temperature inside the furnace (during operation). Since oxygen is blown into the furnace to burn the carbonized product 11, the operating temperature is around 2000 ° C.), which leaves a problem that the operation is a high heat operation and requires skill.
[0007]
In addition, the reaction gas treatment equipment of the waste treatment equipment is managed under a water seal structure that does not leak to the atmosphere. In addition, during the period when the gas is generated from the exposed surface of the carbonized product 11 in the furnace, the generated gas flows to the downstream device, so that the downstream device can be inspected or repaired. The fact that repair is impossible was another issue that needed to be resolved.
[0008]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art when inspecting or repairing waste treatment equipment, that is, quickly and safely realizes the stoppage of combustion or incomplete combustion gas generated by smoking. It is another object of the present invention to propose a method capable of terminating inspection and repair of a waste disposal facility in a short time without causing environmental pollution.
[0009]
[Means for Solving the Problems]
As a method for realizing the above object, the present invention mainly comprises a waste compression apparatus, a compressed waste heating furnace, a high-temperature reactor, and a rapid cooling tower and a homogenization furnace attached to the high-temperature reactor. Prior to the inspection / repair of the waste treatment facility, prior to the inspection / repair, the waste / compressed waste in the heating furnace is first replaced with carbide, and then the treatment facility is stopped, and then the inspection / repair is performed. We propose a method of checking and repairing waste treatment equipment, which is characterized by performing repairs.
In the method of the present invention, it is preferable to use, as the carbide, carbonaceous particles obtained by dry-distilling refuse solid fuel (RDF) at a temperature of 500 ° C. or more in an atmosphere having an oxygen content of 1% or less. .
[0010]
When the method of the present invention described above is adopted, during inspection or repair of a waste treatment facility, before the operation of the facility is stopped, the dry distillation product from which the compression molded product in the heating furnace is extruded into the high-temperature reactor is converted into a carbide. For example, in order to replace with a carbide previously carbonized in a high-temperature low-oxygen atmosphere, it is possible to suppress the above-mentioned smoldering phenomenon which is a source of the problem. Can be prevented. In this method, the carbide that has been carbonized in advance is convenient because it can be used as fuel because the main component is carbon at the start of operation after inspection and repair, so that it can contribute to prompt restart of operation.
[0011]
In the present invention, the area of charging and replacing the carbide previously carbonized is a step of heating, drying, pyrolyzing the compression molded product, extracting the gas generated by drying while carbonizing, that is, compression molding. The dry region (≦ 300 ° C.) 4a of the product and the dry distillation region (400-500 ° C.) 4b of the compression-molded product. If at least this part of the region is replaced with carbide, even if the carbide is exposed at the extrusion port 22, there is no generation of the gas, and the dry region of the compression molded product and the dry distillation region of the compression molded product. No gas is generated by the residual heat added.
[0012]
As can be seen from the above description, the pre-carbonized carbide used in the present invention means a carbide that has been carbonized in a low-oxygen atmosphere (≦ 1%) and at a high temperature (500 ° C. or higher in dry distillation temperature). However, the carbide produced through such a treatment does not generate the gas even when subjected to high temperatures. As such carbides, in particular, refuse solid fuels (RDF, WDF) as disclosed in JP-A-2000-109935, JP-A-2001-269681, and JP-A-2002-35729 are subjected to the above treatment. It is preferable to use a complete carbide, which will be described later, obtained by dry distillation and carbonizing under the conditions.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a diagram showing an example of a waste treatment facility for melting and gasifying waste to be subjected to the method of the present invention. In this figure, prior to stopping for inspection and repair of the waste treatment equipment, the above-mentioned carbide is charged from the waste input hopper 20 of the waste treatment equipment for melting and gasifying the waste. . The charged carbide is compressed by the compression piston 2, and the compression molded product 10 sequentially moves to the right in the drawing in the heating furnace 4. By repeating such an operation, the dry distillation product (waste) already charged earlier is sent to the high-temperature reactor 5 on the right side in the figure.
[0014]
In the present invention, before the equipment is stopped, the compression device 1 and the heating furnace 4, particularly, the compression-molded product 10 are heated and dried, pyrolyzed and carbonized, and at the same time, the gas generated during the process is extracted. It is only required that the dry region 4a of the molded product 10 and the dry distillation region 4b of the compression molded product 10 can be replaced by the carbide. In particular, if the region where heating is applied to the dry-distilled molded product 11 is replaced with carbide, even if the carbide is exposed at the extrusion port 22 of the high-temperature reactor 5, the above-mentioned gas is not generated, and the compression-molded product is not produced. Even if there is residual heat applied in the drying zone and the carbonization zone, gas generation such as incomplete combustion can be eliminated.
[0015]
If the replacement of the compression-molded product in the dry area 4a and the dry distillation area 4b is completed, waste may be charged instead of the carbide in preparation for resuming operation after so-called inspection and repair. Good.
[0016]
As described above, as the carbonized in advance to be replaced with the compression-molded product, as described above, carbonized in an atmosphere containing 1% or less of oxygen and at a temperature of 500 ° C. or more is preferable. Such carbides produced in a low oxygen, high temperature atmosphere do not generate the gas, even if subsequently exposed to high temperatures. As such carbides, charcoal such as charcoal, bamboo charcoal, and peach can be used. In particular, carbonaceous particulate matter (carbide) obtained by carbonizing and carbonizing refuse solid fuel (RDF) is inexpensive and suitable. . An example of a process for producing a carbide from refuse solid fuel is as follows.
