JP2004022897A - Compound semiconductor thin film and solar cell using the same - Google Patents

Compound semiconductor thin film and solar cell using the same Download PDF

Info

Publication number
JP2004022897A
JP2004022897A JP2002177401A JP2002177401A JP2004022897A JP 2004022897 A JP2004022897 A JP 2004022897A JP 2002177401 A JP2002177401 A JP 2002177401A JP 2002177401 A JP2002177401 A JP 2002177401A JP 2004022897 A JP2004022897 A JP 2004022897A
Authority
JP
Japan
Prior art keywords
thin film
compound semiconductor
solar cell
semiconductor thin
cuga
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002177401A
Other languages
Japanese (ja)
Inventor
Sakae Niki
仁木 栄
Akimasa Yamada
山田 昭政
Keiichiro Sakurai
櫻井 啓一郎
Koji Matsubara
松原 浩司
Fons Paul
ポール フォンス
Hiroya Iwata
岩田 拡也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002177401A priority Critical patent/JP2004022897A/en
Publication of JP2004022897A publication Critical patent/JP2004022897A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】CIS系化合物半導体からなり、高エネルギー変換効率を有し、低コストかつ安全であって長寿命な化合物半導体薄膜、及びその薄膜を吸収層とする太陽電池を提供する。
【解決手段】一般式:CuGa1−xFe(Se1−y
(式中、xは0<x<1であり、yは0<y≦1である。)
で示される組成からなる化合物半導体薄膜である。この組成からなる薄膜を光吸収層として有する太陽電池は、希少元素を使用しなくても、太陽光スペクトル(約1.5eV)の禁制帯幅に適合できるから、極めて高いエネルギー変換効率を実現できる。また、その太陽電池の窓層にZnOを用いるとより有効である。
【選択図】    図3
An object of the present invention is to provide a low-cost, safe, and long-lasting compound semiconductor thin film made of a CIS-based compound semiconductor, having high energy conversion efficiency, and a solar cell using the thin film as an absorption layer.
A general formula: CuGa 1-x Fe x ( Se 1-y S y) 2
(Where x is 0 <x <1 and y is 0 <y ≦ 1)
Is a compound semiconductor thin film having a composition represented by the following formula: A solar cell having a thin film having this composition as a light absorbing layer can conform to the forbidden band of the solar spectrum (about 1.5 eV) without using a rare element, and can realize extremely high energy conversion efficiency. . It is more effective to use ZnO for the window layer of the solar cell.
[Selection diagram] Fig. 3

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜太陽電池の光吸収層等に用いられる化合物半導体の材料組成に関するものである。
【0002】
【従来の技術】
現在、既に実用化されているか若しくは実用化が期待される薄膜太陽電池において、その最も重要な構成要素である光吸収層の材料としては、シリコン系(単結晶、多結晶、アモルファス、それらの複合体)、III−V族系(GaAs、InPなど)、II−VI系(CdTeが代表的)及びCIS系に大別される。なかでもCIS系は、CuInSe組成がその名称の由来するところであって、正方晶の対称性を持つI−III−VI族化合物が、すべてこの系に括られている。特に、I族にCu、III族にIn及び/又はGa、VI族にSe及び/又はSを用いたCu(InGa)(SeS)を光吸収層とする太陽電池については盛んに研究されており、組成比が凡そCuIn0.7Ga0.3Seとなる膜を用いた太陽電池が、CIS系の中で最も高い変換効率(実験室規模で18.8%)を実現している。
