JP2004026742A - Nonlinear optical material - Google Patents

Nonlinear optical material Download PDF

Info

Publication number
JP2004026742A
JP2004026742A JP2002187066A JP2002187066A JP2004026742A JP 2004026742 A JP2004026742 A JP 2004026742A JP 2002187066 A JP2002187066 A JP 2002187066A JP 2002187066 A JP2002187066 A JP 2002187066A JP 2004026742 A JP2004026742 A JP 2004026742A
Authority
JP
Japan
Prior art keywords
compound
nonlinear optical
reaction
mmol
optical material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002187066A
Other languages
Japanese (ja)
Inventor
Kanako Wasai
和才 奏子
Akinori Nishio
西尾 昭徳
Shu Mochizuki
望月 周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002187066A priority Critical patent/JP2004026742A/en
Publication of JP2004026742A publication Critical patent/JP2004026742A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonlinear optical material having excellent forming processability such as thin film formation. <P>SOLUTION: A urethane compound is represented by formula (I) [wherein, A is a substituent represented by one of formulas (1) to (5); R is a substituent represented by one of formulas (6)-(9); and (n) is an integer of 4-12]. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【従来の技術】
非線形光学材料は、光−電気信号変換などの通信分野に利用される重要な材料である。しかしながら、公知の非線形光学材料は、ニオブ酸リチウムやタンタル酸リチウムなどの無機結晶、3−ニトロアニリンや2−メチル−4−ニトロアニリンなどの有機結晶など、結晶性材料が一般的である。これらの材料は硬く脆いために薄膜化などの成形加工性に乏しい。有機材料の場合には、ベースポリマーなどを用いて薄膜とすることも可能ではあるが、工程操作が煩雑であるなどの欠点がある。また、高分子化合物の側鎖又は主鎖に非線形光学機能団を導入した検討例もあるが、このような方法では非線形光学機能団と重合官能基とが結合したモノマーを製造する必要がある。
【0002】
【発明が解決しようとする課題】
このような背景から煩雑な操作を行うことなく、容易に薄膜などに成形加工の可能な非線形光学材料が求められている。
本発明者らは、環構造を有する種々のイソシアネート化合物と非線形光学機能団との結合を試みた。その結果、特定のウレタン系化合物は、非線形光学機能団の導入を反映した非線形光学特性を示し、かつ室温で非晶性状態でベースポリマーなどを使用せずに薄膜とすることが可能であるとの知見を得て本発明を完成した。
【0003】
【課題を解決するための手段】
すなわち、本発明は下式(I)にて表されるウレタン化合物である。
【0004】
【化6】

Figure 2004026742
ただし、式中、Aは下式(1)〜(5):
【0005】
【化7】
Figure 2004026742
のいずれかで表される置換基であり、Rは下式(6)〜(9):
【0006】
【化8】
Figure 2004026742
のいずれかで表される置換基であり、nは4〜12の整数である。また、本発明は、このポリウレタン化合物からなる非線形光学材料を提供するものである。nが前記の範囲より小さいと結晶化や溶解性の低下のおそれがあり、一方、この範囲を超える化合物を得るには高価な原料を必要とし汎用性に乏しい。
【0007】
本発明のウレタン化合物は、下記の化合物(1)又は化合物(2)であるのが特に好ましい。
【0008】
【化9】
Figure 2004026742
【0009】
【化10】
Figure 2004026742
【0010】
本発明の式(I)のウレタン化合物は、2つの−NHCOO−結合を有する環状の骨格Aに対し、それら−NHCOO−結合とアミン類の非線形光学機能団Rとが長鎖アルキル基により結合し、非晶質の非線形光学材料となる。
【0011】
一般に低分子量有機化合物は結晶化しやすいと考えられるが、本発明のポリウレタン化合物では、剛直骨格の導入による分子運動の規制や、逆に分子内の可動性の向上、さらには分子の対称性の低減などのため、分子パッキングの最安定化が妨げられ、高分子有機化合物と同等の非晶性化合物が得られるものと推測される。すなわち、本発明は分子の中心骨格に環構造であって、かつ非対称構造を有するイソシアナートを選択し、これに対して可動性の高い水酸基含有の長鎖アルキル基を有する非線形光学化合物を、ウレタン結合を介して結合した。
【0012】
(非線形光学機能団)
前記の製造法にて用いられる非線形光学機能団(基R)として、第一級アミン類または第二級アミン類が用いられ、下式にて示される4−アミノ−4’−ニトロジフェニルスルフィド(6a)、N−シクロヘキシル−N−(4−ニトロフェニル)アミン式(7a)、2−メチル−4−ニトロアニリン(8a)、N−エチル−4−(2’−ジシアノエテニル)アニリン(9a)などが望ましい。
【0013】
【化11】
Figure 2004026742
【0014】
(非線形光学機能団へのアルキレン基の導入;R−(CH−O−CO−CHの製造法)
前記の非線形光学機能団にアルキレン基を導入するには、公知の方法が用いられてよいが、代表的には前記アミン類とブロモアルキルアセタートを反応させるのが好ましい。
