【0001】
【発明の属する技術分野】
本発明は、高圧電源装置に関し、さらに詳しくは、低コストになると共に装置を小型化することが出来る高圧電源装置に関する。
【0002】
【従来の技術】
図4は、従来の高圧電源装置の一例を示す回路図である。
この高圧電源装置500は、交流電圧(例えば24V)を出力するドライブ回路1と、一次側に入力された前記交流電圧を昇圧した交流電圧(例えば1.25kVo−p)を二次側に出力するトランス2と、コンデンサCa〜ChとダイオードDa〜Dhを組み合わせたコッククロフト−ウオルトン回路により前記交流電圧を整流・昇圧した出力電圧Vo(例えば10kV)を出力する倍電圧整流回路3と、倍電圧整流回路3の出力電圧Voを検出する出力電圧検出回路54と、出力電圧Voを抵抗R51,R52で1/2000程度に分圧した分圧電圧が参照電圧Vs(例えば5V)に一致するようにドライブ回路1を制御する制御回路6とを具備している。
【0003】
【発明が解決しようとする課題】
従来の高圧電源装置500では、出力電圧検出回路54の抵抗R51に高耐圧抵抗が必要となり、高コストになると共に装置が大型化する問題点があった。
【0004】
また、従来の高圧電源装置500は、複数台を並列接続できないため(複数台の高圧電源装置500を並列接続すると、最も出力電圧Voが高い高圧電源装置500に負荷が集中してしまうため、実際上、並列接続できない)、出力電流を大きくするためには、定格の大きなトランス等を用いる必要があり、少数生産品となるため、高コストになる問題点があった。
【0005】
そこで、本発明の目的は、低コストになると共に装置を小型化することが出来る高圧電源装置を提供することにある。
【0006】
【課題を解決するための手段】
第1の観点では、本発明は、コンデンサ(C)とダイオード(D)で構成される倍電圧整流回路(3)と、前記倍電圧整流回路(3)の中間電圧(Vm)を検出する中間電圧検出回路(4)と、前記倍電圧整流回路(3)の出力電流(Io)を検出する出力電流検出回路(5)と、前記中間電圧(Vm)および前記出力電流(Io)の両方に基づいて前記倍電圧整流回路(3)の入力を制御する制御回路(6)とを具備したことを特徴とする高圧電源装置(100)を提供する。
【0007】
上記構成において、中間電圧(Vm)とは、倍電圧整流回路(3)で入力電圧を出力電圧(Vo)へ昇圧する過程で生じる電圧である。例えば、コッククロフト−ウオルトン回路の初段と終段の間にある中間段で生じる電圧である。
【0008】
上記第1の観点による高圧電源装置(100)では、倍電圧整流回路(3)の中間電圧(Vm)を検出するので、出力電圧(Vo)を検出するよりも耐圧の低い部品で済む。このため、低コストになると共に装置を小型化することが出来る。
また、制御回路(6)は、中間電圧(Vm)および出力電流(Io)の両方に基づいて倍電圧整流回路(3)の入力を制御するので、出力電圧(Vo)を安定化することが出来る。すなわち、中間電圧(Vm)だけに基づいて倍電圧整流回路(3)の入力を制御すると、中間電圧(Vm)は安定化することが出来るが、出力電流(Io)が大きくなるほど出力電圧(Vo)は低下してしまう。そこで、出力電流(Io)の増加による出力電圧(Vo)の低下を補償するように、出力電流(Io)を基に倍電圧整流回路(3)の入力を制御し、出力電圧(Vo)を安定化する。この結果、出力電流(Io)が大きくなるほど、中間電圧(Vm)は高くなることになる。
【0009】
第2の観点では、本発明は、上記第1の観点による高圧電源装置(100)を複数台並列に接続したことを特徴とする高圧電源装置(200)を提供する。
前述したように、第1の観点による高圧電源装置(100)では、出力電流(Io)が増加すると、出力電圧(Vo)が低下する傾向がある。つまり、複数台が並列接続されているとき、負荷の軽い装置ほど出力電圧(Vo)が高いことになる。このため、自動的に負荷が分散することになり、実際上、並列接続が可能となる。
従って、第2の観点による高圧電源装置(200)では、大量生産品の高圧電源装置(100)を複数並列にして製造でき、低コストにすることが出来る。
【0010】
【発明の実施の形態】
以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。
【0011】
−第1の実施形態−