【0003】
CIS系が他の材料系より優れている主な特長としては、(1)光吸収係数が大きいため薄膜化に適していること、ひいてはプロセスの短時間化並びに使用材料量の削減による低コスト生産が可能であること、(2)III族及びVI族元素の組成比を変更することにより太陽光スペクトルに対して変換効率が最高になるように禁制帯幅を調節できること、(3)膜の品質が変換効率に与える影響が小さいこと、すなわち適用できるプロセス技術の種類が限定されず、低コストプロセスの選択が可能であること、(4)耐放射線性が大きいため屋外で太陽光に晒され続ける太陽電池として長寿命を期待できること、等が挙げられる。
【0004】
【発明が解決しようとする課題】
ところで、CIS系薄膜太陽電池は、従来の技術の項で述べたように、きわめて優れた素質を有しているが、未だ幾つかの解決されていない問題が残されている。その一つは、光吸収層を形成する半導体(すなわちCu(InGa)(SeS))の禁制帯幅を理論上で太陽光スペクトル値に整合させても、最高の変換効率が得られていないことである。また、その二つは、構成元素の中でInは希少金属(地殻中のIn含有濃度はGaの1/200程度の極微量)であるために、高価であり価格変動が大きいことである。しかも、InはITO(透明導電膜)をはじめとして工業的に広範な分野で多量に利用されている材料であり、太陽電池に求められる大量の需要に応じることは必ずしも容易ではない。
【0005】
本発明は、従来の技術における上記した実状に鑑みてなされたものである。すなわち、本発明の目的は、高エネルギー変換効率を有し、低コストかつ安全で長寿命なCIS系の化合物半導体薄膜、及びその化合物半導体薄膜を吸収層に用いた太陽電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明の化合物半導体薄膜は、 周期表IB族元素、IIIB族元素及びSを含むVIB族元素を構成成分とする化合物半導体薄膜において、IIIB族元素の一部をFeで置き換えた組成からなることを特徴とするものである。
そのIB族元素としては、Cuを用いることが好ましい。また、IIIB族元素としては、B、Al、Ga、In、Tlを用いることができるが、中でもGaを用いることが好ましい。さらに、VIB族元素としては、S単独或いはSとSeとの混合組成を用いることが好ましい。
また、本発明の他の化合物半導体薄膜は、一般式:CuGa1−xFe(Se1−y (式中、xは0<x<1であり、yは0<y≦1である。)で示される組成からなることを特徴とする。
また、本発明の太陽電池は、上記組成からなる化合物半導体薄膜を光吸収層として設けたことを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の化合物半導体薄膜は、元素の周期表にいうIB族−IIIB族及びVIB族の元素を構成成分とするCIS系の化合物半導体の中で、IIIB族元素の一部をFeで置き換えた組成の化合物半導体を用いて作製される薄膜である。従来、CIS系太陽電池の光吸収層(Cu(InGa)(SeS))の禁制帯幅を制御するには、すべて最も禁制帯幅の小さいCuInSeから出発し、Ga及び/又はSを添加する方向から行われていた。これは、この系の太陽電池がCuInSeから始まったという歴史に由来している。しかし、太陽光スペクトルに最適な禁制帯幅は、1.5eV前後であるとされており(図1参照)、CuInSeの1.0eVよりも、むしろCuGaSeの1.7eVに近い。
【0008】
そこで、本発明では、従来とは発想を転換し、CuGaSe又はCuGaSを出発材料として禁制帯幅を小さい方へ導く方法を採ることとしたものである。 一般に、禁制帯幅の大きい半導体のそれを小さくするには、禁制帯幅の小さい半導体との混晶を作製することが通常の手段である。その際、双方の結晶構造が同じ対称性を持っていることが好ましい。
ところで、CuGaSeは正方晶対称であり、いわゆるカルコパイライト型の結晶構造(図2参照)を有しており、これと同じカルコパイライト型構造で禁制帯幅の小さい材料としてはCuFeSe及びCuFeSを挙げることができる。これらの材料の禁制帯幅は、それぞれ0.16eV及び0.53eVであることが知られている。
【0009】
通常、CuGaSeとCuFeSeとの混晶又はCuGaSとCuFeSとの混晶は、それぞれCuGaSe又はCuGaSの結晶格子中で、Gaの位置がFeで置き換えられて形成されると考えてよい。すなわち、この混晶の化学式はCuGa1−xFeSe又はCuGa1−xFeと表すことができる。ここで、0<x<1である。さらに、SeとSは同族体であるからCuGaSeとCuGaSの混晶化が可能であり、この混晶CuGa(Se1−yのGaをFeで置き換えた混晶CuGa1−xFe(Se1−yを合成することも可能である。ここで、0<y≦1である。
【0010】
