JP2004022564A - Method and device for manufacturing electrophotography printed wiring board - Google Patents

Method and device for manufacturing electrophotography printed wiring board Download PDF

Info

Publication number
JP2004022564A
JP2004022564A JP2002171145A JP2002171145A JP2004022564A JP 2004022564 A JP2004022564 A JP 2004022564A JP 2002171145 A JP2002171145 A JP 2002171145A JP 2002171145 A JP2002171145 A JP 2002171145A JP 2004022564 A JP2004022564 A JP 2004022564A
Authority
JP
Japan
Prior art keywords
substrate
exposure
photosensitive layer
electrophotographic
electrophotographic photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002171145A
Other languages
Japanese (ja)
Inventor
Yasuo Kaneda
金田 安生
Toyoichi Komuro
小室 豊一
Masanori Nazuka
名塚 正範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2002171145A priority Critical patent/JP2004022564A/en
Publication of JP2004022564A publication Critical patent/JP2004022564A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combination Of More Than One Step In Electrophotography (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for manufacturing a space-saving electrophotography printed wiring board in which a substrate of superior line width accuracy is obtained in a short period of time. <P>SOLUTION: When a toner image is formed in an electrophotographic process, electric charge, exposure and toner development are continuously performed while the substrate is moved at a constant speed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真プリント配線板の作製方法及び装置に関し、より詳しくは、省スペースで、線幅精度良好な基板が短時間に得る事のできる電子写真プリント配線板の作製方法及び装置に関する。
【0002】
【従来の技術】
電子機器の軽薄短小化や多様化に伴い、プリント配線板においても高密度化、工期の短縮化が要求されている現在、レジスト材料として電子写真感光体の応用が検討されている。従来、電子写真平版印刷版等に使用されている電子写真感光体では、既に赤外域での描画が行われており、レーザ光による走査露光によりフォトマスクを使用せずにコンピューターから直接画像データをデジタルデータとして送り、高密度の画像を形成する事が実用化されている。
【0003】
電子写真法を利用したプリント配線板(以下、電子写真プリント配線板という)の作製は、次の様にしてなされる。絶縁性基板上に金属導電層を設けた積層板上に電子写真感光層を設け、電子写真感光層表面を一様に帯電した後、配線パターンに従って露光を行う、もしくは、配線パターンに従って露光を行った後、帯電を行う事により、露光部分の帯電が消失した静電潜像が得られる。この静電潜像をトナー現像処理を行ってトナー画像を形成し、このトナー画像をレジストとして、トナー画像部以外の電子写真感光層を溶解除去し、トナー画像と電子写真感光層とからなる金属導電層のレジスト画像が作製される。金属導電層の不要部の溶解除去及びそれ以降のプリント配線板の作製工程は、従来と同様にして行う事ができる。
