JP2004023772A - Dielectric resonator and its manufacturing method - Google Patents

Dielectric resonator and its manufacturing method Download PDF

Info

Publication number
JP2004023772A
JP2004023772A JP2002180561A JP2002180561A JP2004023772A JP 2004023772 A JP2004023772 A JP 2004023772A JP 2002180561 A JP2002180561 A JP 2002180561A JP 2002180561 A JP2002180561 A JP 2002180561A JP 2004023772 A JP2004023772 A JP 2004023772A
Authority
JP
Japan
Prior art keywords
dielectric resonator
circuit board
dielectric
manufacturing
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002180561A
Other languages
Japanese (ja)
Inventor
Hironori Hatono
鳩野 広典
Masakatsu Kiyohara
清原 正勝
Tomokazu Ito
伊藤 朋和
Toshio Oguro
小黒 利雄
Masayuki Nagaishi
永石 昌之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2002180561A priority Critical patent/JP2004023772A/en
Publication of JP2004023772A publication Critical patent/JP2004023772A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small sized dielectric resonator which can sufficiently follow transition to microwave strips. <P>SOLUTION: A dielectric resonator 11 is directly bonded on a circuit board 12. An electrode 13 for earth and a wiring 14 are formed in the circuit board 12. The dielectric resonator 11 is formed by the aero- deposition method, and the thickness thereof in the vertical direction in respect to the vertical direction of a substrate is 10-500 micrometers. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、無線LAN、携帯電話等の高速デジタル通信、自動車車載レーダなどの高度道路交通システム、人体などの移動物を検知する検知装置、周波数制御発振器等で用いられる通信機器に搭載されるマイクロ波帯域用の誘電体共振器とその作製方法に関する。
【0002】
【従来の技術】
誘電体共振器は自由空間におかれた場合放射損を伴うため、その周囲を導体で遮蔽して使用される場合が多い。その構造には図7(a)に示すような、導体円筒空洞内の誘電体円柱両端面が空洞両端面に接する構造の空洞両端短絡型共振器、(b)に示すような、円柱が導体に接しない構造の空洞開放型共振器、(c)に示すような、(d)に示すような、円柱一端のみが導体面に接する構造の空洞イメージ型共振器、(e)に示すような空洞直径を無限大として導体側壁を取り去る場合の平行板短絡型、(f)に示すような、平行板開放型、平行板イメージ型共振器などがある。これらはマイクロ波集積回路用共振器として重要である。
【0003】
従来の誘電体共振器の作製は、誘電率が数十〜百数十程度の酸化物セラミックス粉体を例えば円柱状に成形した後焼成して、これを寸法精度よく研削を行う方法をとる。数GHzまでの誘電体共振器では直径や厚みが数ミリ程度の大きさの焼成体が使用されている。
【0004】
現状でよく用いられている構成はTE01δモードを使用した空洞開放型共振器の一種であり、誘電体共振器を導体カバーの中で、低誘電率材料の支持体によって支持されることで設置されている。具体的には、絶縁基板上に低誘電率の支持体(スペーサ)を接着剤で取り付け、この支持体の上に誘電体共振器を接着剤で取り付けるという方法がとられている。
【0005】
特開2001−102824号では、誘電体共振器の取り付け方法の提案として、絶縁基板上に膜部からなる載置部を設け、載置部上に誘電体共振器を載置して、誘電体共振器の下面と絶縁基板との間に隙間を形成し、隙間に設けられた接着剤で誘電体共振器を絶縁基板に取り付けた構成を挙げており、この理由として誘電体共振器と絶縁基板との間の接着剤の厚みのばらつきが、誘電体共振器と電極部との間の相互作用による共振周波数の変動を引き起こすためとしている。
【0006】
また、特許第3168773号公報では、厚膜体(支持体)の中央部分に凹部を設け、この凹部に接着剤を入れて誘電体共振器を基板に固着し、基板に形成した電極部と誘電体共振器との間において、安定した共振周波数を得るようにしている。
【0007】
これらの取り付け方法は誘電体共振器が焼成体として基板と別個に作製されるために接着という工程を採用する必要があることを示している。
【0008】
誘電体共振器のトレンドを見ると、携帯電話やPHS等の急速な普及により利用者が増加し3GHz以下の周波数帯が逼迫した状況になりつつあることに伴い、使用されるマイクロ波の周波数は高周波へとシフトしつつあり、無線LAN(4.9GHz)、ETC(有料道路自動料金収集システム、5.8GHz)などを経て、さらには30GHz以上のマイクロ波帯への移行も検討されるようになってきている。誘電体共振器の寸法は、使用するマイクロ波の周波数に依存し、周波数が高くなると寸法は小さくなる。
【0009】
特開2002−16410号公報にはTE01δ誘電体共振素子の寸法として、円柱形状の誘電体共振素子の直径は10GHz帯用で約4〜5mm、60〜70GHz帯用で約0.6〜0.7mmであることが記載されている。
【0010】
【発明が解決しようとする課題】
前記したように、マイクロ波帯域における誘電体共振器の寸法は大きさが1mm以下となる場合も生じ、従来の焼成・研削プロセスでは、ハンドリングの難しさや寸法精度、接着による取り付け精度の問題が発生することが懸念される。
