JP2004027854A - Turbofan engine - Google Patents

Turbofan engine Download PDF

Info

Publication number
JP2004027854A
JP2004027854A JP2002180695A JP2002180695A JP2004027854A JP 2004027854 A JP2004027854 A JP 2004027854A JP 2002180695 A JP2002180695 A JP 2002180695A JP 2002180695 A JP2002180695 A JP 2002180695A JP 2004027854 A JP2004027854 A JP 2004027854A
Authority
JP
Japan
Prior art keywords
fan
spinner
blade
air
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002180695A
Other languages
Japanese (ja)
Other versions
JP4143901B2 (en
Inventor
Yoshiyuki Miyamoto
宮本 佳幸
Hidekazu Kodama
児玉 秀和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002180695A priority Critical patent/JP4143901B2/en
Publication of JP2004027854A publication Critical patent/JP2004027854A/en
Application granted granted Critical
Publication of JP4143901B2 publication Critical patent/JP4143901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbofan engine capable of increasing the intake air flow of a fan single-stage moving blade without increasing the diameter of a fan and the inside diameter of a casing, thereby increasing bypass ratio to achieve low fuel consumption and low noise while reducing engine weight. <P>SOLUTION: The turbofan engine has the fan single-stage moving blade 2 for admitting air, and a spinner 4 for driving the fan single-stage moving blade to rotate it. The spinner 4 has a spiral vane 6 on its front face. The spiral vane 6 extends radially outwardly and spirally from its axis X and sucks air from the front face of the spinner to supply the air to the fan single-stage moving vane. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、バイパス比が高く低燃費化と低騒音化が可能なターボファンエンジンに関する。
【0002】
【従来の技術】
図3は航空機エンジン51(ターボジェットエンジン)の模式的構成図である。この図に示すようにターボジェットエンジンは、空気を取り入れるファン52、取り入れた空気を圧縮する圧縮機53、圧縮した空気により燃料を燃焼させる燃焼器54、燃焼器54の燃焼ガスによりファン52及び圧縮機53を駆動するタービン55、推力増大のため再燃焼させるアフタバーナ56等を備えている。
【0003】
アフタバーナ56は、三角形断面等を有し下流に循環領域を形成して保炎を行なうフレームホルダ(保炎器)57、燃料を噴出させるための燃料ノズル58、点火栓59等からなり、アウターダクト60の内側のライナ61内を通して排気ノズル62から噴出させ、推力を増大させるようになっている。
【0004】
上述したターボジェットエンジンにおいて、空気を取り入れるファン52を大型にし、バイパス比を大きくしたものを「ターボファンエンジン」と呼ぶ。バイパス比は、コアエンジン(上述した圧縮機53、燃焼器54及びタービン55)に流入する空気流(コア流れ)に対するこれらをバイパスするバイパス流れの流量比(バイパス流れ/コア流れ)であり、これが大きいほど排気ジェットの流速を下げ、騒音低減と燃料消費率の低減に効果がある。
【0005】
【発明が解決しようとする課題】
しかし上述したターボファンエンジンでは、バイパス比を大きくするとファン1段動翼(最前列のファン)とこれを囲むケーシング内径が大きくなり、エンジンの重量が増してしまう問題点があった。
【0006】
すなわちターボファンエンジンのスピンナー63に埋め込まれた構造のファン1段動翼52aは、埋め込み構造のため、ある程度のハブ/チップ比(入口ハブ径/入口チップ径)が必要となり、スピンナーの面積分だけファン入口面積は狭くなる。
そのため低燃費、低騒音を達成するためバイパス比を増やそうとすると、ファン径及びケーシング内径はさらに広げなくてはならず、エンジンの重量が増えることになる。
【0007】
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、ファン径及びケーシング内径を大きくすることなくファン1段動翼の吸込み空気流量を増大させることができ、これによりバイパス比を高め、低燃費化と低騒音化を達成するとともにエンジン重量を削減することができるターボファンエンジンを提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば、空気を取り入れるためのファン1段動翼(2)と、該ファン1段動翼を回転駆動するスピンナー(4)とを備え、該スピンナーは、その軸心から半径方向外方に螺旋状に延びスピンナー前面から空気を吸込みファン1段動翼に供給する渦巻翼(6)を有する、ことを特徴とするターボファンエンジンが提供される。
【0009】
本発明の好ましい実施形態によれば、前記ファン1段動翼(2)とスピンナー(4)は一体に連結され、前記渦巻翼(6)とファン1段動翼(2)は、翼表面が滑らかに繋がるように形成されている。
【0010】
上記本発明の構成によれば、スピンナー(4)が、その軸心から半径方向外方に螺旋状に延びスピンナー前面から空気を吸込みファン1段動翼(2)に供給する渦巻翼(6)を有するので、スピンナー前面からも空気を吸込みこれを圧縮してファン1段動翼(2)に供給することができる。
従って、エンジン前方の全面積がそのままファン1段動翼(2)の空気流入面積になるのでファン径を小さくすることができ、エンジン重量の削減が可能となる。
【0011】
【発明の実施の形態】
以下本発明の好ましい実施形態について、図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
【0012】
図1は、本発明のターボファンエンジンの部分的構成図である。この図において(A)は本発明、(B)は従来例である。各図において、Z−Zはエンジン回転軸、12、12’はケーシング内径、13は流入空気の流れ、14はコア流れ、15はバイパス流れである。
【0013】
図1(A)に示すように、本発明のターボファンエンジンは、空気を取り入れるためのファン1段動翼2と、ファン1段動翼2を回転駆動するスピンナー4とを備える。また、このスピンナー4は、その前面に渦巻翼6を有する。渦巻翼6は、スピンナー4の軸心Zから半径方向外方に螺旋状に延び、スピンナー前面から空気を吸込み、これを圧縮しファン1段動翼2に供給するようになっている。渦巻翼6の形状は、例えば斜流圧縮機または半径流圧縮機のインペラー形状と同様の螺旋翼であるのがよい。
【0014】