【0004】
電子写真プリント配線板には帯電した後に露光して静電潜像を形成する通常の電子写真プロセスを利用した電子写真感光体を利用するタイプのものと、特願2000−366644号に出願されているような露光した後に帯電して静電潜像を形成するフォトメモリー性感光体を利用するタイプのものがある。
いずれのシステムにおいても、工程としては、既存の直描露光装置、もしくは密着露光装置等のアナログ露光装置により露光された基板を特開平6−224541号公報記載のようなトナー現像装置により処理を行っていた。
【0005】
このような従来のシステムでは、利用する感光体の種類により、露光装置もしくはトナー現像装置に帯電手段を付与して、コンパクトにする事はされてはいたが、露光装置とトナー現像装置は基本的には別個の独立の装置となっており、また、それぞれの装置内での基板の処理に関してはその処理方式、処理速度、処理方向等も独立に異なったものであった。
【0006】
すなわち、図7に示すような定盤上に基板を載置して、定盤の移動によって帯電及び露光を行う帯電手段付き直描露光装置を用いて静電潜像を形成した後、特開平6−224541号公報記載のような両面トナー現像処理装置で処理する場合には、直描露光装置で片面を帯電・露光処理した後、基板を取り去って、トナー現像装置に投入する必要があり、また両面処理する場合は、直描露光装置で片面を帯電・露光処理を行った後、反転して再度、直描露光装置で帯電・露光処理を行った後、トナー現像装置に投入する事となる。
【0007】
この際、帯電・露光処理とトナー現像処理との間の時間間隔は、帯電・露光処理とトナー現像処理での基板の処理方向かつ/もしくは処理速度が通常異なるため、基板の場所により一定とはならない。両面を逐次で帯電・露光処理を行う場合は、その差は更に顕著となる。
また、メモリー感光体を密着露光装置で両面一括露光を行い、その後、特願2000−379742号に出願している帯電手段付きトナー現像装置で処理する場合も、同様に、基板の部位により、各処理工程間の時間差が生ずる。
【0008】
電子写真感光体では帯電した後、もしくは露光した後の時間経過にしたがって、表面の電位が徐徐に減衰していく。表面電位が変化すると、トナー現像を行った際のトナー付着量にも影響を及ぼし、異なるトナー画像が得られる事となる。
通常、この処理時間差に起因するトナー画像の変動は、実用上問題とならないレベルであったが、昨今の電子機器の高速化、小型化に伴うプリント配線板回路のファインパターン化、高周波対応等の要求から、回路の線幅が微細化するとともにその線幅精度が重要となってきている。そのような線幅精度が厳しく要求されるプリント配線板を処理した場合には、この各工程間の処理時間差に起因するトナー画像の変化が問題となる場合があった。また、ファインパターンの処理になると、プロセスの管理条件も厳しくなり、プロセス条件の変動状況によっては、この処理時間差による影響が問題となる場合があった。
【0009】
すなわち、電子写真法の特性から、露光、帯電、トナー現像各工程間、もしくは帯電、露光、トナー現像各工程間の時間間隔が、基板の部位により異なる事により、表面電位状態が基板の部位により変化して、ファインパターンや線幅精度の厳しいパターンを出力する場合には、線幅の変動等が起こり、問題となる場合があった。
また、上記のような、露光装置から露光装置(両面の場合)、露光装置からトナー現像装置へ基板を移送する際に、そのためのハンドリングのための作業スペース・装置が必要となるとともに、その移送時のトラブル(打痕、傷、ゴミ付着)に起因する欠陥が発生する可能性もあった。
【0010】
【発明が解決しようとする課題】
本発明は、絶縁性基板の少なくとも片面に少なくとも金属導電層及び電子写真感光層をこの順に設け、該電子写真感光層上に電子写真法によりトナー画像を形成させ、次いでトナー画像部以外の電子写真感光層を溶出除去し、かつ電子写真感光層除去部基板表面をエッチングする電子写真プリント配線板の作製方法及び装置であって、省スペースで、線幅精度良好な基板が短時間に得る事のできる電子写真プリント配線板の作製方法及び装置を提供する事を課題とする。
【0011】
【課題を解決するための手段】
本発明者らは上記課題を解決するため鋭意検討した結果、絶縁性基板の少なくとも片面に少なくとも金属導電層及び電子写真感光層をこの順に設け、該電子写真感光層上に電子写真法によりトナー画像を形成させ、次いでトナー画像部以外の電子写真感光層を溶出除去し、かつ電子写真感光層除去部基板表面をエッチングする電子写真プリント配線板の作製方法において、電子写真法によりトナー画像を形成する際に帯電及び露光及びトナー現像処理を該基板を同一速度で移動させながら連続処理する事により上記課題が解決される事を見いだした。
また該露光がデジタルデータに基づいた直接描画手段を用いる事により、フォトマスクを不要にし、よりスペースを少なく、安定に処理する事ができる。