そして、CuGa1−xFeSeとCuGa1−xFeの禁制帯幅は、CuGaSeの禁制帯幅(約1.7eV)とCuFeSe又はCuFeSの禁制帯幅0.16eV又は0.53eVとの中間のある値になり、Feの含有量を調節することによって太陽光スペクトルに適合させ得ることが期待される。混晶の禁制帯幅は、混晶の割合(すなわちIII族位置のFeによる置換率)x=Fe/(Fe+Ga)に依存する。このとき、混晶の禁制帯幅は、必ずしも両端の半導体のそれを結ぶ直線上にはなく、一般に弓なりになる、いわゆるボーイング(bowing)と呼ばれる現象を示す。
【0011】
このボーイング現象は、図3に示すように、Feの含有量の小さい側に起こるので、CuGaSe又はCuGaSの中で、Gaを置き換えるFeの量をさらに少なくして太陽光スペクトルに最適な目的値(約1.5eV)を実現できるという利点がある。このボーイングは、置換する2種の元素の電気陰性度の差の2乗に比例する。
Ga及びFeの電気陰性度は、それぞれ0.301eV及び0.1634eVであるから、両者の差0.138eVは、GaとInの場合の差0.02eVよりも遙かに大きい。そのため、CuIn1−xGa(Se1−yに比べてCuGa1−xFe(Se1−yにおけるボーイング現象は顕著に現れるから、その利点を活用できるのである。
【0012】
本発明の化合物半導体組成においては、Ga位置を置き換えるFeの量は少ないほど好ましい。これは、CuGaSeとCuGaSにとってFeは異物であり、もともとCuGaSe(もしくはCuGaS)の結晶格子定数とCuFeSe(もしくはCuFeS)のそれとが異なるために、Cu(GaFe)Se(もしくはCu(GaFe)S)中のFe量が多いほど混晶の格子歪みが大きくなり、このことが、この混晶の電気特性に悪影響を及ぼすからである。
【0013】
Cu(GaFe)Se(もしくはCu(GaFe)S)の格子定数は、一般にVegardの法則に従い、両端の化合物CuGaSeとCuFeSe(もしくはCuGaSとCuFeS)とを結ぶ直線上にある。一方、格子歪みエネルギーは両端の化合物で0であり、混晶が始まると急激に増大する。図4には、CuGaSe中のGaの一部をFe(置換率x)で置き換えた混晶の格子歪み(strain)エネルギーの変化を示す。
なお、太陽光スペクトルに最適な禁制帯幅の値は、1.4〜1.5eVとされることが多いが、1.1eVの付近で最高になるという試算もある。そこで、化合物の禁制帯幅を、その程度にまで狭くする可能性も考慮に入れておかなければならない。
そこで、本発明において、CuGa1−xFeSeについてはxが0〜0.3の範囲、また、CuGa1−xFeについてはxが0〜0.5の範囲に最適値が存在するものと考えられる。また、yについては0<y≦1の範囲である。
【0014】
本発明の化合物半導体は、一般式:CuGa1−xFe(Se1−y (式中、xは0<x<1であり、yは0<y≦1である。)で示される組成からなり、主としてるカルコパイライト構造を有するものであって、この化合物の薄膜を作製するには、この種の薄膜形成に使用される公知の各種方法、例えば、多元蒸着法、化学輸送堆積法、有機金属気相堆積法、反応性プラズマ堆積法、スパッタ堆積法、イオン化堆積法、液相成長法、パルスレーザ堆積法、ゾルゲル堆積法、気相反応法などを用いて行うことができる。
【0015】
その一例として、CuGa1−xFeSeの膜を多元蒸着法で作製する場合には、Cu、Ga、CuFeSeを、それぞれ独立の坩堝に入れて加熱し、それぞれの蒸気を基板上に受けてそこで膜を成長させる。このときの各坩堝の温度は目標とする組成比に応じて異なり、典型的には、Cu:1100℃、Ga:890℃、CuFeSe:870℃とするとx≒0.1に相当するCuGa1−xFeSe膜を得ることができる。この各坩堝の温度を上昇させると、製膜速度を増すことができるが、坩堝の耐性をはじめとする装置上の制限がある。この例の場合、膜厚の増加率は1時間に1μm程度と見込まれる。
【0016】
図5には、一般的なCIS系太陽電池の層構造の断面の模式図を示す。図5において、1はガラス、SiOなどの基板、2はMoなどの背面電極、3はAlなどの集電端子、4はカルコパイライト型I−III−VI化合物半導体からなる光吸収層、5はCdS、ZnO、ZnSなどからなるバッファー層であるか無くても良い、6はZnOなどの窓層、7はMgFなどの反射防止層、8はAlなどの集電端子で構成される。
本発明の太陽電池は、上記した従来のCIS系太陽電池において、4の光吸収層に、IB族元素、IIIB族元素及びSを含むVIB族元素を構成成分とする化合物半導体のIIIB族元素の一部をFeで置き換えた組成、特にCuGa1−xFe(Se1−yで示される組成の化合物半導体を含む薄膜を設けることにより作製される。なかでも、ZnOを含む窓層とCuGa1−xFe(Se1−yで示される組成の化合物半導体を含む光吸収層とを有する太陽電池が好ましい。
【0017】
【発明の効果】
本発明の化合物半導体薄膜は、太陽光スペクトル(約1.5eV)の禁制帯幅に適合するものであるから、太陽光エネルギーを高効率で変換できるものである。
従来法では禁制帯幅の小さいCuInSe(約1.0eV)に異種元素(GaやSなど)を加えるために結晶格子歪みによる欠陥が多く、期待される効率向上は得られていないが、本発明によれば、混晶率が低くてよいので結晶格子歪みの悪影響を低減することができ、また混晶による禁制帯幅ボーイングの効果が大きく発現されるから、混晶率を大幅に低下でき、これを薄膜太陽電池の光吸収層に用いれば極めて高いエネルギー変換効率を実現できる。
実用太陽電池は、従来のエレクトロニクス製品とは比較にならない程大量の原料を使用するので、地球上で希少元素であるInを全く使用しないCu(GaFe)(SeS)を用いた太陽電池の生産は、資源の節約に貢献し、製造コストの低減および価格の安定にも寄与するものである。