【0011】
本発明は、高周波化に伴い形状が小さく、寸法精度が厳しくなりつつあるために作製上さまざまな問題が生じてくる誘電体共振器において、これらを解決することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成すべく、本発明は基板やチップ内に厚膜セラミックス誘電体を直接形成した。
具体的には、本発明に係る誘電体共振器は、回路基板に設置される誘電体共振器において、主となる材質がセラミックスであり、基板上の設置面に対して垂直方向の厚みが10μm〜500μmである構成とした。
【0013】
所望の共振周波数を得るには、厚みのみでなく直径もそのファクターとなるが、後述するエアロデポジション法によれば、厚みのみでなく直径寸法も容易にコントロールすることができる。
【0014】
また10μm〜500μmとしたのは、10μmが後加工の表面研磨で膜厚精度良く研磨加工が達成されると考えられる膜厚の下限値と考えられ、ゾルゲル法、PVD法などでは達成されない膜厚である。また500μmが後述するエアロでポジション法で問題なく達成できる上限に近く、また焼成体の研削やハンドリングが困難になってくる厚みであり、周波数的にも誘電率数十の材料を用いた場合で数十GHzとなる領域である。
【0015】
また、エアロデポジション法により誘電体共振器は、多結晶であり、前記構造物を構成する結晶は実質的に結晶配向性がなく、また前記結晶同士の界面にはガラス層からなる粒界層が実質的に存在しないものとすることができ、硬さ、耐摩耗性、耐食性などの機械的・化学的特性に優れた誘電体共振器となる。
なお、本明細書では上記多結晶等については以下のように定義する。
(多結晶)
本件では結晶子が接合・集積してなる構造体を指す。結晶子は実質的にそれひとつで結晶を構成しその径は通常5nm以上である。ただし、微粒子が破砕されずに構造物中に取り込まれるなどの場合がまれに生じるが、実質的には多結晶である。
(結晶配向性)
本件では多結晶である構造物中での結晶軸の配向具合を指し、配向性があるかないかは、一般には実質的に配向性のないと考えられる原料粉体微粒子を測定したデータあるいは粉末X線回折などによって標準データとされたJCPDS(ASTM)データ、を指標として判断する。
構造物中の脆性材料結晶を構成する物質を挙げたこの指標における主要な回折3ピークのピーク強度を100%として、構造物の同物質測定データ中、最も主要なピークのピーク強度をこれに揃えた場合に、他の2つのピークのピーク強度が指標の値と比較して30%以内にそのずれが収まっている状態を,本件では実質的に配向性がないと称する。
(界面)
本件では結晶子同士の境界を構成する領域を指す。
(粒界層)
界面あるいは焼結体でいう粒界に位置するある厚み(通常数nm〜数μm)を持つ層で、通常結晶粒内の結晶構造とは異なるアモルファス構造をとり、また場合によっては不純物の偏析を伴う。
【0016】
また、本発明の誘電体共振器には、回路基板または回路基板上に設置されるチップ例えばTE01δモードで共振させるためのスペーサに、接着剤を介することなく直接接合された構造、その直接接合部はアンカー部を形成していること、更には誘電体共振器の側壁が回路基板表面に対し略垂直に立ち上がった構造が含まれる。
本件においてアンカー部とは、基材と構造物の界面に形成された凹凸を指し、特に、予め基材に凹凸を形成させるのではなく、構造物形成時に、元の基材の表面精度を変化させて形成される凹凸のことを指す。
【0017】
また、本発明に係る誘電体共振器の作製方法は、誘電体共振器の原材料となるセラミックス微粒子をガス中に分散させたエアロゾルを、回路基板または回路基板上に設置されるチップに向けて吹き付けて前記セラミックス微粒子を衝突させて、前記回路基板または回路基板上のスペーサに、前記セラミックス微粒子材料が接合してなる膜状の誘電体共振器を直接形成する工程を有する構成とした。
【0018】
ここで、上記の作製方法はセラミック微粒子をガス中に分散したエアロゾルを基板に吹き付けて、基板上にセラミックの構造物を形成する方法はエアロゾルデポジション法と呼ばれる。特許第3265481号、国際出願特許WO 01/27348 A1に開示されるものが知られている。
【0019】
例えば500μm以下の厚み領域に至っては、従来の焼成・研削による共振器作製方法ではハンドリングの問題などで達成は非常に困難である。よって、本発明にあっては、誘電体共振器の原材料となるセラミックス微粒子をガス中に分散させたエアロゾルを、回路基板または回路基板上に設置するチップに向けて吹き付けてセラミックス微粒子を衝突させて、回路基板または回路基板上に設置するチップの上に、セラミックス微粒子材料が接合してなる膜状誘電体共振器を形成する。
【0020】
またこの作製方法のうち、誘電体共振器を形成する工程が、常温環境下で行われる。ここで常温とは、セラミックスの焼成温度に対して十分低い室温付近の温度のことであり、実質的に200℃以下の温度を言う。
【0021】
ここで、回路基板とはテフロン、ガラスエポキシ、セラミックスなどの絶縁体上に金属箔や導体配線が形成されたものや金属板上に有機材料やセラミックス材料の誘電体膜が形成され、このうえに金属箔や導体配線が形成されたものであり、誘電体共振器を設ける箇所は絶縁体上であっても良いし、金属箔や導体配線上であってもよい。回路基板上に設置するチップとは、誘電体共振器の誘電率よりも低い絶縁体材料や導電体材料から形成される支持体や、あるいは箱状の金属でできた遮蔽導体、この遮蔽導体の内部に支持体を形成したものなどが挙げられる。支持体を直接基板上に形成したものは前述の回路基板に含まれる。
【0022】
また本発明における誘電体共振器の作製方法としては、誘電体共振器の原材料となるセラミックス微粒子をガス中に分散させたエアロゾルを、回路基板または回路基板上に設置するチップに向けて吹き付けてセラミックス微粒子を衝突させて、回路基板または回路基板上に設置するチップの上に、セラミックス微粒子材料を接合させて誘電体共振器を形成する方法において、誘電体共振器の大きさに合わせた貫通孔を板に設けたマスクを回路基板または回路基板上に設置するチップに張り付け、貫通孔の位置にエアロゾルを吹き付けて、貫通孔の内部に貫通孔の形状に沿って誘電体共振器を形成する。
【0023】
誘電体共振器は寸法精度が特に要求される。焼成法などの場合は焼成による収縮によって寸法が変化するため、焼成後に研削を行う必要がある。本手段においては、誘電体共振器を室温で形成させるため収縮などは起こらず、予めマスクの貫通孔形状を鋳型として用い、所望の形で寸法に設定しておくことで、精度良く作製することができる。マスクを基板から浮かせて誘電体共振器を作製することも可能であるが、共振器の外形の精度を保つためにはマスクを張り付ける方法がより好適である。
【0024】
【発明の実施の形態】