【0012】
また、絶縁性基板の少なくとも片面に少なくとも金属導電層及び電子写真感光層をこの順に設けた基板を一定の速度で搬送する搬送路、その同一搬送路の少なくとも片側に、電子写真感光層表面の帯電を行う帯電手段、電子写真感光層表面の露光を行う露光手段、電子写真感光層表面の静電潜像のトナー現像を行うトナー現像手段を設けた事を特徴とする電子写真プリント配線板の作製装置によって解決される。また、該露光手段がデジタルデータに基づいた直接描画手段である事により、フォトマスクを不要にし、よりスペースを少なく、安定に処理する事ができる。
【0013】
【発明の実施の形態】
以下に本発明の電子写真プリント配線板の作製方法及び装置について詳細に説明する。
【0014】
本発明の電子写真プリント配線板の作製装置の一例の概略断面構成図を図1に示し、それを参照しながら詳細に説明する。
図1において、基板1は、絶縁性基板の両面に金属導電層及び電子写真感光層をこの順に設けたものであり、電子写真感光層は帯電して露光する事により静電潜像を形成するタイプの通常の電子写真感光プロセスの電子写真感光体を利用している。その基板1を搬送路5に沿って、搬送路に付随する図示しない搬送駆動手段によって同一速度で搬送を行い、搬送路5の上下に設けた、帯電手段11,露光手段50、トナー現像手段15によって連続して処理を行う。
【0015】
帯電手段11は、コロトロン方式の帯電機により、基板1の電子写真感光層表面の帯電を行うようになっている。帯電手段11は、基板1の電子写真感光層表面を一様に帯電できるものであればいずれの方式も利用可能であり、コロトロン方式及びスコロトロン方式等の非接触帯電方式、また、導電ブラシ帯電や導電ロール帯電等の接触帯電方法等の公知の技術を用いる事ができる。
【0016】
露光手段50では、光源を含む光学系変調システム52からの露光ビーム51を基板表面、基板搬送方向と垂直方向に走査変調露光する事により、所望の位置にパターン露光を行う。露光手段50は、帯電された電子写真感光層表面を露光し、露光した部位の電位を消失もしくは低減させるものであればいずれの方式でも良く、露光の光源としては、キセノンランプ、タングステンランプ、蛍光灯等を光源とした反射画像露光、透明陽画フィルムを通した密着露光や、レーザー光、発光ダイオード等による走査露光が挙げられる。走査露光に於ける光源は、He−Neレーザー、アルゴンイオンレーザー、クリプトンイオンレーザー、ルビーレーザー、YAGレーザー、窒素レーザー、色素レーザー、エキサイマーレーザー、GaAs/GaAlAs、及びInGaAsPの様な半導体レーザー等のレーザー光源を利用でき、または発光ダイオード、液晶シャッタ、デジタルマイクロミラーデバイスを利用した走査露光(発光ダイオードアレイ、液晶シャッタアレイ等を用いたラインプリンタ型の光源も含む)を行っても良い。密着露光をする場合は、ロール状フォトマスクを線状に基板に接触させ、スリット等を利用して、線状の露光を行い、基板の搬送速度に沿った露光を行う。
【0017】
トナー現像手段15は、搬送路5上に搬送されてきた基板の両面に形成された静電潜像に液体現像剤21を供給して、静電潜像をトナー画像に変換するものである。図1の装置では、現像電極13を搬送路5の上下に設け、液体現像剤21の供給を行うと共に、バイアス電圧Va、Vbを上下現像電極13に印加してトナー現像を促進させる。基板1と上下現像電極13との間には液体現像剤21が満たされ、液体現像剤21中の荷電トナー粒子が基板表面の静電潜像に従って、画像様に基板1表面に付着する。トナーがパターンに従って付着された後、上下絞液ロール14の挟持によって余剰の液体現像剤の除去を行われ、その後、図示しない乾燥手段、定着手段によって、トナー画像を熱による定着を行う。その後、従来のプリント基板製造で用いられる、公知のアルカリ現像手段、エッチング手段によって、金属導電層パターンが得られる。
【0018】
搬送路5に沿って基板を搬送する手段としては、図1では、ロールによる挟持搬送手段を用いているが、特に帯電後トナー現像定着前までは、基板表面には非接触での搬送が好ましいため、特開2000−185841号公報に記載のような端部支持搬送方式を利用しても良い。搬送手段は、同一速度で連続的に、帯電手段、露光手段、トナー現像手段の各処理手段による処理を通過させる事ができるものであればいずれの方式も利用可能で、上記の方式の他、チャックによる基板搬送手段や、片面のみの処理の場合には定盤上載置による搬送手段等いずれの方式も用いることができる。
【0019】
また、本発明に係わる基板は図1では枚葉のものを使用しているが、長尺状(ロールシート状)の基板も利用する事ができる。その場合は、搬送路5上に基板を安定に一定速度で搬送させるための搬送手段としては、ロールによる巻き出し、巻き取り駆動、及びテンションロール、バッキングロール等の安定搬送手段を付加する事が望ましい。