【図面の簡単な説明】
【図1】太陽電池の光吸収層においてp−n接合を形成する半導体の禁制帯幅(横軸)に対する光−電気変換効率の理論値(縦軸)の関係を示す曲線グラフである。
【図2】カルコパイライト型結晶格子の模式図を示す。CuGaSeの場合、記号A、B、Cはそれぞれ、Cu、Ga、Se原子の位置を表す。混晶の場合には、位置Bのうち一部はFe原子に、また位置Cのうち一部はS原子に置換する。a、cはそれぞれ、カルコパイライト型結晶格子単位胞のa軸長、c軸長を示す。
【図3】CuGaSeとCuFeSeの混晶であるCuGa1−xFeSeおよびCuGaSとCuFeSの混晶であるCuGa1−xFeにおける混晶率x(横軸)に対する禁制帯幅(縦軸)の関係を示す曲線グラフである。混晶CuGa1−xFe(Se1−yは、2つの曲線に挟まれた領域に存在する。
【図4】CuGaSeとCuFeSeの混晶であるCuGa1−xFeSeにおける混晶率x(横軸)に対する結晶格子定数(左縦軸)と格子歪みエネルギー(右縦軸)の関係を示す曲線グラフである。
【図5】本発明の化合物半導体を光吸収層とする太陽電池の一例の層構造の断面模式図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a material composition of a compound semiconductor used for a light absorption layer or the like of a thin film solar cell.
[0002]
[Prior art]
At present, thin-film solar cells that have already been put into practical use or are expected to be put into practical use are made of silicon-based materials (single-crystal, polycrystalline, amorphous, and composites thereof). ), III-V systems (GaAs, InP, etc.), II-VI systems (typically CdTe) and CIS systems. Above all, the CIS system is derived from the name of the CuInSe 2 composition, and all the I-III-VI group 2 compounds having tetragonal symmetry are included in this system. In particular, a solar cell using Cu (InGa) (SeS) 2 as a light absorption layer using Cu as a group I, In and / or Ga as a group III, and Se and / or S as a group VI has been actively studied. A solar cell using a film having a composition ratio of approximately CuIn 0.7 Ga 0.3 Se 2 achieves the highest conversion efficiency (18.8% on a laboratory scale) among CIS systems. .
[0003]
The main features of the CIS system that are superior to other material systems are: (1) its large light absorption coefficient makes it suitable for thin film formation, and therefore, low-cost production by shortening the process and reducing the amount of materials used. (2) the bandgap can be adjusted so as to maximize the conversion efficiency with respect to the solar spectrum by changing the composition ratio of the group III and group VI elements, and (3) the quality of the film. Has a small effect on conversion efficiency, that is, the type of process technology that can be applied is not limited, and a low-cost process can be selected. (4) Due to its high radiation resistance, it is continuously exposed to sunlight outdoors. Long life can be expected as a solar cell.