図1、図2、図3に誘電体共振器のいくつかの実施の態様についての断面図を示す。図4にこの実施の態様を達成するために使用する作製装置40(エアロゾルデポジション装置)の模式図を示す。
【0025】
図1では、誘電体共振器11は、回路基板12の上に直接接合して配置されており、回路基板12には接地用電極13、配線14が形成されている。回路基板の材質は一般的によく用いられるテフロン、ガラスエポキシなどの有機材料でも良いし、アルミナなどの低誘電率セラミックスでも良い。
【0026】
図2では、誘電体共振器21は回路基板22の上のスペーサ部23の上に直接接合して配置されており、回路基板22には接地用電極24、配線25が形成されている。スペーサ部23は誘電体共振器21よりも低誘電率の誘電体材質で形成されるかあるいは金属の膜で形成されている。誘電体材質がセラミックスの場合は、回路基板22にエアロゾルデポジション法を用いて直接形成した厚膜も考えられる。
【0027】
図1,図2では誘電体共振器の周囲に通常設けられる導体カバーについては図示していない。図3では、誘電体共振器31は、導体の筐体32の内部に形成された低誘電率のスペーサ33の上面に直接接合して配置されており、この筐体32を回路基板34に接着剤35を介して接着されている。回路基板34は接地用電極36、配線37が形成されている。これらいずれの誘電体共振器もエアロゾルデポジション法で形成されており、厚みは10〜500μmに収まっている。
【0028】
次にこれらの誘電体共振器の作製方法の一態様について、図1の場合を取り上げて説明する。図4において、作製装置40は窒素ガスボンベ401がガス搬送管402を介して、サブミクロン粒径の誘電体セラミックス微粒子を内蔵するエアロゾル発生器403に接続し、エアロゾル搬送管404を介して形成室405内に設置された、縦0.4mm横5mmの開口を持つノズル406に接続されている。ノズル406の先にはXYステージ407に設置された回路基板408が配置される。形成室405は真空ポンプ409に接続されている。回路基板408の表面には誘電体共振器のサイズに従って貫通孔が空けられたマスク410が張り付けられている。
【0029】
以上の構成からなる作製装置40による誘電体共振器の作製手順を述べる。窒素ガスボンベ401を開栓し、窒素ガスを搬送管402を通じてエアロゾル発生器403に導入させ、誘電体微粒子を含むエアロゾルを発生させる。エアロゾルは搬送管404を通じてノズル406へと送られ、ノズル406の開口より高速で噴出される。このとき真空ポンプ408の作動により、形成室405内は数kPaの減圧環境下におかれている。
【0030】
図5(a)に示すように、ノズル406の開口の先に配置されたマスク410が張り付けられた回路基板408に誘電体微粒子が高速で衝突し、微粒子は破砕・変形などを起こして粒子や断片がお互いに接合し、基板上に微粒子の材料からなる構造物が形成される。回路基板408はXYステージ407により揺動されており、所望の形状・面積に誘電体の構造物が形成される。以上の操作は常温環境下で行われる。
【0031】
以上の操作により、図5(b)に示すように、マスク410の開口内に誘電体構造物が積層されたならば、図5(c)に示すように、マスク410を除去し、更に図5(d)に示すように、誘電体構造物の上面を研削(エッチバック)し、誘電体共振器11を得る。
【0032】
(実施例1)
上述の作製装置40に準じた構成の作製装置を用いて、誘電体微粒子に粒径(SEM観察径)0.3μmのバリウム、チタン、錫の酸化物固溶体を使用した。この誘電体微粒子は市販の焼成マイクロ波誘電体材料用の原料粉末をまず焼成温度付近で熱処理し、これを細かく破砕した後遊星ミルにて粉砕を行い、所望の粒径に揃えたものである。回路基板にはガラスエポキシの基板上に銅箔をめっきしたものを用いた。作製に際して使用したガスは高純度窒素、流量を4L/minとし、マスクとして厚み100μmのプラスチックフィルムに直径約2.5mmの円形の孔を空けたものを用いた。
【0033】
図6にこの結果作製された円筒形誘電体構造物の断面形状プロファイルを示す。厚み13μmの構造物が、基板面に対して構造物の外側面がほぼ直角(80°〜100°の範囲である)に切り立って形成されていることがわかる。
【0034】
この構造物の誘電率をヒューレットパッカード製インピーダンスアナライザ4194Aで測定したところ、εr:47(at 1MHz)であり、別途用意した焼成体の誘電率とほぼ同じ値を得た。またこの構造物の硬度を島津製作所製微小硬度測定装置DUH−W201にて荷重50gfで測定したところ、499Hvの値を得ており、構造物が圧粉体ではなく、焼成体同等の強度を持つことがわかった。
【0035】
【本発明の効果】
本発明によれば、例えば30GHz以上のマイクロ波帯への移行にも充分に追従可能な小寸法の誘電体共振器を得ることができる。
また本発明にあっては接着剤が介在していないので、接着剤の厚みのばらつきに起因する共振周波数の変動がなく安定した共振周波数を得ることができ、更に本発明方法によれば、従来の焼成プロセスがないため焼成時の変形も考慮することなく、マスクを用いれば正確な形状の誘電体共振器を製作でき、ハンドリングも容易である。
【図面の簡単な説明】
【図1】本発明に係る誘電体共振器を搭載した回路基板の断面図
【図2】別実施例に係る誘電体共振器を搭載した回路基板の断面図
【図3】別実施例に係る誘電体共振器を搭載した回路基板の断面図
【図4】本発明に係る誘電体共振器の製造装置の概略図
【図5】(a)〜(d)は、本発明に係る誘電体共振器の製造法の一例を図
【図6】本発明に係る誘電体共振器の断面形状プロファイルを示す図
【図7】(a)〜(f)は、一般的な誘電体共振器の構造を示す図
【符号の説明】
11,21,31…誘電体共振器、12,22,34…回路基板、13,24,36…接地用電極、14,25,37…配線、23,33…スペーサ部、32…筐体、35…接着剤、40…作製装置、401…窒素ガスボンベ、402…ガス搬送管、403…エアロゾル発生器、404…エアロゾル搬送管、405…形成室、406…ノズル、407…XYステージ、408…回路基板、409…真空ポンプ、410…マスク。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-speed digital communication such as a wireless LAN and a mobile phone, an intelligent transportation system such as a vehicle-mounted radar, a detecting device for detecting a moving object such as a human body, and a micro device mounted on a communication device used in a frequency control oscillator and the like. The present invention relates to a dielectric resonator for a wave band and a method for manufacturing the same.