図1は、第1の実施形態にかかる高圧電源装置100を示す回路図である。このような高圧電源装置は、例えば、FED(Field Emmission Display)等のフラットパネルディスプレイや、電気集塵機・陰イオン発生装置に使用される。
【0012】
この高圧電源装置100は、交流電圧(例えば24V)を出力するドライブ回路1と、一次側に入力された前記交流電圧を昇圧した交流電圧(例えば1.25kVo−p)を二次側に出力するトランス2と、コンデンサCa〜ChとダイオードDa〜Dhを組み合わせたコッククロフト−ウオルトン回路により前記交流電圧を整流・昇圧した出力電圧Vo(例えば10kV)を出力する倍電圧整流回路3と、倍電圧整流回路3の中間電圧Vm(例えば2.5kV)を検出する中間電圧検出回路4と、倍電圧整流回路3の出力電流Ioを検出する出力電流検出回路5と、中間電圧Vmを抵抗R1,R2で1/500程度に分圧した分圧電圧と出力電流Ioによる抵抗R3での電圧降下を減じた電圧を加えて参照電圧Vs(例えば5V)に一致するようにドライブ回路1を制御する制御回路6とを具備している。
【0013】
図2は、高圧電源装置100の出力特性を示すグラフである。
高圧電源装置100の出力特性を実線で示す。
また、中間電圧Vmのみによる制御の出力特性を二点鎖線で示す。
また、従来の高圧電源装置500の出力特性を破線で示す。
なお、出力電流検出回路5の抵抗R3の調整により、高圧電源装置100の出力特性を従来の高圧電源装置500の出力特性に近づけることが出来る。
【0014】
以上の高圧電源装置100によれば、耐圧の低い抵抗R1,R2で済むため、低コストになると共に装置を小型化することが出来る。
【0015】
−第2の実施形態−
図3は、第2の実施形態にかかる高圧電源装置200を示す回路図である。
この高圧電源装置200は、2台の高圧電源装置100A,100Bの出力端子を結合した構成である。
【0016】
高圧電源装置100A,100Bは、それぞれ第1の実施形態にかかる高圧電源装置である。
【0017】
仮に高圧電源装置100Aに負荷が偏ると、高圧電源装置100Aの出力電圧が高圧電源装置100Bの出力電圧より下がるため、負荷は高圧電源装置100Bに移るようになり、高圧電源装置100A,100Bに負荷が自動的に分担される。
【0018】
以上の高圧電源装置200によれば、定格が小さい部品を採用できる高圧電源装置100A,100Bを並列にして高負荷に対応することが可能となり、低コストにすることが出来る。
【0019】
なお、上記第2の実施形態では、2つの高圧電源装置100A,100Bを組み合わせたが、3以上の高圧電源装置を組み合わせてもよい。この場合には、さらに高負荷に対応することが可能になる。
【0020】
【発明の効果】
本発明の高圧電源装置(100)によれば、倍電圧整流回路(3)の出力電圧(Vo)ではなく、中間電圧(Vm)を検出して制御するので、高価・大型の高耐圧部品が不要となり、低コスト化・小型化が可能となる。また、中間電圧(Vm)だけでなく、出力電流(Io)をも検出して制御するので、出力電圧(Vo)を好適に安定化できる。
【0021】
また、本発明の高圧電源装置(200)によれば、定格が小さい部品を採用できる高圧電源装置(100)を複数台並列にして高負荷に対応するので、低コストにすることが出来る。
【図面の簡単な説明】
【図1】本発明の第1の実施形態にかかる高圧電源装置を示す回路図である。
【図2】図1の高圧電源装置の出力特性を示すグラフである。
【図3】本発明の第2の実施形態にかかる高圧電源装置を示す回路図である。
【図4】従来の高圧電源装置を示す回路図である。
【符号の説明】
100,200 高圧電源回路
1 ドライブ回路
2 トランス
3 倍電圧整流回路
4 中間電圧検出回路
5 出力電圧検出回路
6 制御回路
C1,C2 バイパスコンデンサ
Ca〜Ch コンデンサ
Da〜Dh ダイオード
Io 出力電流
Vm 中間電圧
Vo 出力電圧[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-voltage power supply, and more particularly, to a high-voltage power supply that can be reduced in cost and reduced in size.