[0004]
[Problems to be solved by the invention]
By the way, as described in the section of the prior art, the CIS-based thin-film solar cell has an extremely excellent quality, but still has some unsolved problems. One is that the highest conversion efficiency is not obtained even if the band gap of the semiconductor forming the light absorbing layer (that is, Cu (InGa) (SeS) 2 ) is theoretically matched to the solar spectrum value. That is. In addition, two of them are high in price and large price fluctuation because In is a rare metal (the concentration of In in the crust is about 1/200 of that of Ga). In addition, In is a material that is widely used in a wide range of industrial fields such as ITO (transparent conductive film), and it is not always easy to meet the large demand for solar cells.
[0005]
The present invention has been made in view of the above situation in the related art. That is, an object of the present invention is to provide a CIS-based compound semiconductor thin film having high energy conversion efficiency, low cost, safe and long life, and a solar cell using the compound semiconductor thin film for an absorption layer. .
[0006]
[Means for Solving the Problems]
The compound semiconductor thin film of the present invention is a compound semiconductor thin film containing a group IB element, a group IIIB element, and a group VIB element containing S as constituents in the periodic table, in which a part of the group IIIB element is replaced with Fe. It is a feature.
It is preferable to use Cu as the IB group element. In addition, B, Al, Ga, In, and Tl can be used as the group IIIB element, but Ga is particularly preferable. Further, it is preferable to use S alone or a mixed composition of S and Se as the VIB group element.
Another compound semiconductor thin film of the present invention have the general formula: CuGa 1-x Fe x ( Se 1-y S y) 2 ( wherein, x is 0 <x <1, y is 0 <y ≦ 1)).
Further, the solar cell of the present invention is characterized in that a compound semiconductor thin film having the above composition is provided as a light absorbing layer.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The compound semiconductor thin film of the present invention has a composition in which a group IIIB element is partially replaced with Fe in a CIS-based compound semiconductor containing a group IB-IIIB group and a group VIB element in the periodic table. Is a thin film produced using the compound semiconductor of the above. Conventionally, in order to control the forbidden band width of the light absorption layer (Cu (InGa) (SeS) 2 ) of a CIS-based solar cell, it is necessary to start with CuInSe 2 having the smallest forbidden band width and to add Ga and / or S. Was done from the direction you want. This is derived from the history of the solar cell of this system began from the CuInSe 2. However, the optimal bandgap for the solar spectrum is said to be around 1.5 eV (see FIG. 1), which is closer to 1.7 eV for CuGaSe 2 than 1.0 eV for CuInSe 2 .
[0008]
Therefore, in the present invention, the idea is changed from the conventional one, and a method is adopted in which CuGaSe 2 or CuGaS 2 is used as a starting material to guide the forbidden band width to a smaller one. In general, in order to reduce the size of a semiconductor having a large forbidden band width, it is usual to prepare a mixed crystal with a semiconductor having a small forbidden band width. In that case, it is preferable that both crystal structures have the same symmetry.
By the way, CuGaSe 2 has a tetragonal symmetry and has a so-called chalcopyrite type crystal structure (see FIG. 2). CuFeSe 2 and CuFeS 2 are materials having the same chalcopyrite type structure and a small band gap. Can be mentioned. It is known that the bandgap of these materials is 0.16 eV and 0.53 eV, respectively.
[0009]
Usually, the mixed crystal of the mixed crystal or CuGaS 2 and CuFeS 2 of CuGaSe 2 and CuFeSe 2, respectively CuGaSe 2 or CuGaS 2 crystal lattice, given the position of Ga is formed is replaced by Fe Good. In other words, the chemical formula of the mixed crystal can be expressed as CuGa 1-x Fe x Se 2 or CuGa 1-x Fe x S 2 . Here, 0 <x <1. Further, since Se and S are homologs, mixed crystal of CuGaSe 2 and CuGaS 2 is possible, and mixed crystal CuGa 1− in which Ga of mixed crystal CuGa (Se 1−y S y ) 2 is replaced by Fe. it is also possible to synthesize the x Fe x (Se 1-y S y) 2. Here, 0 <y ≦ 1.