また、ファン1段動翼2とスピンナー4は、好ましくは一体に連結され、渦巻翼6とファン1段動翼2は、それぞれの翼表面が滑らかに繋がるように形成されている。
【0015】
【実施例】
図1に示した構成の従来と本発明を用いて、本発明の性能確認のための解析を行った。従来型(B)に比べ本発明(A)ではエンジン中心軸Zから動翼(渦巻翼6とファン1段動翼2)が付いており、エンジンの外径(12、12’)は、従来型12’に比べ本発明12では5%程度小さく設定している。またここでの解析はファン1段動翼2、52aの後方での全圧分布及び全温分布を同一にして解析を行った。
【0016】
図2はその解析結果のファン1段動翼の速度三角形を3断面(ハブ、ミッド、チップ)で示している。図中のABS1、ABS2は流入空気と流出空気の絶対速度、REL1、REL2は流入空気と流出空気の相対速度を示している。
【0017】
図2からわかるように、ミッドおよびチップの速度三角形は従来型、本発明でほぼ等しいといえる。しかし、ハブの速度三角形には相違が見られ、流れを曲げる転向角θ、θ’(入口と出口の相対流れ角の差)が本発明の方が明らかに小さくなっている。すなわち、従来例では転向角θ’は約50°であるのに対し、本発明では転向角θは約20°にすぎない。
従って、本発明では、従来型よりも翼にかかる負荷は軽く、このような翼を実現することは容易であることがわかる。また、スピンナー部の仕事を増やし、スピンナー部に流入する流れの軸速をあげて流量を増やすことができれば、エンジン外径をさらに小さくできる。
【0018】
上述した本発明の構成によれば、スピンナー4が、その軸心Zから半径方向外方に螺旋状に延びスピンナー前面から空気を吸込みファン1段動翼2に供給する渦巻翼6を有するので、スピンナー前面からも空気を吸込みこれを圧縮してファン1段動翼2に供給することができる。
【0019】
従って、エンジン前方の全面積がそのままファン1段動翼2の空気流入面積になるので、ファン径及びケーシング内径を従来より小さくしても、ファン1段動翼の吸込み空気流量を増大させることができ、これによりバイパス比を高め、低燃費化と低騒音化を達成するとともにエンジン重量を削減することができる。
【0020】
なお、本発明は上述した実施形態及び実施例に限定されず、本発明の要旨を逸脱しない範囲で種々に変更できることは勿論である。
【0021】
【発明の効果】
上述したように、本発明のターボファンエンジンは、ファン径及びケーシング内径を大きくすることなくファン1段動翼の吸込み空気流量を増大させることができ、これによりバイパス比を高め、低燃費化と低騒音化を達成するとともにエンジン重量を削減することができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明のターボファンエンジンの構成図である。
【図2】本発明のターボファンエンジンの説明図である。
【図3】従来のターボファンエンジンの構成図である。
【符号の説明】
Z−Z エンジン回転軸、
2 ファン1段動翼、4 スピンナー、6 渦巻翼
12、12’  ケーシング内径、13 流入空気の流れ、
14 コア流れ、15 バイパス流れ、
51 航空機エンジン(ジェットエンジン)、
52 ファン、52a 、53 圧縮機、54 燃焼器、
55 タービン、56 アフタバーナ、
57 フレームホルダ(保炎器)、
58 燃料ノズル、59 点火栓、
60 アウターダクト、61 ライナ、
62 排気ノズル、63
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a turbofan engine having a high bypass ratio and capable of reducing fuel consumption and noise.
[0002]
[Prior art]
FIG. 3 is a schematic configuration diagram of the aircraft engine 51 (turbojet engine). As shown in this figure, the turbojet engine includes a fan 52 for taking in air, a compressor 53 for compressing the taken-in air, a combustor 54 for burning fuel with the compressed air, and a fan 52 and a compressor for burning gas from the combustor 54. A turbine 55 for driving the engine 53, an afterburner 56 for reburning to increase the thrust, and the like.
[0003]
The afterburner 56 has a triangular cross section and the like, and comprises a frame holder (flame holder) 57 for forming a circulation area downstream and performing flame holding, a fuel nozzle 58 for ejecting fuel, an ignition plug 59 and the like, and an outer duct. The gas is ejected from an exhaust nozzle 62 through a liner 61 inside 60 to increase the thrust.
[0004]
In the turbojet engine described above, the one that enlarges the fan 52 for taking in air and increases the bypass ratio is called a “turbofan engine”. The bypass ratio is a flow ratio (bypass flow / core flow) of the bypass flow that bypasses the air flow (core flow) flowing into the core engine (the compressor 53, the combustor 54, and the turbine 55 described above). The larger the value, the lower the flow velocity of the exhaust jet, which is effective in reducing noise and fuel consumption.
[0005]
[Problems to be solved by the invention]
However, in the turbofan engine described above, when the bypass ratio is increased, there is a problem that the first stage blade of the fan (the front-row fan) and the inner diameter of the casing surrounding the same become large, and the weight of the engine increases.
[0006]
That is, the fan one-stage rotor blade 52a having a structure embedded in the spinner 63 of the turbofan engine requires a certain hub / tip ratio (entrance hub diameter / inlet tip diameter) because of the embedded structure, and is equivalent to the area of the spinner. The fan entrance area becomes smaller.