【0015】
このような反応によりアミン類にアルキレン基(n=4〜12)を導入する。この反応において、アミン類に対しブロモアルキルアセタートは1等量以上を用いる。実用上1.5等量くらいが望ましい。かかる反応はトリエチルアミン、ピリジンなど弱塩基触媒の存在下、トルエン、ベンゼン、キシレンなどの芳香族アミン類が可溶な溶媒を用いて行う。
【0016】
反応は80〜150℃、好ましくは110〜130℃にて行う。典型的には120℃にて12時間以上の反応を行う。反応温度が前記の範囲より低いと反応速度が遅く、高いと副生成物が生じる可能性がある。
【0017】
(イソシアナートと反応するR−(CH−OHの製造法)
つぎに、アルキレン基を導入した非線形光学機能団を加水分解しアルコールとする。代表的な反応条件としてはメタノール、イソプロパノールなどの極性溶媒を用い、炭酸カリウム0.2等量および水を加え室温で12時間以上反応させ、水酸化ナトリウム水溶液、水酸化カリウム水溶液のような強塩基水溶液で後処理をする。このようにして、式(6a)〜式(9a)など非線形光学機能団を構成する化合物に、アルキレンを導入することにより、分子に可撓性が付与され結晶化が抑制される。
【0018】
(ジイソシアナート化合物:基A)
前記の反応に用いられるジイソシアナート化合物(骨格A)としては、下記のようにイソシアナート基が非対称な位置にあるのが好ましい。これらのうち、一般に入手容易なα,4−トリレンジイソシアナート(1a)、ノルボルナンジイソシアナート(2a)、1,3−ビス(イソシアナトメチル)シクロヘキサン(3a)、イソホロンジイソシアナート(4a)、4,4’−メチレンビス(シクロヘキシルイソシアナート)(5a)が望ましい。
【0019】
【化12】
Figure 2004026742
【0020】
(ウレタン化合物式(I)の製造法)
式(I)の化合物を得るには、窒素雰囲気下、ジイソシアナート(1a)〜(5a)に対し、末端に水酸基有する化合物(R−(CH−OH)を2等量以上用いる。触媒としてはウレタン結合反応に対して活性の高い有機スズ類が好ましく、ジラウリン酸ジブチルスズ等のジブチルスズラウリン酸エステル、テトラブチルスズ、トリブチルスズ酢酸エステル等が挙げられる。触媒の使用量は副反応の進行を考慮し、基質に対し0.1〜10mol程度が好ましい。反応は30〜60℃にて10〜24時間程度行うのが好ましい。反応温度が、これより低いと反応速度が遅く、高すぎると副生成物が生じる可能性がある。典型的にはジラウリン酸ジブチルスズを用い40℃にて12時間攪拌、反応を行う。
【0021】
【実施例】
つぎに、本発明を実施例に基づき更に具体的に説明する。実施例1にて下式(1)の化合物を、実施例2にて下式(2)の化合物を製造した。なお、実施例1及び2においてステップ1〜4は共通である。
【0022】
【化13】
Figure 2004026742
【0023】
【化14】
Figure 2004026742
【0024】
化合物(1)及び化合物(2)の製造工程の概要は下記のとおりであるが、これに限るものではない。
【0025】
【化15】
Figure 2004026742
【0026】
[実施例1]
(ステップ1)
ブロモペンチルアセタート(20ml,200mmol)とトルエン(125ml)をフラスコに入れ、トリエチルアミン(20ml,150mmol)とN−エチルアニリン(16ml,127mmol)を室温で加えた。この溶液を120℃で一晩撹拌した。室温まで冷やした後溶媒を留去し、粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン:酢酸エチル=5:1)で分離精製をおこなった。化合物Iが49.7%収率で得られた。
【0027】
(ステップ2)
無水N,N−ジメチルホルムアミド(16ml)を氷浴上で冷却し、それにPOCl(5.8ml,62mmol)を滴下し室温に置いた。化合物I(13.9g, 55mmol)を加え、30分間撹拌した後90℃で一晩撹拌した。室温まで冷却し水に注ぎジエチルエーテルで抽出した。NaHCO水溶液とNaCl水溶液で洗浄し、MgSOで乾燥させた。溶媒を留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン:酢酸エチル=1:1)で分離精製し、化合物IIが収率76.6%で得られた。
【0028】
(ステップ3)
化合物II(11.8g,42mmol)をCHOH(60ml)に溶かし、KCO(1.2g,8.7mmol)と水を加え室温で一晩撹拌した。反応混合物をNaOH水溶液に注ぎ、エーテル抽出した。MgSOで乾燥させ、化合物IIIが45.8%収率で得られた。
【0029】
(ステップ4)
マロノニトリル(3.3g,50mmol)をイソプロパノール(60ml)に溶かし、これに化合物IIIと4,4−ジメチルアミノピリジン(0.7g,4.3mol)を室温で加え、40℃で3時間撹拌した。この溶液をNaOH水溶液に注ぎ、ジエチルエーテルで抽出した。MgSOで乾燥させた後溶媒を留去した。シリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン:酢酸エチル=1:1)で分離精製し、化合物IVが収率30%で得られた。
【0030】
(ステップ5a)
窒素雰囲気下にて、化合物IV(0.9g,3.4mmol)、テトラヒドロフラン(10ml)およびイソホロンジイソシアナート(0.37g,1.7mmol)を混合し、さらにジラウリン酸ジブチルスズ(10μl)を滴下して40℃で一晩撹拌した。溶媒を留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル:n−ヘキサン=9.5:0.5)で分離精製し化合物(1)が80%収率で得られた。化合物(1)のH−NMRスペクトルを図1に示す。
【0031】
化合物(1):
H−NMR(CDCl, 400 MHz)δ0.82−0.88(m, 3H, methyl)0.96(s, 2H, methylene)1.04(s, 6H, methyl)1.21(t, J=7.2 Hz, 6H, ethyl)1.38−1.44(m, 4H, methylene)1.60−1.69(m, 4H, CH −CH−CH )1.60−1.69(m, 8H, methylene) 1.66(d,J=7.8 Hz, 4H, methylene)2.90(d, J=6.5 Hz, 2H, CH −NH−)3.36(t, J=7.7 Hz, 4H, methylene)3.46(q, J=7.2 Hz, 4H, ethyl)3.78(bs, 1H, NH)4.04−4.07(m, 4H, methylene)4.45(d, J=7.8 Hz, 1H, CH−NH−)4.73(t, J=6.5 Hz, 1H, CHNH)6.63(d, J=8.9 Hz, 4H, ArH)7.41(s, 2H, Vinyl)7.77(d, J=8.9 Hz, 4H, ArH)