[0002]
[Prior art]
Since a dielectric resonator involves radiation loss when placed in free space, it is often used with its periphery shielded by a conductor. As shown in FIG. 7 (a), both ends of the dielectric cylinder in the conductor cylindrical cavity are in contact with both ends of the cavity, as shown in FIG. 7 (a). (C), as shown in (d), a cavity image type resonator having a structure in which only one end of the cylinder is in contact with the conductor surface, as shown in (e). There are a parallel plate short-circuit type where the cavity diameter is infinite and the conductor side wall is removed, and a parallel plate open type and a parallel plate image type resonator as shown in FIG. These are important as resonators for microwave integrated circuits.
[0003]
In the production of a conventional dielectric resonator, an oxide ceramic powder having a dielectric constant of about several tens to one hundred and several tens is formed into, for example, a column shape, and then fired, and then ground with high dimensional accuracy. For a dielectric resonator up to several GHz, a fired body having a diameter and a thickness of several millimeters is used.
[0004]
The configuration often used at present is a kind of open-cavity resonator using TE 01 δ mode, in which a dielectric resonator is supported by a support made of a low dielectric constant material in a conductor cover. is set up. Specifically, a method has been adopted in which a low dielectric constant support (spacer) is mounted on an insulating substrate with an adhesive, and a dielectric resonator is mounted on the support with an adhesive.
[0005]
Japanese Patent Application Laid-Open No. 2001-102824 proposes a method of attaching a dielectric resonator, in which a mounting portion made of a film portion is provided on an insulating substrate, and the dielectric resonator is mounted on the mounting portion. In this configuration, a gap is formed between the lower surface of the resonator and the insulating substrate, and the dielectric resonator is attached to the insulating substrate with an adhesive provided in the gap. The reason is that the variation in the thickness of the adhesive between the two causes the fluctuation of the resonance frequency due to the interaction between the dielectric resonator and the electrode part.
[0006]
In Japanese Patent No. 3168773, a concave portion is provided in a central portion of a thick film body (support), an adhesive is put into the concave portion, and a dielectric resonator is fixed to a substrate, and an electrode portion formed on the substrate and a dielectric resonator are fixed. A stable resonance frequency is obtained with the body resonator.
[0007]
These mounting methods show that it is necessary to employ a bonding step because the dielectric resonator is manufactured separately from the substrate as a fired body.