[0010]
The bandgap of CuGa 1-x Fe x Se 2 and CuGa 1-x Fe x S 2 is bandgap of CuGaSe 2 (about 1.7 eV) and the band gap of CuFeSe 2 or CuFeS 2 0.16 eV Or, it is expected to be some value in the middle of 0.53 eV, and to be able to be adapted to the solar spectrum by adjusting the Fe content. The band gap of the mixed crystal depends on the ratio of the mixed crystal (that is, the substitution ratio of the group III position with Fe) x = Fe / (Fe + Ga). At this time, the forbidden band width of the mixed crystal is not necessarily on the straight line connecting the semiconductors at both ends, but shows a phenomenon called bowing, which is generally a bow.
[0011]
Since this bowing phenomenon occurs on the side where the Fe content is small as shown in FIG. 3, the amount of Fe that replaces Ga in CuGaSe 2 or CuGaS 2 is further reduced, and the optimum object for the solar spectrum is obtained. There is an advantage that a value (about 1.5 eV) can be realized. This bowing is proportional to the square of the difference between the electronegativities of the two replacing elements.
Since the electronegativities of Ga and Fe are 0.301 eV and 0.1634 eV, respectively, the difference of 0.138 eV between them is much larger than the difference of 0.02 eV in the case of Ga and In. Therefore, since bowing of CuIn 1-x Ga x (Se 1-y S y) 2 compared to the CuGa 1-x Fe x (Se 1-y S y) 2 is remarkable, since utilize their advantage is there.
[0012]
In the compound semiconductor composition of the present invention, the smaller the amount of Fe replacing the Ga position, the better. This, Fe is the foreign matter is taken into CuGaSe 2 and CuGaS 2, originally CuGaSe 2 (or CuGaS 2) crystal lattice constant and CuFeSe 2 (or CuFeS 2) it because the different of, Cu (GaFe) Se 2 (or This is because the larger the amount of Fe in Cu (GaFe) S 2 ), the greater the lattice distortion of the mixed crystal, which adversely affects the electrical characteristics of the mixed crystal.
[0013]
The lattice constant of Cu (GaFe) Se 2 (or Cu (GaFe) S 2 ) is generally on a straight line connecting the compounds CuGaSe 2 and CuFeSe 2 (or CuGaS 2 and CuFeS 2 ) at both ends according to Vegard's law. On the other hand, the lattice strain energy is 0 for the compounds at both ends, and increases sharply when mixed crystals start. FIG. 4 shows a change in lattice energy of a mixed crystal in which part of Ga in CuGaSe 2 is replaced by Fe (substitution rate x).
In addition, the value of the forbidden band width optimal for the solar spectrum is often set to 1.4 to 1.5 eV, but there is also a trial calculation that the value becomes the highest around 1.1 eV. Therefore, the possibility of narrowing the band gap of the compound to that extent must be taken into consideration.
Therefore, in the present invention, the range x is 0 to 0.3 for CuGa 1-x Fe x Se 2 , The optimum value in the range x is 0 to 0.5 for CuGa 1-x Fe x S 2 Is considered to exist. Further, y is in the range of 0 <y ≦ 1.
[0014]
Compound semiconductor of the present invention have the general formula: CuGa 1-x Fe x ( Se 1-y S y) 2 ( wherein, x is 0 <x <1, y is 0 <y ≦ 1.) Having a main chalcopyrite structure, in order to produce a thin film of this compound, various known methods used for the formation of this type of thin film, for example, multi-source evaporation, chemical It can be performed using transport deposition, metalorganic vapor phase deposition, reactive plasma deposition, sputter deposition, ionization deposition, liquid phase growth, pulsed laser deposition, sol-gel deposition, gas phase reaction, etc. it can.
[0015]
As an example, when producing a film of CuGa 1-x Fe x Se 2 by multi-source deposition method, Cu, Ga, and CuFeSe 2, heated put in each separate crucibles, each vapor on a substrate The film is grown there. The temperature of each crucible at this time differs depending on the target composition ratio. Typically, when Cu is 1100 ° C., Ga is 890 ° C., and CuFeSe 2 is 870 ° C., CuGa 1 corresponding to x ≒ 0.1 is obtained. it can be obtained -x Fe x Se 2 film. Increasing the temperature of each crucible can increase the film forming speed, but there are limitations on the equipment, including the crucible resistance. In the case of this example, the increase rate of the film thickness is expected to be about 1 μm per hour.