13C−NMR(CDCl, 100 MHz)δ12.26, 23.34, 24.77, 27.08, 27.57, 28.82, 29.38, 31.78, 34.98, 36.33, 41.85, 44.55, 45.41, 50.42, 54.78, 64.44, 70.94, 111.39, 115.06, 116.09, 118.86, 134.04, 152.48, 157.68
【0032】
[実施例2]
前記の実施例1と同様にしてステップ1〜4の操作を行い、化合物IVを得た。窒素雰囲気下で化合物IV(0.9g,3.4mmol)、テトラヒドロフラン(10ml)および4,4’−メチレンビス(シクロヘキシルイソシアナート)(0.45g,1.7mmol)を混合し、さらにジラウリン酸ジブチルスズ(10μl)を滴下して40℃で一晩撹拌した(ステップ5b)。溶媒を留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル:n−ヘキサン=9.5:0.5)で分離精製し化合物(2)87%収率で得られた。化合物(2)のH−NMRスペクトルを図2に示す。
【0033】
化合物(2) :
H−NMR(CDCl, 400 MHz)δ1.12(t, J=6.8 Hz, 6H, ethyl)1.35−1.36(m, 4H, methylene)1.56−1.58(m, 8H, methylene)1.25−1.27(m, 2H, methylene)1.58−1.74(m, 18H, cyclohexyl)3.28−3.30(m, 2H, N−CH−) 3.37−3.42(m, 4H, N−CH −)3.49(q, J=6.8 Hz, ethyl)3.91−3.92(m, 4H, −CH −O−)6.83(d, J=9.2 Hz, 4H, ArH)7.81(d, J=9.2 Hz, 4H, ArH)8.00(s, 2H, vinyl)
13C−NMR(CDCl, 100 MHz)δ12.14, 14.05, 20.71, 22.75, 26.68, 27.52, 27.58, 28.55, 28.87, 31.81, 32.54, 33.30, 43.84, 44.70, 49.63, 49.79, 59.72, 63.22, 67.91, 68.47, 111.58, 115.60, 116.38, 118.43, 133.93, 152.56, 155.48, 155.62, 158.45, 170.28
【0034】
(示差走査熱量測定)
得られた化合物の固体をDSC(示差走査熱量計)を用いて加熱すると融点を示さずガラス転移点が現れ、この化合物が非晶質状態であることを確認した。すなわち、得られたDSC曲線より求めた化合物(1)(2)それぞれのガラス転移温度は24℃および34℃であり、測定温度範囲で融点を示さず非晶質状態であることを確認した(図3および4)。
【0035】
(非線形光学定数測定用サンプル)
得られた化合物50mgを酢酸エチル溶液5mlに溶かし、この溶液をITO(Indium tin oxide)電極付きガラス板にスピンコートした。得られた薄膜(厚さ2μm)を測定用サンプルとした。これを化合物(1)は35℃、化合物(2)は40℃に加熱し、1時間コロナポーリングを行った(図5)。印加電圧はそれぞれ9kVおよび8.5kVである。その後、電圧を印加したまま、室温まで冷却した。
【0036】
(非線形光学定数の測定)
非線形光学定数(d値)は、前記サンプルにつきSHG(第2高調波発生)測定装置を用い、常法に従い励起レーザー光の入射方向と垂直な軸を回転させるメーカーフリンジ法にて求めた(d33値)(高分子機能材料シリーズ第6巻 光機能材料, p41−, 高分子学会編, 共立出版(1991))。
【0037】
化合物(1)および化合物(2)のd33値は、各々15.9pm/V,17.7pm/Vであり、2次の非線形光学効果を示すことが確かめられた。
【0038】
【発明の効果】
本発明によれば、容易に非晶性非線形光学化合物を得ることができる。本発明の化合物は成形加工性に優れるため、光−電気信号変換などの通信関連分野の材料として有用である。
【図面の簡単な説明】
【図1】化合物(1)のH−NMRスペクトルである。
【図2】化合物(2)のH−NMRスペクトルである。
【図3】化合物(1)のDSC曲線である。
【図4】化合物(2)のDSC曲線である。
【図5】非線形光学定数測定用サンプルの模式図およびコロナポーリング模式図である。[0001]
[Prior art]
Nonlinear optical materials are important materials used in communication fields such as optical-electrical signal conversion. However, known nonlinear optical materials are generally crystalline materials such as inorganic crystals such as lithium niobate and lithium tantalate, and organic crystals such as 3-nitroaniline and 2-methyl-4-nitroaniline. Since these materials are hard and brittle, they have poor moldability such as thinning. In the case of an organic material, it is possible to form a thin film using a base polymer or the like, but there is a drawback such that the process operation is complicated. There is also a study example in which a non-linear optical functional group is introduced into a side chain or a main chain of a polymer compound. However, in such a method, it is necessary to produce a monomer in which the non-linear optical functional group and a polymerization functional group are bonded.