本発明に係わる搬送路5は、直線である必要はなく、基板を一定速度で安定に搬送できれば、曲線が一部もしくは全部に含まれていてもかまわない。
【0020】
それぞれの帯電手段11、露光手段50、トナー現像手段15を所定の一定速度で連続して処理させた場合に、良好なトナー画像を得るためには、その一定の搬送速度に対して、最適な処理が行われるように、帯電手段11、露光手段50、トナー現像手段15の処理条件を調整する必要がある。
例えば、図1において、搬送速度をより速くして処理を行おうとする場合には、帯電手段11であるコロトロン帯電方式においては、コロナワイヤ本数を増やす、帯電領域長を広げる、ワイヤと搬送路(基板)との間隔を狭くする、ワイヤへの印加電圧を高くする、等の条件変更により良好な状態に調整する。また、同様に、露光手段50である、レーザ走査露光では、走査速度を速くする、露光ビーム本数を増やす等の条件変更により良好な状態に調整する。
また、同様にトナー現像手段15では、液体現像剤の濃度を高くする、現像電極長を長くする、現像電極と搬送路(基板)との間隔を狭くする、供給液流量を増やす、等の条件変更により良好な状態に調整する。
【0021】
また、本発明に係わる絶縁性基板としては、ガラス基材エポキシ樹脂板、紙基材フェノール樹脂板、紙基材エポキシ樹脂板、ガラス基材ポリイミド樹脂板、ポリエステルフィルム、ポリイミドフィルム、ポリアミドフィルム、及びポリふっ化ビニルフィルム等が挙げられる。また、絶縁性基板の厚さは60μm〜3.2mm程度であり、プリント配線板としての最終使用形態により、その材質と厚さが選定される。
【0022】
本発明に係わる金属導電層は、銅、銀、アルミニウム、ステンレス、ニクロム、及びタングステン等が挙げられる。金属導電層の厚さは5〜35μmが一般的であるが、前処理時のソフトエッチングやメッキ処理により厚さは調整される。
【0023】
本発明に係わる電子写真感光層としては、通常の帯電・露光の順による静電潜像を形成する通常の電子写真感光体として、有機及び無機の光導電性化合物が挙げられる。無機光導電性化合物の例としては、セレン及びセレン合金、アモルファスシリコン、硫化カドミウム、酸化亜鉛、硫化亜鉛、酸化チタン等を挙げる事ができる。また、有機光導電性化合物の例としては、
a)米国特許第3,112,197号明細書等に記載のトリアゾール誘導体、
b)米国特許第3,189,447号明細書等に記載のオキサジアゾール誘導体、
c)特公昭37−16096号公報等に記載のイミダゾール誘導体、
d)米国特許第3,542,544号、同3,615,402号、同3,820,989号明細書、特公昭45−555号、同51−10983号、特開昭51−93224号、同55−108667号、同55−156953号、及び同56−36656号公報等に記載のポリアリールアルカン誘導体、
e)米国特許第3,180,729号、同4,278,746号明細書、特開昭55−88064号、同55−88065号、同49−105537号、同55−51086号、同56−80051号、同56−88141号、同57−45545号、同54−112637号、及び同55−74546号公報等に記載のピラゾリン誘導体及びピラゾロン誘導体、
f)米国特許第3,615,404号明細書、特公昭51−10105号、同46−3712号、同47−28336号、特開昭54−83435号、同54−110836号、及び同54−119925号公報等に記載のフェニレンジアミン誘導体、
g)米国特許第3,567,450号、同3,180,703号、同3,240,597号、同3,658,520号、同4,232,103号、同4,175,961号、同4,012,376号明細書、西独国特許(DAS)1,110,518号、特公昭49−35702号、同39−27577号、特開昭55−144250号、同56−119132号、及び同56−22437号公報等に記載のアリールアミン誘導体、
h)米国特許第3,526,501号明細書記載のアミノ置換カルコン誘導体、
i)米国特許第3,542,546号明細書等に記載のN,N−ビカルバジル誘 導体、
j)米国特許第3,257,203号明細書等に記載のオキサゾール誘導体、
k)特開昭56−46234号公報等に記載のスチリルアントラセン誘導体、
l)特開昭54−110837号公報等に記載のフルオレノン誘導体、
m)米国特許第3,717,462号明細書、特開昭54−59143号(米国特許第4,150,987号に対応)、同55−52063号、同55−52064号、同55−46760号、同55−85495号、同57−11350号、同57−148749号、及び同57−104144号公報等に記載のヒドラゾン誘導体、
n)米国特許第4,047,948号、同4,047,949号、同4,265,990号、同4,273,846号、同4,299,897号、及び同4,306,008号明細書等に記載のベンジジン誘導体、