[0017]
The garbage from the garbage solid fuel refers to the following: garbage such as municipal garbage, household garbage, industrial waste, municipal waste, shredder dust (crushed products such as home appliances and automobile parts), Glass, ceramics, and metals are removed by bag breaking, foreign matter separation, and magnetic separation, and the refuse mainly composed of combustibles thus obtained is crushed or pulverized. Dry using steam as heat source. After the dried refuse is crushed or crushed again, lime used as a dechlorinating agent, a water removing agent, and a solidifying agent, slaked lime and the like are added as necessary, and then molded. 20 mm) of waste solid fuel (RDF) is produced. In order to make the carbonized material used in the present invention, the solid waste fuel is carbonized by dry distillation under the above atmosphere to obtain the solid waste fuel.
[0018]
As can be understood from the above description, the compression-molded products are sequentially fed into the heating furnace 4, heated, dried, thermally decomposed, and carbonized while being carbonized. By replacing the waste present in the facility including the step of extracting gas with the previously carbonized carbide, generation of gas is eliminated.
[0019]
Incidentally, the compression molded product of the waste is also dried, thermally decomposed, and carbonized by a conventional heating furnace. The partition wall that performs heat exchange with a high-temperature gas for drying, carbonizing, and carbonizing the compression-molded product cannot be processed at a high temperature because it is formed of a metal plate having a high thermal conductivity to increase thermal efficiency. In this step, the temperature history of the compression-molded product is low and sufficient carbonization does not proceed. Further, since this waste is compressed, it is difficult to completely carbonize the inside. In other words, in the case of the prior art, since oxygen is blown and burned in a high-temperature reactor, the waste is not required to be a carbide as required in the present invention in a waste treatment facility for melting and gasifying waste. Was.
[0020]
【Example】
(Comparative example)
After operating a waste treatment facility (waste treatment capacity 300 t / day) for melting and gasifying waste for one month, it was stopped for periodic inspection. Gas is generated from the outlet 22 (due to the combustion of the waste tip reaching the outlet 22), and even if the burned portion is fed into the high-temperature reactor, the waste from the waste newly reaching the outlet 22 is discharged. Gas generation could not be stopped. For this reason, the preparation for opening the opening 5a provided in the high-temperature reactor 5 is started, and after the opening, a lance pipe is inserted through the opening 5a so as to spray an irregular-shaped refractory, so that the extrusion port 22 and the surface of the waste in the opening are formed. Amorphous refractories were sprayed to cover the surface and prevent gas generation. The time when the inspection could be started was one day after the operation was stopped.
[0021]
(Example 1)
Prior to the shutdown, a carbide obtained by carbonizing the refuse solid fuel was selected as a carbide to be charged into a waste treatment facility for melting and gasifying waste (compression molded product 10) and preparing 5 tons.
In accordance with the operation of the waste treatment facility, charging of the carbide is started from the waste charging inlet, and the drying area 4a of the compression molded product and the dry distillation area 4b of the compression molded product are 600 mm in height and 1300 mm in width. X Charging was stopped at the stage where the amount of filling that could fill the region of length 6000 mm was exceeded. After that, the operation is switched from the carbide to the charging of the waste, the charging of the waste is started in accordance with the operation of the waste treatment equipment, and the charging is performed when the charged waste reaches the high-temperature reactor from the outlet 22. The operation of waste treatment equipment (waste treatment capacity 300 t / day) for melting and gasifying waste was stopped. Immediately after the stop, no gas was generated, and inspection was started.
[0022]
(Example 2)
Prior to the operation stoppage, a carbide obtained by carbonizing the refuse solid fuel was selected as a carbide to be charged in advance to a waste treatment facility for melting and gasifying waste, and prepared for 7 tons.
The loading of the carbide was started from a waste loading inlet, and the waste was sequentially sent to a high-temperature reactor to promote waste processing. At the stage where the charged carbide reached the discharge end of the extrusion port 22, the charging of the carbide was stopped, and the operation of the waste treatment facility (waste treatment capacity 300 t / day) for melting and gasifying the waste was stopped. . Immediately after the stop, no gas was generated, and inspection was started.
[0023]
【The invention's effect】
As described above, according to the present invention, when the facility for inspecting or repairing the waste treatment facility for melting and gasifying waste is shut down, the problem that has occurred in the conventional high-temperature reactor has been eliminated. The dry region of the compression molded product and the dry distillation region of the compression molded product are replaced with carbides that have been carbonized beforehand and stopped, so that gas generation due to the smoldering phenomenon is eliminated, and prompt inspection or repair after equipment stoppage is required. As much as possible, it is also environmentally friendly and extremely industrially beneficial.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a waste treatment facility for melting and gasifying waste.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Compression piston 3 Compression support board 4 Heating furnace 4a Drying area 4b of compression moldings Drying area 4e of compression moldings Inlet 4f of heating zone of heating furnace Outlet of heating zone of heating furnace 5 High temperature reactor 5a Opening 6 Heating pipe 7 Gas heating device 10 Compressed waste (compressed product)
DESCRIPTION OF SYMBOLS 11 Dry-distilled product 12 Mixture 13a, 13b of dry-distilled product and combustion residue 13 Injection port 14 Melt 14H Melt outlet 20 Waste hopper 22 Extrusion port 30 Rapid cooling device 31 Gas purification device 33 Purified gas 34 Water sealing device