[0002]
[Problems to be solved by the invention]
From such a background, there is a demand for a nonlinear optical material that can be easily formed into a thin film or the like without performing a complicated operation.
The present inventors have attempted to bond various isocyanate compounds having a ring structure with a nonlinear optical functional group. As a result, the specific urethane-based compound exhibits nonlinear optical characteristics reflecting the introduction of the nonlinear optical functional group, and can be formed into a thin film at room temperature in an amorphous state without using a base polymer or the like. The present invention was completed based on the findings described above.
[0003]
[Means for Solving the Problems]
That is, the present invention is a urethane compound represented by the following formula (I).
[0004]
Embedded image
Figure 2004026742
However, in the formula, A is the following formula (1) to (5):
[0005]
Embedded image
Figure 2004026742
Wherein R is a substituent represented by the following formulas (6) to (9):
[0006]
Embedded image
Figure 2004026742
And n is an integer of 4 to 12. Further, the present invention provides a nonlinear optical material comprising the polyurethane compound. When n is smaller than the above range, crystallization or solubility may be reduced. On the other hand, to obtain a compound exceeding this range, expensive raw materials are required and versatility is poor.
[0007]
The urethane compound of the present invention is particularly preferably the following compound (1) or compound (2).
[0008]
Embedded image
Figure 2004026742
[0009]
Embedded image
Figure 2004026742
[0010]
In the urethane compound of the formula (I) of the present invention, the -NHCOO-bond and the nonlinear optical functional group R of amines are bonded to a cyclic skeleton A having two -NHCOO- bonds by a long-chain alkyl group. Becomes an amorphous nonlinear optical material.
[0011]
In general, low-molecular-weight organic compounds are considered to be easily crystallized. However, in the polyurethane compound of the present invention, the rigidity of the molecule is controlled by introducing a rigid skeleton, conversely, the mobility in the molecule is improved, and the symmetry of the molecule is reduced. For this reason, it is presumed that the most stable molecular packing is hindered, and an amorphous compound equivalent to a high molecular weight organic compound is obtained. That is, the present invention selects an isocyanate having a ring structure as the central skeleton of the molecule and having an asymmetric structure, and a non-linear optical compound having a hydroxyl group-containing long-chain alkyl group having high mobility with respect to urethane. Bound via a bond.