[0008]
Looking at the trend of dielectric resonators, the frequency of microwaves to be used is increasing as the number of users increases due to the rapid spread of mobile phones and PHS, etc., and the frequency band below 3 GHz is becoming tight. As the frequency is shifting to higher frequencies, the transition to the microwave band of 30 GHz or higher via wireless LAN (4.9 GHz), ETC (automatic toll road toll collection system, 5.8 GHz), etc. will be considered. It has become to. The size of the dielectric resonator depends on the frequency of the microwave used, and the size decreases as the frequency increases.
[0009]
Japanese Patent Application Laid-Open No. 2002-16410 discloses that as a dimension of a TE 01 δ dielectric resonator element, the diameter of a cylindrical dielectric resonator element is about 4 to 5 mm for a 10 GHz band, and about 0.6 to 5 mm for a 60 to 70 GHz band. It is described as 0.7 mm.
[0010]
[Problems to be solved by the invention]
As described above, the size of the dielectric resonator in the microwave band may be as small as 1 mm or less, and in the conventional firing / grinding process, difficulties in handling, dimensional accuracy, and problems of mounting accuracy due to bonding occur. It is feared that.
[0011]
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems in a dielectric resonator in which various problems arise in production because the shape is getting smaller and the dimensional accuracy is becoming stricter as the frequency becomes higher.
[0012]
[Means for Solving the Problems]
To achieve the above object, the present invention directly forms a thick-film ceramic dielectric in a substrate or chip.
Specifically, in the dielectric resonator according to the present invention, in a dielectric resonator installed on a circuit board, a main material is ceramics, and a thickness in a direction perpendicular to an installation surface on the substrate is 10 μm. 500500 μm.
[0013]
In order to obtain a desired resonance frequency, not only the thickness but also the diameter is a factor. According to the aero deposition method described later, not only the thickness but also the diameter can be easily controlled.
[0014]
Further, the reason why the thickness is set to 10 μm to 500 μm is that 10 μm is considered to be the lower limit of the film thickness that is supposed to be achieved with good film thickness accuracy in the surface polishing of the post-processing, and is not achieved by the sol-gel method, the PVD method or the like It is. In addition, 500 μm is close to the upper limit that can be achieved by the aero method described below without any problem by the position method, and is a thickness that makes it difficult to grind and handle the fired body. This is an area of several tens of GHz.
[0015]
Further, the dielectric resonator is made of polycrystal by the aero deposition method, and the crystals constituting the structure have substantially no crystal orientation, and the interface between the crystals has a grain boundary layer made of a glass layer. Substantially does not exist, and a dielectric resonator having excellent mechanical and chemical properties such as hardness, abrasion resistance, and corrosion resistance is obtained.
In the present specification, the above polycrystal and the like are defined as follows.
(Polycrystalline)
In this case, it refers to a structure formed by bonding and accumulating crystallites. The crystallites substantially constitute a single crystal and have a diameter of usually 5 nm or more. However, in rare cases, for example, the fine particles are taken into the structure without being crushed, but they are substantially polycrystalline.
(Crystal orientation)
In this case, it refers to the degree of orientation of the crystal axis in a polycrystalline structure, and whether or not there is orientation is generally determined by measuring data of raw material powder fine particles which are considered to have substantially no orientation or powder X. JCPDS (ASTM) data used as standard data by line diffraction or the like is determined as an index.
The peak intensity of the three main diffraction peaks in this index, which includes the substances constituting the brittle material crystals in the structure, is taken as 100%, and the peak intensity of the most main peak in the measured data of the same substance of the structure is aligned with this. In this case, a state in which the peak intensities of the other two peaks are within 30% of the index value compared to the index value is referred to in the present case as substantially having no orientation.
(interface)
In the present case, it refers to a region constituting a boundary between crystallites.
(Grain boundary layer)
A layer having a certain thickness (usually several nm to several μm) located at an interface or a grain boundary in a sintered body, usually has an amorphous structure different from the crystal structure in a crystal grain, and in some cases, segregation of impurities. Accompany.
[0016]
In addition, the dielectric resonator of the present invention has a structure directly bonded to a circuit board or a chip mounted on the circuit board, for example, a spacer for resonating in a TE 01 δ mode without using an adhesive, The joint portion forms an anchor portion, and further includes a structure in which the side wall of the dielectric resonator rises substantially perpendicularly to the surface of the circuit board.
In the present case, the anchor portion refers to irregularities formed at the interface between the base material and the structure, and in particular, changes the surface accuracy of the original base material at the time of forming the structure, instead of forming the unevenness on the base material in advance. It refers to the unevenness formed by being made.
[0017]
Further, in the method for manufacturing a dielectric resonator according to the present invention, an aerosol in which ceramic fine particles serving as a raw material of the dielectric resonator are dispersed in a gas is sprayed toward a circuit board or a chip installed on the circuit board. And causing the ceramic fine particles to collide with each other to directly form a film-shaped dielectric resonator in which the ceramic fine particle material is bonded to the circuit board or the spacer on the circuit board.
[0018]
Here, in the above manufacturing method, a method in which an aerosol in which ceramic fine particles are dispersed in a gas is sprayed on a substrate to form a ceramic structure on the substrate is called an aerosol deposition method. What is disclosed in patent No. 3265481 and international application patent WO 01/27348 A1 is known.