[0016]
FIG. 5 shows a schematic diagram of a cross section of a layer structure of a general CIS solar cell. In FIG. 5, 1 is a substrate made of glass, SiO 2 or the like, 2 is a back electrode made of Mo or the like, 3 is a current collecting terminal made of Al or the like, 4 is a light absorption layer made of chalcopyrite type I-III-VI 2 compound semiconductor, 5 CdS, ZnO, may be omitted or ZnS is a buffer layer made of, window layer such as ZnO is 6, 7 antireflection layer such as MgF 2, 8 is composed of a current collector terminal such as Al .
In the solar cell of the present invention, in the above-mentioned conventional CIS-based solar cell, the light absorbing layer of No. 4 contains a group IB element, a group IIIB element and a group IIIB element of a compound semiconductor containing a VIB element containing S as a constituent. It is produced by providing a thin film containing a compound semiconductor having a composition in which a part thereof is replaced with Fe, in particular, a composition represented by CuGa 1-x F x (Se 1-y S y ) 2 . Among them, the solar cell having a light absorbing layer including a compound semiconductor having a composition represented by the window layer and CuGa 1-x Fe x (Se 1-y S y) 2 containing ZnO is preferred.
[0017]
【The invention's effect】
Since the compound semiconductor thin film of the present invention conforms to the forbidden band width of the solar spectrum (about 1.5 eV), it can convert solar energy with high efficiency.
In the conventional method, CuInSe 2 (approximately 1.0 eV) having a small band gap has a large number of defects due to crystal lattice distortion due to the addition of different elements (Ga, S, etc.), and the expected improvement in efficiency has not been obtained. According to the invention, since the mixed crystal ratio may be low, the adverse effect of crystal lattice distortion can be reduced, and the effect of bandgap bowing due to the mixed crystal is greatly expressed, so that the mixed crystal ratio can be significantly reduced. If this is used for the light absorbing layer of a thin-film solar cell, extremely high energy conversion efficiency can be realized.
Since a practical solar cell uses a large amount of raw materials incomparably with conventional electronic products, production of a solar cell using Cu (GaFe) (SeS) 2 that does not use In, which is a rare element on the earth, at all Contributes to the saving of resources, the reduction of manufacturing costs and the stabilization of prices.
[Brief description of the drawings]
FIG. 1 is a curve graph showing a relation between a band gap (horizontal axis) and a theoretical value of light-electric conversion efficiency (vertical axis) with respect to a band gap of a semiconductor forming a pn junction in a light absorption layer of a solar cell.
FIG. 2 shows a schematic view of a chalcopyrite crystal lattice. For CuGaSe 2, symbols A, B, C represent respectively Cu, Ga, the position of the Se atoms. In the case of a mixed crystal, a part of the position B is replaced with an Fe atom, and a part of the position C is replaced with an S atom. a and c indicate the a-axis length and c-axis length of the chalcopyrite-type crystal lattice unit cell, respectively.
[Figure 3] CuGaSe 2 and CuFeSe a second mixed crystal CuGa 1-x Fe x Se 2 and CuGaS is 2 and CuFeS 2 mixed crystals CuGa 1-x Fe x mixed crystal of S 2 ratio x (horizontal axis) 6 is a curve graph showing a relationship between a forbidden band width (vertical axis) and a forbidden band width. Mixed CuGa 1-x Fe x (Se 1-y S y) 2 is present in a region sandwiched between two curves.
[4] CuGaSe 2 and CuFeSe a second mixed crystal CuGa 1-x Fe x Se crystal lattice constant (left vertical axis) and the lattice strain energy for the mixed crystal ratio x (horizontal axis) in the second (right vertical axis) It is a curve graph which shows a relationship.
FIG. 5 is a schematic cross-sectional view of a layer structure of an example of a solar cell using a compound semiconductor of the present invention as a light absorbing layer.

Claims (4)

周期表IB族元素、IIIB族元素及びSを含むVIB族元素を構成成分とする化合物半導体薄膜において、IIIB族元素の一部をFeで置き換えた組成からなることを特徴とする化合物半導体薄膜。What is claimed is: 1. A compound semiconductor thin film comprising a group IB element, a group IIIB element and a group VIB element containing S in a periodic table, wherein the compound semiconductor thin film has a composition in which part of the group IIIB element is replaced by Fe. 一般式:CuGa1−xFe(Se1−y
(式中、xは0<x<1であり、yは0<y≦1である。)
で示される組成からなることを特徴とする化合物半導体薄膜。
Formula: CuGa 1-x Fe x ( Se 1-y S y) 2
(Where x is 0 <x <1 and y is 0 <y ≦ 1)
A compound semiconductor thin film having a composition represented by the following formula:
請求項1または2に記載の化合物半導体薄膜を光吸収層として設けたことを特徴とする太陽電池。A solar cell comprising the compound semiconductor thin film according to claim 1 provided as a light absorbing layer. 請求項1または2に記載の化合物半導体薄膜からなる光吸収層及びZnOを含む窓層を設けたことを特徴とする太陽電池。A solar cell comprising a light absorbing layer comprising the compound semiconductor thin film according to claim 1 and a window layer containing ZnO.