[0012]
(Non-linear optical function group)
As the nonlinear optical functional group (group R) used in the above-mentioned production method, primary amines or secondary amines are used, and 4-amino-4′-nitrodiphenyl sulfide ( 6a), N-cyclohexyl-N- (4-nitrophenyl) amine formula (7a), 2-methyl-4-nitroaniline (8a), N-ethyl-4- (2′-dicyanoethenyl) aniline (9a) and the like Is desirable.
[0013]
Embedded image
Figure 2004026742
[0014]
(Introduction of alkylene groups to nonlinear optical function group; R- (CH 2) n -O -CO-CH 3 in preparation)
A known method may be used to introduce an alkylene group into the above-mentioned nonlinear optical functional group, but typically, it is preferable to react the above-mentioned amines with bromoalkyl acetate.
[0015]
Through such a reaction, an alkylene group (n = 4 to 12) is introduced into the amines. In this reaction, the bromoalkyl acetate is used in an amount of 1 equivalent or more with respect to the amines. About 1.5 equivalents are desirable in practical use. This reaction is carried out in the presence of a weak base catalyst such as triethylamine and pyridine, using a solvent in which aromatic amines such as toluene, benzene and xylene are soluble.
[0016]
The reaction is carried out at 80 to 150C, preferably 110 to 130C. Typically, the reaction is carried out at 120 ° C. for 12 hours or more. If the reaction temperature is lower than the above range, the reaction rate is low, and if the reaction temperature is high, by-products may be generated.
[0017]
(Reactive with isocyanate R- (CH 2) n -OH in preparation)
Next, the nonlinear optical functional group into which the alkylene group has been introduced is hydrolyzed into alcohol. Typical reaction conditions include the use of a polar solvent such as methanol or isopropanol, the addition of 0.2 equivalents of potassium carbonate and water, and the reaction at room temperature for at least 12 hours. Work up with aqueous solution. In this way, by introducing alkylene into a compound constituting the nonlinear optical functional group such as the formulas (6a) to (9a), flexibility is imparted to the molecule and crystallization is suppressed.
[0018]
(Diisocyanate compound: group A)
As the diisocyanate compound (skeleton A) used in the above reaction, it is preferable that the isocyanate group is located at an asymmetric position as described below. Of these, generally available α, 4-tolylene diisocyanate (1a), norbornane diisocyanate (2a), 1,3-bis (isocyanatomethyl) cyclohexane (3a), isophorone diisocyanate (4a) , 4,4'-methylenebis (cyclohexyl isocyanate) (5a) is desirable.
[0019]
Embedded image
Figure 2004026742
[0020]
(Method for producing urethane compound formula (I))
Used to obtain a compound of formula (I), under a nitrogen atmosphere, to a diisocyanate (1a) ~ (5a), a compound having hydroxyl group at the end (R- (CH 2) n -OH ) 2 equivalents or more . As the catalyst, organotins having high activity for the urethane binding reaction are preferable, and examples thereof include dibutyltin laurate such as dibutyltin dilaurate, tetrabutyltin, and tributyltin acetate. The use amount of the catalyst is preferably about 0.1 to 10 mol with respect to the substrate in consideration of the progress of the side reaction. The reaction is preferably performed at 30 to 60 ° C. for about 10 to 24 hours. If the reaction temperature is lower than this, the reaction rate is low, and if it is too high, by-products may be generated. Typically, the reaction is carried out by stirring at 40 ° C. for 12 hours using dibutyltin dilaurate.
[0021]
【Example】
Next, the present invention will be described more specifically based on examples. The compound of the following formula (1) was produced in Example 1, and the compound of the following formula (2) was produced in Example 2. Steps 1 to 4 are common to the first and second embodiments.
[0022]
Embedded image
Figure 2004026742
[0023]
Embedded image
Figure 2004026742
[0024]
The outline of the production process of the compound (1) and the compound (2) is as follows, but is not limited thereto.
[0025]
Embedded image
Figure 2004026742
[0026]
[Example 1]
(Step 1)
Bromopentyl acetate (20 ml, 200 mmol) and toluene (125 ml) were placed in a flask, and triethylamine (20 ml, 150 mmol) and N-ethylaniline (16 ml, 127 mmol) were added at room temperature. The solution was stirred at 120 ° C. overnight. After cooling to room temperature, the solvent was distilled off, and the crude product was separated and purified by silica gel column chromatography (developing solvent; n-hexane: ethyl acetate = 5: 1). Compound I was obtained in 49.7% yield.