[0019]
For example, it is extremely difficult to achieve a thickness region of 500 μm or less by a conventional method of manufacturing a resonator by firing and grinding due to handling problems and the like. Therefore, in the present invention, an aerosol in which ceramic fine particles serving as a raw material of a dielectric resonator are dispersed in a gas is sprayed toward a circuit board or a chip placed on the circuit board to collide with the ceramic fine particles. Then, a film-shaped dielectric resonator formed by bonding a ceramic fine particle material is formed on a circuit board or a chip provided on the circuit board.
[0020]
In this manufacturing method, the step of forming the dielectric resonator is performed in a normal temperature environment. Here, the normal temperature is a temperature near room temperature that is sufficiently lower than the firing temperature of the ceramics, and substantially refers to a temperature of 200 ° C. or less.
[0021]
Here, a circuit board is one in which metal foil or conductor wiring is formed on an insulator such as Teflon, glass epoxy, or ceramics, or a dielectric film of an organic material or ceramic material is formed on a metal plate. Metal foil and conductor wiring are formed, and the location where the dielectric resonator is provided may be on an insulator, or may be on metal foil or conductor wiring. A chip installed on a circuit board is a support made of an insulator or conductor material with a dielectric constant lower than that of a dielectric resonator, or a shielding conductor made of box-shaped metal. One having a support formed therein is exemplified. The one in which the support is formed directly on the substrate is included in the aforementioned circuit board.
[0022]
The method of manufacturing a dielectric resonator according to the present invention includes the steps of spraying an aerosol in which ceramic fine particles serving as a raw material of the dielectric resonator are dispersed in a gas toward a circuit board or a chip mounted on the circuit board. In a method of forming a dielectric resonator by joining fine particles of ceramic to a circuit board or a chip placed on the circuit board by colliding fine particles, a through hole corresponding to the size of the dielectric resonator is formed. A mask provided on a plate is attached to a circuit board or a chip placed on the circuit board, and an aerosol is sprayed on the position of the through hole to form a dielectric resonator inside the through hole along the shape of the through hole.
[0023]
The dielectric resonator is particularly required to have dimensional accuracy. In the case of a firing method or the like, since dimensions change due to shrinkage due to firing, it is necessary to perform grinding after firing. In this means, since the dielectric resonator is formed at room temperature, no shrinkage or the like occurs, and the through-hole shape of the mask is used as a mold in advance and the dimensions are set in a desired shape, so that it can be manufactured with high precision. Can be. Although it is possible to fabricate the dielectric resonator by floating the mask from the substrate, it is more preferable to attach the mask to maintain the accuracy of the external shape of the resonator.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 1, 2 and 3 show cross-sectional views of some embodiments of the dielectric resonator. FIG. 4 is a schematic diagram of a manufacturing apparatus 40 (aerosol deposition apparatus) used to achieve this embodiment.
[0025]
In FIG. 1, the dielectric resonator 11 is arranged directly on a circuit board 12, and the circuit board 12 is provided with a ground electrode 13 and a wiring 14. The material of the circuit board may be an organic material such as Teflon or glass epoxy which is generally used, or a low dielectric constant ceramic such as alumina.
[0026]
In FIG. 2, the dielectric resonator 21 is disposed directly on the spacer portion 23 on the circuit board 22, and the circuit board 22 is formed with the ground electrode 24 and the wiring 25. The spacer portion 23 is formed of a dielectric material having a lower dielectric constant than the dielectric resonator 21, or is formed of a metal film. When the dielectric material is ceramics, a thick film directly formed on the circuit board 22 by using the aerosol deposition method is also conceivable.
[0027]
1 and 2 do not show a conductor cover normally provided around the dielectric resonator. In FIG. 3, the dielectric resonator 31 is disposed directly on the upper surface of a low-dielectric-constant spacer 33 formed inside a housing 32 of a conductor, and the housing 32 is bonded to a circuit board 34. It is adhered via an agent 35. The circuit board 34 has a ground electrode 36 and a wiring 37 formed thereon. Each of these dielectric resonators is formed by the aerosol deposition method, and has a thickness of 10 to 500 μm.
[0028]
Next, an embodiment of a method for manufacturing these dielectric resonators will be described with reference to the case of FIG. In FIG. 4, in a manufacturing apparatus 40, a nitrogen gas cylinder 401 is connected to an aerosol generator 403 containing submicron dielectric ceramic fine particles via a gas transfer pipe 402, and a formation chamber 405 is connected via an aerosol transfer pipe 404. It is connected to a nozzle 406 having an opening of 0.4 mm long and 5 mm wide, which is installed in the inside. A circuit board 408 mounted on an XY stage 407 is disposed beyond the nozzle 406. The formation chamber 405 is connected to a vacuum pump 409. A mask 410 having a through hole according to the size of the dielectric resonator is attached to the surface of the circuit board 408.
[0029]
A procedure for manufacturing a dielectric resonator using the manufacturing apparatus 40 having the above configuration will be described. The nitrogen gas cylinder 401 is opened, and nitrogen gas is introduced into the aerosol generator 403 through the transport pipe 402 to generate an aerosol containing dielectric fine particles. The aerosol is sent to the nozzle 406 through the transport pipe 404, and is ejected at a high speed from the opening of the nozzle 406. At this time, the operation of the vacuum pump 408 keeps the inside of the formation chamber 405 under a reduced pressure environment of several kPa.