Therefore, in order to increase the bypass ratio in order to achieve low fuel consumption and low noise, the diameter of the fan and the inside diameter of the casing must be further increased, and the weight of the engine increases.
[0007]
The present invention has been made to solve such a problem. That is, an object of the present invention is to increase the suction air flow rate of the fan one-stage rotor blade without increasing the fan diameter and the casing inner diameter, thereby increasing the bypass ratio, achieving low fuel consumption and low noise. Another object of the present invention is to provide a turbofan engine capable of reducing the engine weight while reducing the engine weight.
[0008]
[Means for Solving the Problems]
According to the present invention, there is provided a fan one-stage rotor blade (2) for taking in air, and a spinner (4) for rotating and driving the fan one-stage rotor blade, the spinner being located radially outward from its axis. And a spiral blade (6) extending spirally to draw air from the front surface of the spinner and supply the air to the one-stage moving blade of the fan.
[0009]
According to a preferred embodiment of the present invention, the first stage rotor blade (2) and the spinner (4) are integrally connected, and the spiral blade (6) and the first stage rotor blade (2) have a blade surface. It is formed to connect smoothly.
[0010]
According to the configuration of the present invention, the spinner (4) spirally extends radially outward from the axis thereof and sucks air from the front surface of the spinner and supplies it to the fan one-stage blade (2). Therefore, air can also be sucked in from the front surface of the spinner, compressed and supplied to the first-stage moving blades (2) of the fan.
Therefore, the entire area in front of the engine becomes the air inflow area of the first stage rotor blade (2) as it is, so that the fan diameter can be reduced and the engine weight can be reduced.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each of the drawings, common portions are denoted by the same reference numerals, and redundant description is omitted.
[0012]
FIG. 1 is a partial configuration diagram of a turbofan engine of the present invention. In this figure, (A) shows the present invention, and (B) shows a conventional example. In each of the drawings, Z-Z denotes an engine rotation shaft, 12 and 12 'denote casing inner diameters, 13 denotes an inflow air flow, 14 denotes a core flow, and 15 denotes a bypass flow.
[0013]
As shown in FIG. 1A, the turbofan engine of the present invention includes a first-stage fan blade 2 for taking in air, and a spinner 4 for rotating the first-stage fan blade 2. The spinner 4 has a spiral blade 6 on the front surface. The spiral blade 6 spirally extends radially outward from the axis Z of the spinner 4, sucks air from the front surface of the spinner, compresses the air, and supplies the compressed air to the one-stage fan blade 2. The shape of the spiral blade 6 may be, for example, a spiral blade similar to the impeller shape of a mixed flow compressor or a radial flow compressor.
[0014]
The first-stage fan blade 2 and the spinner 4 are preferably connected integrally, and the spiral blade 6 and the first-stage fan blade 2 are formed such that their respective blade surfaces are smoothly connected.
[0015]
【Example】
An analysis for confirming the performance of the present invention was performed using the conventional configuration and the present invention shown in FIG. Compared to the conventional type (B), in the present invention (A), the rotor blades (the spiral blade 6 and the fan first-stage rotor blade 2) are provided from the engine center axis Z, and the outer diameter (12, 12 ′) of the engine is The present invention 12 is set to be about 5% smaller than the mold 12 '. In this analysis, the total pressure distribution and the total temperature distribution behind the first-stage fan blades 2 and 52a were made the same.