Claims (2)

廃棄物の圧縮装置、圧縮廃棄物の加熱炉、高温反応炉およびこの高温反応炉に付帯して設けられた急速冷却塔ならびに均質化炉から主としてなる廃棄物処理設備の点検・修理に当たり、その点検・修理に先立ち、前記加熱炉内にある廃棄物・圧縮廃棄物をまず炭化物で置換し、その後、当該処理設備の停止を行ってから前記点検や修理を行うようにしたことを特徴とする廃棄物処理設備の点検・修理方法。Inspection and repair of waste treatment equipment mainly consisting of waste compression equipment, compressed waste heating furnace, high-temperature reactor, rapid cooling tower attached to this high-temperature reactor, and homogenization furnace -Prior to repair, waste and compressed waste in the heating furnace are first replaced with carbide, and then the inspection and repair are performed after stopping the processing facility. Inspection and repair methods for material processing equipment. 前記炭化物として、ごみ固形燃料(RDF)を酸素含有量1%以下の雰囲気下で、500 ℃以上の温度で乾留して得られる炭素質粒子を用いることを特徴とする請求項1に記載の廃棄物処理設備の点検・修理方法。2. The waste according to claim 1, wherein carbonaceous particles obtained by dry-distilling waste solid fuel (RDF) in an atmosphere having an oxygen content of 1% or less at a temperature of 500 ° C. or more are used as the carbide. Inspection and repair methods for material processing equipment.
JP2002186420A 2002-06-26 2002-06-26 Inspecting/repairing method of waste treatment facility Pending JP2004028465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002186420A JP2004028465A (en) 2002-06-26 2002-06-26 Inspecting/repairing method of waste treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002186420A JP2004028465A (en) 2002-06-26 2002-06-26 Inspecting/repairing method of waste treatment facility