[0027]
(Step 2)
Anhydrous N, N-dimethylformamide (16 ml) was cooled on an ice bath, to which POCl 3 (5.8 ml, 62 mmol) was added dropwise and left at room temperature. Compound I (13.9 g, 55 mmol) was added, and the mixture was stirred for 30 minutes and then at 90 ° C. overnight. The mixture was cooled to room temperature, poured into water and extracted with diethyl ether. Washed with aqueous NaHCO 3 and aqueous NaCl and dried over MgSO 4 . The solvent was distilled off, and the residue was separated and purified by silica gel column chromatography (developing solvent; n-hexane: ethyl acetate = 1: 1) to obtain Compound II in a yield of 76.6%.
[0028]
(Step 3)
Compound II (11.8 g, 42 mmol) was dissolved in CH 3 OH (60 ml), K 2 CO 3 (1.2 g, 8.7 mmol) and water were added, and the mixture was stirred at room temperature overnight. The reaction mixture was poured into aqueous NaOH and extracted with ether. Drying over MgSO 4 provided compound III in 45.8% yield.
[0029]
(Step 4)
Malononitrile (3.3 g, 50 mmol) was dissolved in isopropanol (60 ml), and Compound III and 4,4-dimethylaminopyridine (0.7 g, 4.3 mol) were added thereto at room temperature, followed by stirring at 40 ° C. for 3 hours. This solution was poured into an aqueous NaOH solution and extracted with diethyl ether. After drying over MgSO 4 the solvent was distilled off. Separation and purification were performed by silica gel column chromatography (developing solvent; n-hexane: ethyl acetate = 1: 1) to obtain Compound IV in a yield of 30%.
[0030]
(Step 5a)
Under a nitrogen atmosphere, compound IV (0.9 g, 3.4 mmol), tetrahydrofuran (10 ml) and isophorone diisocyanate (0.37 g, 1.7 mmol) are mixed, and dibutyltin dilaurate (10 μl) is further added dropwise. And stirred at 40 ° C. overnight. The solvent was distilled off, and the residue was separated and purified by silica gel column chromatography (developing solvent; ethyl acetate: n-hexane = 9.5: 0.5) to obtain the compound (1) in an 80% yield. FIG. 1 shows the 1 H-NMR spectrum of the compound (1).
[0031]
Compound (1):
1 H-NMR (CDCl 3 , 400 MHz) δ 0.82-0.88 (m, 3H, methyl) 0.96 (s, 2H, methylene) 1.04 (s, 6H, methyl) 1.21 (t) , J = 7.2 Hz, 6H, ethyl) 1.38-1.44 (m, 4H, methylene) 1.60-1.69 (m, 4H, CH 2 -CH- CH 2) 1.60- 1.69 (m, 8H, methylene) 1.66 (d, J = 7.8 Hz, 4H, methylene) 2.90 (d, J = 6.5 Hz, 2H, CH 2 -NH-) 3. 36 (t, J = 7.7 Hz, 4H, methylene) 3.46 (q, J = 7.2 Hz, 4H, ethyl) 3.78 (bs, 1H, NH) 4.04-4.07 ( m, 4H, me hylene) 4.45 (d, J = 7.8 Hz, 1H, CH -NH-) 4.73 (t, J = 6.5 Hz, 1H, CH 2 - NH) 6.63 (d, J = 8.9 Hz, 4H, ArH) 7.41 (s, 2H, Vinyl) 7.77 (d, J = 8.9 Hz, 4H, ArH)
13 C-NMR (CDCl 3 , 100 MHz) δ 12.26, 23.34, 24.77, 27.08, 27.57, 28.82, 29.38, 31.78, 34.98, 36.33 , 41.85, 44.55, 45.41, 50.42, 54.78, 64.44, 70.94, 111.39, 115.06, 116.09, 118.86, 134.04, 152. .48, 157.68
[0032]
[Example 2]
The operations of Steps 1 to 4 were performed in the same manner as in Example 1 to obtain Compound IV. Under a nitrogen atmosphere, compound IV (0.9 g, 3.4 mmol), tetrahydrofuran (10 ml) and 4,4′-methylenebis (cyclohexyl isocyanate) (0.45 g, 1.7 mmol) were mixed, and dibutyltin dilaurate (0.45 g, 1.7 mmol) was further added. 10 μl) was added dropwise and stirred at 40 ° C. overnight (step 5b). The solvent was distilled off, and the residue was separated and purified by silica gel column chromatography (developing solvent; ethyl acetate: n-hexane = 9.5: 0.5) to obtain Compound (2) in a yield of 87%. FIG. 2 shows the 1 H-NMR spectrum of the compound (2).