[0016]
FIG. 2 shows the speed triangle of the fan one-stage rotor blade as a result of the analysis in three cross sections (hub, mid, and tip). In the drawing, ABS1 and ABS2 indicate the absolute speeds of the inflow air and the outflow air, and REL1 and REL2 indicate the relative speeds of the inflow air and the outflow air.
[0017]
As can be seen from FIG. 2, the speed triangles of the mid and the chip are almost equal in the conventional type and the present invention. However, there is a difference in the speed triangle of the hub, and the turning angles θ and θ ′ (difference in the relative flow angle between the inlet and the outlet) for bending the flow are clearly smaller in the present invention. That is, in the conventional example, the turning angle θ ′ is about 50 °, whereas in the present invention, the turning angle θ is only about 20 °.
Therefore, in the present invention, it is understood that the load applied to the wing is lighter than that of the conventional type, and it is easy to realize such a wing. In addition, if the work of the spinner section can be increased and the flow rate can be increased by increasing the axial speed of the flow flowing into the spinner section, the outer diameter of the engine can be further reduced.
[0018]
According to the configuration of the present invention described above, since the spinner 4 has the spiral blade 6 that extends helically from the axis Z outward in the radial direction and sucks air from the front surface of the spinner and supplies the air to the first-stage rotor blade 2, Air can also be sucked in from the front surface of the spinner, compressed and supplied to the first-stage moving blades 2 of the fan.
[0019]
Accordingly, since the entire area in front of the engine becomes the air inflow area of the first stage rotor blade 2 as it is, the suction air flow rate of the first stage rotor blade can be increased even if the fan diameter and the casing inner diameter are made smaller than before. As a result, it is possible to increase the bypass ratio, achieve low fuel consumption and low noise, and reduce the engine weight.
[0020]
It should be noted that the present invention is not limited to the above-described embodiments and examples, and it is needless to say that various changes can be made without departing from the spirit of the present invention.
[0021]
【The invention's effect】
As described above, the turbofan engine of the present invention can increase the suction air flow rate of the first-stage blade of the fan without increasing the fan diameter and the casing inner diameter, thereby increasing the bypass ratio and improving fuel efficiency. It has excellent effects such as achieving low noise and reducing engine weight.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a turbofan engine of the present invention.
FIG. 2 is an explanatory diagram of a turbofan engine of the present invention.
FIG. 3 is a configuration diagram of a conventional turbofan engine.
[Explanation of symbols]
Z-Z engine rotation axis,
2 1-stage rotor blade, 4 spinner, 6 spiral blade 12, 12 'casing inner diameter, 13 flow of inflow air,
14 core flow, 15 bypass flow,
51 aircraft engines (jet engines),
52 fan, 52a, 53 compressor, 54 combustor,
55 turbines, 56 afterburners,
57 frame holder (flame holder),
58 fuel nozzle, 59 spark plug,
60 outer duct, 61 liner,
62 exhaust nozzle, 63