JP2002177401A 2002-06-18 2002-06-18 Compound semiconductor thin film and solar cell using the same Pending JP2004022897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177401A JP2004022897A (en) 2002-06-18 2002-06-18 Compound semiconductor thin film and solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177401A JP2004022897A (en) 2002-06-18 2002-06-18 Compound semiconductor thin film and solar cell using the same

Publications (1)

Publication Number Publication Date
JP2004022897A true JP2004022897A (en) 2004-01-22

Family

ID=31175444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177401A Pending JP2004022897A (en) 2002-06-18 2002-06-18 Compound semiconductor thin film and solar cell using the same

Country Status (1)

Country Link
JP (1) JP2004022897A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8610129B2 (en) 2008-01-15 2013-12-17 Samsung Electronics Co., Ltd. Compound semiconductor image sensor
CN108123001A (en) * 2017-12-25 2018-06-05 北京铂阳顶荣光伏科技有限公司 The preparation method of copper indium gallium selenium solar cell absorbed layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8610129B2 (en) 2008-01-15 2013-12-17 Samsung Electronics Co., Ltd. Compound semiconductor image sensor
CN108123001A (en) * 2017-12-25 2018-06-05 北京铂阳顶荣光伏科技有限公司 The preparation method of copper indium gallium selenium solar cell absorbed layer

Similar Documents

Publication Publication Date Title
Kumar et al. Substitution of Zn in Earth‐Abundant Cu2ZnSn (S, Se) 4 based thin film solar cells–A status review
Yousfi et al. Cadmium-free buffer layers deposited by atomic later epitaxy for copper indium diselenide solar cells
Chantana et al. Investigation of carrier recombination of Na-doped Cu2SnS3 solar cell for its improved conversion efficiency of 5.1%
JP3244408B2 (en) Thin film solar cell and method of manufacturing the same
Gour et al. Cd-free Zn (O, S) as alternative buffer layer for chalcogenide and kesterite based thin films solar cells: a review
Zhao et al. Effect of Ag doping on the performance of Cu2SnS3 thin-film solar cells
Rockett Current status and opportunities in chalcopyrite solar cells
US20120180870A1 (en) Photoelectric conversion device, method for producing the same, and solar battery
US20110048522A1 (en) Solar cell
Doroody et al. Temperature difference in close-spaced sublimation (CSS) growth of CdTe thin film on ultra-thin glass substrate
KR20130016528A (en) Preparation method for czt(s,se) thin film and czt(s,se) thin film prepared the same
Bosio et al. Why CuInGaSe2 and CdTe polycrystalline thin film solar cells are more efficient than the corresponding single crystal?
Ruan et al. Effect of potassium doping for ultrasonic sprayed Cu2SnS3 thin films for solar cell application
WO2011036717A1 (en) Thin film compound solar cell
Nishimura et al. Silver-alloyed wide-gap CuGaSe2 solar cells
Lux-Steiner et al. Processes for chalcopyrite-based solar cells
Hanket et al. Characterization and device performance of (AgCu)(InGa) Se 2 absorber layers
US8802974B2 (en) Solar cell
US20120125425A1 (en) Compound semiconductor solar cell and method of manufacturing the same
Dimmler et al. Scalability and pilot operation in solar cells of CuInSe2 and their alloys
JP2004022897A (en) Compound semiconductor thin film and solar cell using the same
KR101074676B1 (en) Compound Semiconductor Thin Film Solar Cell Using Fe Layer for Backcontact and Substrate
Schock CulnSe2 and Other Chalcopyrite-Based Solar Cells
Yusoff Copper indium gallium selenide solar cells
Bal et al. Effect of Ge & ZnO inter-layer on the properties of CZTSSe absorber layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222