[0030]
As shown in FIG. 5A, the dielectric fine particles collide at high speed with a circuit board 408 on which a mask 410 disposed at the tip of the opening of the nozzle 406 is attached, and the fine particles are crushed or deformed to cause particles or the like. The fragments are bonded to each other to form a structure made of a fine particle material on the substrate. The circuit board 408 is swung by the XY stage 407, and a dielectric structure is formed in a desired shape and area. The above operation is performed in a normal temperature environment.
[0031]
When the dielectric structure is laminated in the opening of the mask 410 as shown in FIG. 5B by the above operation, the mask 410 is removed as shown in FIG. As shown in FIG. 5D, the upper surface of the dielectric structure is ground (etched back), and the dielectric resonator 11 is obtained.
[0032]
(Example 1)
Using a manufacturing apparatus having a configuration similar to that of the above-described manufacturing apparatus 40, an oxide solid solution of barium, titanium, and tin having a particle diameter (SEM observation diameter) of 0.3 μm was used as the dielectric fine particles. The dielectric fine particles are obtained by first heat-treating a raw material powder for a commercially available fired microwave dielectric material near the firing temperature, finely crushing the resulting material, and then pulverizing it with a planetary mill to have a desired particle size. . The circuit board used was a glass epoxy board plated with copper foil. The gas used in the production was high-purity nitrogen, the flow rate was 4 L / min, and a plastic film having a thickness of 100 μm and a circular hole having a diameter of about 2.5 mm was used as a mask.
[0033]
FIG. 6 shows a cross-sectional profile of the resulting cylindrical dielectric structure. It can be seen that the structure having a thickness of 13 μm is formed such that the outer surface of the structure stands up substantially at right angles (in the range of 80 ° to 100 °) with respect to the substrate surface.
[0034]
When the dielectric constant of this structure was measured with an impedance analyzer 4194A manufactured by Hewlett-Packard, it was εr: 47 (at 1 MHz), which was almost the same as the dielectric constant of the separately prepared fired body. When the hardness of this structure was measured with a load of 50 gf using a microhardness measuring device DUH-W201 manufactured by Shimadzu Corporation, a value of 499 Hv was obtained, and the structure was not a green compact but had a strength equivalent to a fired body. I understand.
[0035]
[Effects of the present invention]
According to the present invention, it is possible to obtain a small-sized dielectric resonator that can sufficiently follow a shift to a microwave band of, for example, 30 GHz or more.
Further, in the present invention, since no adhesive is interposed, a stable resonance frequency can be obtained without fluctuation of the resonance frequency due to variation in the thickness of the adhesive. Since there is no firing process, a dielectric resonator having an accurate shape can be manufactured by using a mask without considering deformation during firing, and handling is easy.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a circuit board on which a dielectric resonator according to the present invention is mounted. FIG. 2 is a cross-sectional view of a circuit board on which a dielectric resonator according to another embodiment is mounted. FIG. FIG. 4 is a cross-sectional view of a circuit board on which a dielectric resonator is mounted. FIG. 4 is a schematic view of an apparatus for manufacturing a dielectric resonator according to the present invention. FIG. 5A to FIG. FIG. 6 is a view showing an example of a method of manufacturing a resonator. FIG. 6 is a view showing a cross-sectional shape profile of the dielectric resonator according to the present invention. FIGS. 7A to 7F show the structure of a general dielectric resonator. Diagrams [Description of symbols]
11, 21, 31 ... dielectric resonator, 12, 22, 34 ... circuit board, 13, 24, 36 ... ground electrode, 14, 25, 37 ... wiring, 23, 33 ... spacer, 32 ... housing, 35 adhesive, 40 manufacturing apparatus, 401 nitrogen gas cylinder, 402 gas transport pipe, 403 aerosol generator, 404 aerosol transport pipe, 405 forming chamber, 406 nozzle, 407 XY stage, 408 circuit Substrate, 409: vacuum pump, 410: mask.