Claims (2)

空気を取り入れるためのファン1段動翼(2)と、該ファン1段動翼を回転駆動するスピンナー(4)とを備え、該スピンナーは、その軸心から半径方向外方に螺旋状に延びスピンナー前面から空気を吸込みファン1段動翼に供給する渦巻翼(6)を有する、ことを特徴とするターボファンエンジン。A fan one-stage blade for taking in air (2) and a spinner (4) for rotating and driving the fan one-stage blade are provided, and the spinner spirally extends radially outward from its axis. A turbofan engine having a spiral blade (6) for sucking air from a front surface of a spinner and supplying the air to a first stage rotor blade. 前記ファン1段動翼(2)とスピンナー(4)は一体に連結され、前記渦巻翼(6)とファン1段動翼(2)は、翼表面が滑らかに繋がるように形成されている、ことを特徴とする請求項1に記載のターボファンエンジン。The one-stage fan blade (2) and the spinner (4) are integrally connected, and the spiral blade (6) and the one-stage fan blade (2) are formed so that the blade surfaces are smoothly connected. The turbofan engine according to claim 1, wherein:
JP2002180695A 2002-06-21 2002-06-21 Turbofan engine Expired - Lifetime JP4143901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180695A JP4143901B2 (en) 2002-06-21 2002-06-21 Turbofan engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180695A JP4143901B2 (en) 2002-06-21 2002-06-21 Turbofan engine

Publications (2)

Publication Number Publication Date
JP2004027854A true JP2004027854A (en) 2004-01-29
JP4143901B2 JP4143901B2 (en) 2008-09-03

Family

ID=31177728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180695A Expired - Lifetime JP4143901B2 (en) 2002-06-21 2002-06-21 Turbofan engine

Country Status (1)

Country Link
JP (1) JP4143901B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080386A1 (en) * 2005-01-26 2006-08-03 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbofan engine
WO2008004364A1 (en) 2006-07-04 2008-01-10 Ihi Corporation Tubofan engine
JPWO2006080386A1 (en) * 2005-01-26 2008-06-19 株式会社Ihi Turbofan engine
WO2008117413A1 (en) 2007-03-27 2008-10-02 Ihi Corporation Fan rotor blade support structure and turbofan engine having the same
US7721526B2 (en) 2006-06-28 2010-05-25 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbofan engine
US7918652B2 (en) 2006-03-14 2011-04-05 Ishikawajima-Harima Heavy Industries Co. Ltd. Dovetail structure of fan
CN103807022A (en) * 2014-02-17 2014-05-21 汪一平 Bidirectional turbine vane inner-cooling negative pressure aviation hydrogen power engine
WO2014149354A1 (en) * 2013-03-15 2014-09-25 United Technologies Corporation Geared turbofan engine having a reduced number of fan blades and improved acoustics