Publications (1)

Publication Number Publication Date
JP2004028465A true JP2004028465A (en) 2004-01-29

Family

ID=31181779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002186420A Pending JP2004028465A (en) 2002-06-26 2002-06-26 Inspecting/repairing method of waste treatment facility

Country Status (1)

Country Link
JP (1) JP2004028465A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114818A1 (en) * 2005-04-01 2006-11-02 Jfe Engineering Corporation Method and apparatus for supplying waste to gasification melting furnace
KR100856653B1 (en) * 2007-07-09 2008-09-04 제이에프이 엔지니어링 가부시키가이샤 Method for supplying waste to gasification melting furnace
JP2013234835A (en) * 2012-05-04 2013-11-21 Gs Platech Co Ltd Gasification melting furnace and method for treating combustible material using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114818A1 (en) * 2005-04-01 2006-11-02 Jfe Engineering Corporation Method and apparatus for supplying waste to gasification melting furnace
KR100856653B1 (en) * 2007-07-09 2008-09-04 제이에프이 엔지니어링 가부시키가이샤 Method for supplying waste to gasification melting furnace
JP2013234835A (en) * 2012-05-04 2013-11-21 Gs Platech Co Ltd Gasification melting furnace and method for treating combustible material using the same

Similar Documents

Publication Publication Date Title
KR102262779B1 (en) Methods and devices for pyrolysis emulsifying the continuous injection of waste synthetic resins and flammable wastes, as well as continuous discharge of pyrolysis by-products and producing high-quality without the discharge of fine dust and wastewater
US6178899B1 (en) Waste treatment method and waste treatment apparatus
CN106493148A (en) A kind of solid organic castoff gasification and melting circulating disposal process
JPH0679252A (en) Method of giving useful product from waste treatment
SK279573B6 (en) Process and plant for the thermal disposal of waste
WO2005037510A2 (en) Method of recycling waste plastic and method of molding
US20070294937A1 (en) Gasifier
JP2004028465A (en) Inspecting/repairing method of waste treatment facility
JP3969620B2 (en) Waste disposal method
CN212227043U (en) Solid hazardous waste resource utilization system
JP3713991B2 (en) Waste treatment method and waste treatment facility
JP6168287B2 (en) Waste melting treatment method
JP2005003359A (en) Waste processing method and facility
CN111303926A (en) Recycling treatment process for waste plastics
JP2001049261A (en) Method for reutilizing waste plastic and waste plastic processing method
JPH11270824A (en) Waste treatment and facility therefor
JP2003262319A (en) Gasification melting system and gasification melting method
KR20020066519A (en) Smelting Incineration Apparatus and Method of Solid Waste Treatment
JPH11270823A (en) Equipment and method for waste disposal
CN115449404B (en) Solid fuel staged pyrolysis gasification system and method thereof
JP2000279916A (en) Waste treatment
JP3246377U (en) Waste plastic continuous gasification and combustion equipment
KR20130058845A (en) Recarburizer using wasted tire
JP3622625B2 (en) Waste treatment method and waste treatment facility
JPH102526A (en) Pyrolysis reactor for waste disposing apparatus