Claims (8)

回路基板に設置される誘電体共振器において、主となる材質がセラミックスであり、基板上の設置面に対して垂直方向の厚みが10μm〜500μmであることを特徴とする誘電体共振器。In a dielectric resonator installed on a circuit board, a main material is ceramics, and a thickness in a direction perpendicular to an installation surface on the substrate is 10 μm to 500 μm. 請求項1に記載の誘電体共振器において、この誘電体共振器は多結晶であり、前記構造物を構成する結晶は実質的に結晶配向性がなく、また前記結晶同士の界面にはガラス層からなる粒界層が実質的に存在しないことを特徴とする誘電体共振器。2. The dielectric resonator according to claim 1, wherein the dielectric resonator is polycrystalline, crystals constituting the structure have substantially no crystal orientation, and a glass layer is formed at an interface between the crystals. A dielectric resonator substantially free of a grain boundary layer comprising: 請求項1または2に記載の誘電体共振器において、前記回路基板または回路基板上に設置されるチップに、接着剤を介することなく直接接合されていることを特徴とする誘電体共振器。3. The dielectric resonator according to claim 1, wherein the dielectric resonator is directly bonded to the circuit board or a chip mounted on the circuit board without using an adhesive. 請求項2または3に記載の誘電体共振器において、前記回路基板または回路基板上に設置されるチップの表面に、前記誘電体共振器の一部が食い込むアンカー部が形成されていることを特徴とする誘電体共振器。4. The dielectric resonator according to claim 2, wherein an anchor portion into which a part of the dielectric resonator bites is formed on a surface of the circuit board or a chip provided on the circuit board. And a dielectric resonator. 請求項1乃至請求項4に記載の誘電体共振器において、この誘電体共振器の側壁は回路基板表面に対し略垂直に立ち上がっていることを特徴とする誘電体共振器。5. The dielectric resonator according to claim 1, wherein a side wall of the dielectric resonator rises substantially perpendicularly to a surface of the circuit board. 誘電体共振器の原材料となるセラミックス微粒子をガス中に分散させたエアロゾルを、回路基板または回路基板上に設置されるチップに向けて吹き付けて前記セラミックス微粒子を衝突させて、前記回路基板または回路基板上に設置されるチップに、前記セラミックス微粒子材料が接合してなる膜状の誘電体共振器を直接形成する工程を有する誘電体共振器の作製方法。An aerosol obtained by dispersing ceramic fine particles serving as a raw material of a dielectric resonator in a gas is sprayed toward a circuit board or a chip mounted on the circuit board so that the ceramic fine particles collide with the circuit board or the circuit board. A method for manufacturing a dielectric resonator, comprising a step of directly forming a film-shaped dielectric resonator in which the ceramic fine particle material is bonded to a chip mounted thereon. 請求項6に記載の誘電体共振器の作製方法において、前記誘電体共振器を形成する工程が、常温環境下で行われることを特徴とする誘電体共振器の作製方法。7. The method for manufacturing a dielectric resonator according to claim 6, wherein the step of forming the dielectric resonator is performed in a normal temperature environment. 請求項6または請求項7に記載の誘電体共振器の作製方法において、前記誘電体共振器の大きさに合わせた貫通孔を板に空けたマスクを前記回路基板または前記回路基板上に設置されるチップに張り付け、前記貫通孔の位置に前記エアロゾルを吹き付けて、前記貫通孔の内部に前記貫通孔の形状に沿って前記誘電体共振器を形成することを特徴とする誘電体共振器の作製方法。8. The method of manufacturing a dielectric resonator according to claim 6, wherein a mask having a through-hole corresponding to the size of the dielectric resonator is provided on the circuit board or the circuit board. And forming the dielectric resonator inside the through-hole along the shape of the through-hole by spraying the aerosol on the position of the through-hole. Method.
JP2002180561A 2002-06-20 2002-06-20 Dielectric resonator and its manufacturing method Pending JP2004023772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180561A JP2004023772A (en) 2002-06-20 2002-06-20 Dielectric resonator and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180561A JP2004023772A (en) 2002-06-20 2002-06-20 Dielectric resonator and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004023772A true JP2004023772A (en) 2004-01-22

Family

ID=31177646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180561A Pending JP2004023772A (en) 2002-06-20 2002-06-20 Dielectric resonator and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004023772A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317952A (en) * 2004-03-30 2005-11-10 Brother Ind Ltd Piezoelectric actuator, ink-jet head and manufacturing method of them
JP2006216578A (en) * 2005-02-01 2006-08-17 Ricoh Co Ltd Piezoelectric power generating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317952A (en) * 2004-03-30 2005-11-10 Brother Ind Ltd Piezoelectric actuator, ink-jet head and manufacturing method of them
JP2006216578A (en) * 2005-02-01 2006-08-17 Ricoh Co Ltd Piezoelectric power generating element

Similar Documents

Publication Publication Date Title
US9882274B2 (en) Ceramic antenna module and methods of manufacture thereof
US8278217B2 (en) Semiconductor device and method of producing the same
EP1353542B1 (en) Process for production of multilayered wiring board
Nam et al. Alumina thick films as integral substrates using aerosol deposition method
US20050085209A1 (en) Nonradiative dielectric waveguide and a millimeter-wave transmitting/receiving apparatus
Lin et al. Nanostructured miniaturized artificial magnetic conductors (AMC) for high-performance antennas in 5G, IoT, and smart skin applications
Raj et al. Novel nanomagnetic materials for high-frequency RF applications
US10856408B1 (en) Substrate-integrated device and method for making the same
JP2001338813A (en) Electronic part
US6844278B2 (en) Dense lead-free glass ceramic for electronic devices
US10775422B2 (en) Molecular spectroscopy cell with resonant cavity
Brown RF/microwave hybrids: basics, materials and processes
JP2004023772A (en) Dielectric resonator and its manufacturing method
CN107946751A (en) A kind of multimode patch broad-band antenna and its design method
JP4702979B2 (en) Composite particles
JP3323087B2 (en) High-frequency transmission line coupling structure
JP2001015878A (en) High-frequency wiring board and its manufacture
Barnwell et al. Enabling ceramic circuit technologies for wireless microelectronics packaging
Pruna et al. Microwave characterization of low temperature cofired ceramic
JP2002076554A (en) Circuit board for high frequency
Rigaudeau et al. LTCC millimeter wave device combining both filtering and radiating functions for Q band applications
JP4139891B2 (en) Method for manufacturing RF module
JP2005145811A (en) Alumina-based ceramic material and production method thereof
JP3441975B2 (en) High frequency package
JP2005179137A (en) Porcelain having excellent high frequency transmission characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017