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7748950B2 (en) 2005-01-26 2010-07-06 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbofan engine
EP1843045A1 (en) * 2005-01-26 2007-10-10 IHI Corporation Turbofan engine
WO2006080386A1 (en) * 2005-01-26 2006-08-03 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbofan engine
JP4974006B2 (en) * 2005-01-26 2012-07-11 株式会社Ihi Turbofan engine
JPWO2006080386A1 (en) * 2005-01-26 2008-06-19 株式会社Ihi Turbofan engine
WO2006080055A1 (en) * 2005-01-26 2006-08-03 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbofan engine
EP1843045A4 (en) * 2005-01-26 2014-06-11 Ihi Corp Turbofan engine
US7918652B2 (en) 2006-03-14 2011-04-05 Ishikawajima-Harima Heavy Industries Co. Ltd. Dovetail structure of fan
DE102007008769B4 (en) 2006-03-14 2019-06-19 Ishikawajima-Harima Heavy Industries Co., Ltd. Dovetail structure of a suction device
US7721526B2 (en) 2006-06-28 2010-05-25 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbofan engine
EP2037126A1 (en) * 2006-07-04 2009-03-18 IHI Corporation Tubofan engine
WO2008004364A1 (en) 2006-07-04 2008-01-10 Ihi Corporation Tubofan engine
US8579592B2 (en) 2006-07-04 2013-11-12 Ihi Corporation Turbofan engine
EP2037126A4 (en) * 2006-07-04 2014-06-18 Ihi Corp Tubofan engine
WO2008117413A1 (en) 2007-03-27 2008-10-02 Ihi Corporation Fan rotor blade support structure and turbofan engine having the same
US8568101B2 (en) 2007-03-27 2013-10-29 Ihi Corporation Fan rotor blade support structure and turbofan engine having the same
WO2014149354A1 (en) * 2013-03-15 2014-09-25 United Technologies Corporation Geared turbofan engine having a reduced number of fan blades and improved acoustics
US10184340B2 (en) 2013-03-15 2019-01-22 United Technologies Corporation Geared turbofan engine having a reduced number of fan blades and improved acoustics
CN103807022A (en) * 2014-02-17 2014-05-21 汪一平 Bidirectional turbine vane inner-cooling negative pressure aviation hydrogen power engine

Also Published As

Publication number Publication date
JP4143901B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
US8186962B2 (en) Fan rotating blade for turbofan engine
CN105026695B (en) cyclonic dirt separator assembly and two-stage particle separator
US7189059B2 (en) Compressor including an enhanced vaned shroud
CA2656291C (en) Turbofan engine
CA2564242C (en) Turbofan engine
US7918652B2 (en) Dovetail structure of fan
CN106948885B (en) Flow control surface in a gas turbine engine interior for upstream of a combustion section
US20140119885A1 (en) Turbine engine assembly and methods of assembling same
US9909494B2 (en) Tip turbine engine with aspirated compressor
EP4239180A2 (en) Efficient, low pressure ratio propulsor for gas turbine engines
JP4045993B2 (en) Fan vane, fan for aircraft engine, and aircraft engine
US9003759B2 (en) Particle separator for tip turbine engine
US11933193B2 (en) Turbine engine with an airfoil having a set of dimples
WO2020093578A1 (en) Aircraft and engine thereof
US20230130213A1 (en) Turbine engine with airfoil having high acceleration and low blade turning
JP4143901B2 (en) Turbofan engine
CA2930755A1 (en) Compressor airfoil with compound leading edge profile
CN107084006A (en) Accelerator insert for gas-turbine unit airfoil
CA3075160A1 (en) Tandem stators with flow recirculation conduit
JP6299833B2 (en) Turbine and vehicle turbocharger
CN115680891A (en) Cooling air delivery assembly
CN207920736U (en) Fanjet core engine for aviation power field
JP4974006B2 (en) Turbofan engine
CN113279857B (en) High thrust-weight ratio gas turbine generator suitable for unmanned aerial vehicle
US20200096002A1 (en) Axial compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

R151 Written notification of patent or utility model registration

Ref document number: 4143901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term