[0033]
Compound (2):
1 H-NMR (CDCl 3 , 400 MHz) δ 1.12 (t, J = 6.8 Hz, 6H, ethyl) 1.35-1.36 (m, 4H, methylene) 1.56-1.58 ( m, 8H, methylene) 1.25 to 1.27 (m, 2H, methylene) 1.58-1.74 (m, 18H, cyclohexyl) 3.28-3.30 (m, 2H, N- CH- ) ) 3.37-3.42 (m, 4H, N- CH 2 -) 3.49 (q, J = 6.8 Hz, ethyl) 3.91-3.92 (m, 4H, - CH 2 - O-) 6.83 (d, J = 9.2 Hz, 4H, ArH) 7.81 (d, J = 9.2 Hz, 4H, ArH) 8.00 (s, 2H, vinyl)
13 C-NMR (CDCl 3 , 100 MHz) δ 12.14, 14.05, 20.71, 22.75, 26.68, 27.52, 27.58, 28.55, 28.87, 31.81 , 32.54, 33.30, 43.84, 44.70, 49.63, 49.79, 59.72, 63.22, 67.91, 68.47, 111.58, 115.60, 116. .38, 118.43, 133.93, 152.56, 155.48, 155.62, 158.45, 170.28
[0034]
(Differential scanning calorimetry)
When the solid of the obtained compound was heated using DSC (differential scanning calorimeter), a glass transition point appeared without showing a melting point, and it was confirmed that this compound was in an amorphous state. That is, the glass transition temperatures of the compounds (1) and (2) determined from the obtained DSC curves were 24 ° C. and 34 ° C., respectively, indicating that the compounds (1) and (2) were in an amorphous state without a melting point in the measurement temperature range ( Figures 3 and 4).
[0035]
(Sample for measuring nonlinear optical constants)
50 mg of the obtained compound was dissolved in 5 ml of an ethyl acetate solution, and this solution was spin-coated on a glass plate with an ITO (Indium tin oxide) electrode. The obtained thin film (thickness: 2 μm) was used as a sample for measurement. This was heated to 35 ° C. for compound (1) and 40 ° C. for compound (2), and corona-poled for 1 hour (FIG. 5). The applied voltages are 9 kV and 8.5 kV, respectively. Then, it cooled to room temperature, applying a voltage.
[0036]
(Measurement of nonlinear optical constant)
The nonlinear optical constant (d value) was determined for the sample by a maker fringe method using an SHG (second harmonic generation) measuring device and rotating the axis perpendicular to the incident direction of the excitation laser beam according to a conventional method (d ( 33 values) (Polymer Functional Materials Series Vol. 6, Optical Functional Materials, p41-, edited by The Society of Polymer Science, Kyoritsu Publishing (1991))
[0037]
D 33 value of the compound (1) and the compound (2) are each 15.9pm / V, 17.7pm / V, to exhibit second-order nonlinear optical effect was confirmed.
[0038]
【The invention's effect】
According to the present invention, an amorphous nonlinear optical compound can be easily obtained. Since the compound of the present invention is excellent in moldability, it is useful as a material in communication-related fields such as optical-electrical signal conversion.
[Brief description of the drawings]
FIG. 1 is a 1 H-NMR spectrum of a compound (1).
FIG. 2 is a 1 H-NMR spectrum of a compound (2).
FIG. 3 is a DSC curve of compound (1).
FIG. 4 is a DSC curve of compound (2).
FIG. 5 is a schematic diagram of a sample for measuring a nonlinear optical constant and a schematic diagram of corona poling.

Claims (3)

下式(I)にて表されるウレタン化合物。
Figure 2004026742
ただし、式中、Aは下式(1)〜(5):
Figure 2004026742
のいずれかで表される置換基であり、
Rは下式(6)〜(9):
Figure 2004026742
のいずれかで表される置換基であり、nは4〜12の整数である。
A urethane compound represented by the following formula (I):
Figure 2004026742
However, in the formula, A is the following formula (1) to (5):
Figure 2004026742
Is a substituent represented by any of
R is the following formula (6) to (9):
Figure 2004026742
And n is an integer of 4 to 12.
下記のいずれかの化合物である請求項1のウレタン化合物。
Figure 2004026742
Figure 2004026742
The urethane compound according to claim 1, which is any one of the following compounds.
Figure 2004026742
Figure 2004026742
請求項1の化合物からなる非線形光学材料。A nonlinear optical material comprising the compound according to claim 1.