[0002]
[Prior art]
FIG. 4 is a circuit diagram showing an example of a conventional high-voltage power supply device.
The high-voltage power supply device 500 outputs a drive circuit 1 that outputs an AC voltage (for example, 24 V) and an AC voltage (for example, 1.25 kVo-p) obtained by boosting the AC voltage input to the primary side to the secondary side. A transformer 2, a voltage doubler rectifier 3 for outputting an output voltage Vo (for example, 10 kV) obtained by rectifying and boosting the AC voltage by a Cockcroft-Walton circuit in which capacitors Ca to Ch and diodes Da to Dh are combined; And a drive circuit such that the divided voltage obtained by dividing the output voltage Vo to about 1/2000 by the resistors R51 and R52 matches the reference voltage Vs (for example, 5V). And a control circuit 6 for controlling the control circuit 1.
[0003]
[Problems to be solved by the invention]
In the conventional high-voltage power supply device 500, the resistor R51 of the output voltage detection circuit 54 needs to have a high withstand voltage resistance, so that there is a problem that the cost is increased and the device is enlarged.
[0004]
In addition, the conventional high-voltage power supply device 500 cannot be connected in parallel. (If a plurality of high-voltage power supply devices 500 are connected in parallel, the load concentrates on the high-voltage power supply device 500 having the highest output voltage Vo. In addition, in order to increase the output current, it is necessary to use a transformer with a large rating, and the number of products is small, so that there is a problem that the cost is high.
[0005]
Therefore, an object of the present invention is to provide a high-voltage power supply device that can be reduced in cost and can be downsized.
[0006]
[Means for Solving the Problems]
In a first aspect, the present invention provides a voltage doubler rectifier circuit (3) including a capacitor (C) and a diode (D), and an intermediate voltage detector (Vm) for detecting an intermediate voltage (Vm) of the voltage doubler rectifier circuit (3). A voltage detection circuit (4), an output current detection circuit (5) for detecting an output current (Io) of the voltage doubler rectifier circuit (3), and both an intermediate voltage (Vm) and the output current (Io). And a control circuit (6) for controlling the input of the voltage doubler rectifier circuit (3) based on the high voltage power supply device (100).
[0007]
In the above configuration, the intermediate voltage (Vm) is a voltage generated in the process of boosting the input voltage to the output voltage (Vo) by the voltage doubler rectifier circuit (3). For example, a voltage generated at an intermediate stage between the first stage and the last stage of the Cockcroft-Walton circuit.
[0008]
In the high-voltage power supply device (100) according to the first aspect, since the intermediate voltage (Vm) of the voltage doubler rectifier circuit (3) is detected, components having a lower withstand voltage than the detection of the output voltage (Vo) can be used. Therefore, the cost can be reduced and the device can be downsized.
Further, since the control circuit (6) controls the input of the voltage doubler rectifier circuit (3) based on both the intermediate voltage (Vm) and the output current (Io), it is possible to stabilize the output voltage (Vo). I can do it. That is, when the input of the voltage doubler rectifier circuit (3) is controlled based only on the intermediate voltage (Vm), the intermediate voltage (Vm) can be stabilized, but the output voltage (Vo) increases as the output current (Io) increases. ) Drops. Therefore, the input of the voltage doubler rectifier circuit (3) is controlled based on the output current (Io) to compensate for the decrease in the output voltage (Vo) due to the increase in the output current (Io), and the output voltage (Vo) is adjusted. Stabilize. As a result, the intermediate voltage (Vm) increases as the output current (Io) increases.
[0009]
In a second aspect, the present invention provides a high-voltage power supply (200), wherein a plurality of high-voltage power supplies (100) according to the first aspect are connected in parallel.
As described above, in the high-voltage power supply (100) according to the first aspect, when the output current (Io) increases, the output voltage (Vo) tends to decrease. That is, when a plurality of units are connected in parallel, the output voltage (Vo) increases as the load of the device decreases. For this reason, the load is automatically distributed, and parallel connection is practically possible.
Accordingly, in the high-voltage power supply (200) according to the second aspect, mass-produced high-voltage power supplies (100) can be manufactured in parallel, and the cost can be reduced.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings. Note that the present invention is not limited to this.
[0011]
-1st Embodiment-
FIG. 1 is a circuit diagram showing a high-voltage power supply device 100 according to the first embodiment. Such a high-voltage power supply device is used, for example, for a flat panel display such as a field emission display (FED), an electric dust collector, and an anion generator.
[0012]
The high-voltage power supply device 100 outputs a drive circuit 1 that outputs an AC voltage (for example, 24 V) and an AC voltage (for example, 1.25 kVo-p) obtained by boosting the AC voltage input to the primary side to the secondary side. A transformer 2, a voltage doubler rectifier 3 for outputting an output voltage Vo (for example, 10 kV) obtained by rectifying and boosting the AC voltage by a Cockcroft-Walton circuit in which capacitors Ca to Ch and diodes Da to Dh are combined; 3, an intermediate voltage detection circuit 4 for detecting an intermediate voltage Vm (for example, 2.5 kV), an output current detection circuit 5 for detecting an output current Io of the voltage doubler rectifier circuit 3, and an intermediate voltage Vm which is determined by resistors R1 and R2. A voltage divided by about / 500 and a voltage obtained by reducing a voltage drop in the resistor R3 due to the output current Io are added to match the reference voltage Vs (for example, 5 V). And a control circuit 6 for controlling the drive circuit 1 as.
[0013]
FIG. 2 is a graph showing the output characteristics of the high-voltage power supply device 100.
Output characteristics of the high-voltage power supply device 100 are indicated by solid lines.
The output characteristic of the control using only the intermediate voltage Vm is indicated by a two-dot chain line.
The output characteristics of the conventional high-voltage power supply device 500 are indicated by broken lines.
By adjusting the resistance R3 of the output current detection circuit 5, the output characteristics of the high-voltage power supply 100 can be made closer to the output characteristics of the conventional high-voltage power supply 500.
[0014]
According to the high-voltage power supply device 100 described above, since only the resistors R1 and R2 with low withstand voltage are required, the cost can be reduced and the device can be downsized.
[0015]
-2nd Embodiment-
FIG. 3 is a circuit diagram showing a high-voltage power supply device 200 according to the second embodiment.
The high-voltage power supply 200 has a configuration in which output terminals of two high-voltage power supplies 100A and 100B are connected.
[0016]
The high-voltage power supplies 100A and 100B are each a high-voltage power supply according to the first embodiment.
[0017]
If the load is biased to the high-voltage power supply 100A, the output voltage of the high-voltage power supply 100A falls below the output voltage of the high-voltage power supply 100B. Is automatically shared.
[0018]
According to the above high-voltage power supply device 200, high-voltage power supply devices 100A and 100B that can employ components with low ratings can be used in parallel to cope with a high load, and cost can be reduced.
[0019]
In the second embodiment, two high-voltage power supplies 100A and 100B are combined, but three or more high-voltage power supplies may be combined. In this case, it is possible to cope with a higher load.
[0020]
【The invention's effect】
According to the high-voltage power supply device (100) of the present invention, since the intermediate voltage (Vm) is detected and controlled instead of the output voltage (Vo) of the voltage doubler rectifier circuit (3), expensive and large-sized high-voltage parts can be used. It becomes unnecessary, and cost reduction and size reduction become possible. Further, not only the intermediate voltage (Vm) but also the output current (Io) is detected and controlled, so that the output voltage (Vo) can be suitably stabilized.
[0021]
Further, according to the high-voltage power supply device (200) of the present invention, a plurality of high-voltage power supply devices (100) that can employ components with small ratings are arranged in parallel to cope with a high load, so that the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a high-voltage power supply device according to a first embodiment of the present invention.
FIG. 2 is a graph showing output characteristics of the high-voltage power supply device of FIG.
FIG. 3 is a circuit diagram illustrating a high-voltage power supply device according to a second embodiment of the present invention.
FIG. 4 is a circuit diagram showing a conventional high-voltage power supply.
[Explanation of symbols]
100, 200 High-voltage power supply circuit 1 Drive circuit 2 Transformer 3 Double voltage rectifier circuit 4 Intermediate voltage detection circuit 5 Output voltage detection circuit 6 Control circuits C1, C2 Bypass capacitors Ca to Ch Capacitors Da to Dh Diode Io Output current Vm Intermediate voltage Vo output Voltage