JP2002187066A 2002-06-27 2002-06-27 Nonlinear optical material Pending JP2004026742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002187066A JP2004026742A (en) 2002-06-27 2002-06-27 Nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002187066A JP2004026742A (en) 2002-06-27 2002-06-27 Nonlinear optical material

Publications (1)

Publication Number Publication Date
JP2004026742A true JP2004026742A (en) 2004-01-29

Family

ID=31182212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002187066A Pending JP2004026742A (en) 2002-06-27 2002-06-27 Nonlinear optical material

Country Status (1)

Country Link
JP (1) JP2004026742A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153890A (en) * 2005-12-01 2007-06-21 Natl Starch & Chem Investment Holding Corp New material having super-molecular structure, process and use
WO2015012407A1 (en) * 2013-07-26 2015-01-29 富士フイルム株式会社 Cellulose acylate film, novel composition, polarizing plate, and liquid-crystal display device
JP2016153870A (en) * 2014-09-03 2016-08-25 富士フイルム株式会社 Polymer film, polarizing plate, and liquid crystal display device
US10040754B2 (en) 2013-02-26 2018-08-07 Fujifilm Corporation Cellulose acylate film, novel compound, polarizing plate and liquid crystal display device
US10113040B2 (en) 2014-09-03 2018-10-30 Fujifilm Corporation Polymer film, polarizing plate and liquid crystal display device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153890A (en) * 2005-12-01 2007-06-21 Natl Starch & Chem Investment Holding Corp New material having super-molecular structure, process and use
JP2013241419A (en) * 2005-12-01 2013-12-05 Henkel Ag & Co Kgaa New material forming super-molecular structure, process and use
US9234067B2 (en) 2005-12-01 2016-01-12 Henkel Ag & Co. Kgaa Material forming supramolecular structures, process and uses
US10040754B2 (en) 2013-02-26 2018-08-07 Fujifilm Corporation Cellulose acylate film, novel compound, polarizing plate and liquid crystal display device
WO2015012407A1 (en) * 2013-07-26 2015-01-29 富士フイルム株式会社 Cellulose acylate film, novel composition, polarizing plate, and liquid-crystal display device
CN105392833A (en) * 2013-07-26 2016-03-09 富士胶片株式会社 Cellulose acylate film, novel composition, polarizing plate, and liquid-crystal display device
JPWO2015012407A1 (en) * 2013-07-26 2017-03-02 富士フイルム株式会社 Cellulose acylate film, novel compound, polarizing plate and liquid crystal display device
JP2016153870A (en) * 2014-09-03 2016-08-25 富士フイルム株式会社 Polymer film, polarizing plate, and liquid crystal display device
US10113040B2 (en) 2014-09-03 2018-10-30 Fujifilm Corporation Polymer film, polarizing plate and liquid crystal display device

Similar Documents

Publication Publication Date Title
JP6598390B2 (en) Liquid crystal compound having difluoromethoxy crosslink and use thereof
US10494570B2 (en) Liquid crystal compound containing difluormethoxy bridge, composition and application thereof
JP3781432B2 (en) Highly functionalized polyurethane
US4996301A (en) Polyfunctional α-diazo-β-keto esters and their use in light-sensitive compositions
JPH02104547A (en) Non-linear optically active diol and polyurethane produced therefrom
JP2009256327A (en) Method for producing cycloalkanedicarboxylic acid monoester
AU2014211407A1 (en) 2-oxo-1,3-dioxolane-4-carboxamide building blocks, their preparation and use
JP2004026742A (en) Nonlinear optical material
WO2017063419A1 (en) Organosilicone chain extender and application
JPH0370726A (en) Monocarbamatediol, polymer derived therefrom, and nlo-active material
US6174455B1 (en) Liquid crystalline compounds and process for producing the same
EP2003488A2 (en) Second order nonlinear optical chromophores, Polymers containing the same, and electro-optic devices therefrom
JP7474617B2 (en) Polymer composition, blocked polymer composition, and method for producing the same
KR101598545B1 (en) Polyamide-based photoreactive polymer and preparation method thereof
JP2004043340A (en) Urethane compound and organic photorefractive material using the same
NO982877L (en) Method of Preparation of Epoxy Stereoid
JP3185807B2 (en) Aliphatic polycyclic diisocyanate compound and method for producing the same
KR102592383B1 (en) Diamine compound and method for producing intermediate thereof
JP2819827B2 (en) Cyclobutenedione derivative and method for producing the same
JP4581074B2 (en) Ordered polyurethane and process for producing the same
JP3020119B2 (en) 2-furylacrylic acid disubstituted anilide compound and organic nonlinear optical material
US6720039B1 (en) Liquid crystalline compounds and process for producing the same
JP2507615B2 (en) Process for producing poly N-oxazoline
JP2002020381A (en) Bifunctional cyclic thiocarbonate having five-membered ring
JP2000159782A (en) Cyclotetrasiloxane having (meth)acryloxypropyl group, and production thereof