o)特開昭58−190953号、同59−95540号、同59−97148号、同59−195658号、及び同62−36674号公報等に記載のスチルベン誘導体、
p)特公昭34−10966号公報に記載のポリビニルカルバゾール及びその誘導体、
q)特公昭43−18674号及び同43−19192号公報に記載のポリビニルビレン、ポリビニルアントラセン、ポリ−2−ビニル−4−(4´−ジメチルアミノフェニル)−5−フェニルオキサゾール、及びポリ−3−ビニル−N−エチルカルバゾール等のビニル重合体、
r)特公昭43−19193号公報に記載のポリアセナフチレン、ポリインデン、及びアセナフチレン/スチレン共重合体等の重合体、
s)特公昭56−13940号公報等に記載のピレン/ホルムアルデヒド樹脂及びエチルカルバゾール/ホルムアルデヒド樹脂等の縮合樹脂、
t)特開昭56−90883号、同56−161550号公報等に記載の各種トリフェニルメタン重合体、
u)米国特許第3,397,086号、同4,666,802号、特開昭51−90827号、同52−655643号、特開昭64−2061号、及び同64−4389号公報等に記載の無金属あるいは金属(酸化物)フタロシアニン及びナフタロシアニン、及びその誘導体等がある。
本発明に係わる有機光導電性化合物は、a)〜u)に挙げられた化合物に限定されず、他の有機光導電性化合物を用いる事ができる。これらの有機光導電性化合物は、所望により2種類以上を併用しても良い。
【0024】
本発明に係わる電子写真感光層がフォトメモリー性感光体を利用する場合は、特願2000−366644号に記載の感光体を利用する事ができる。
また、フォトメモリー性感光体を利用する場合には、本発明の電子写真プリント配線板の作製装置としては、図2にその概略断面構成図の一例を示すような、露光手段50の後に帯電手段11を設けたような電子写真プリント配線板の作製装置を用いて処理を行う。
【0025】
本発明に係わる電子写真感光層には、上記化合物の他に結着樹脂を含有させる事が好ましい。本発明に用いられる結着樹脂は、帯電性等を含む電子写真特性を満足し、かつ溶出液への溶解性を有していなければならない。
溶出液としては酸性またはアルカリ性液が用いられるが、酸性溶出液の場合結着樹脂としては酸可溶型結着樹脂が、アルカリ性溶出液の場合はアルカリ可溶型結着樹脂を使用する。
【0026】
本発明に係わる電子写真感光層の基板への形成方法としては、浸漬法、バーコート法、スプレーコート法、ロールコート法、カーテンコート法、及び電着法等によって行う。
【0027】
【実施例】
以下、本発明を実施例により説明するが、本発明は本実施例のみに限定されるものではない。
【0028】
実施例
基板として、両面銅張り積層板342mm×512mm(厚み0.6mm)(三菱ガス化学製、CCL‐E170)を使用し、長端(512mmの辺部)をチャックで10mm挟んで電子写真感光層形成用塗液[メタクリル酸/メタクリル酸ベンジル/アクリル酸n‐ブチル共重合体(質量組成比20/30/50、分子量2.5万)50質量部、χ型無金属フタロシアニン(大日精化工業製、MCP‐80)10質量部、1,4‐ジオキサン690質量部で構成]の入ったディップ層に入れ、ディップ(浸漬)法で約10μm厚の電子写真感光層を形成した。
【0029】
この電子写真感光層を両面に形成した両面銅張り基板を図1に示す電子写真プリント配線板の作製装置に投入し、帯電手段11により、基板表面を+300Vに帯電し、露光手段50により回路パターンに従ったデジタルデータによってレーザビームの変調走査露光を行い、静電潜像の形成を行った。その後、トナー現像手段15にて、トナー現像処理を行い、静電潜像を、トナー画像に変換した。その後、基板の乾燥及び熱定着を行い、トナー画像によるレジストを形成した。この際の電子写真プリント配線板の作製装置の搬送速度は1m/minで図3に矢印で示す処理方向で処理を行った。
この基板に、30℃に加熱した1質量%炭酸ナトリウム溶液をスプレーした後、水道水で洗浄し、トナーで被覆されていない部分の電子写真感光層を溶出除去した後、45℃に加熱した塩化第二鉄水溶液をスプレーして露出した銅部を除去した。更に、50℃に加熱した3.0質量%の水酸化ナトリウム水溶液をスプレーし、残存しているトナー及び電子写真感光層を除去して基板の両面に配線パターンを得た。
【0030】
得られた基板の配線パターン形成面は、両面共に汚れがなく、配線パターンの線幅も表裏、及び基板全面にわたって良好な精度で均一で良好な配線パターンが形成されていた。
トナー現像後の時点で、図6に示す基板の部位aと部位bとで、同じ設計線幅のパターンのトナー画像線幅を測定比較すると、線幅差の±3μm以内におさまっていた。
【0031】
比較例
実施例と同様にして電子写真感光層を両面に設けた基板を、図7に示すような帯電手段付き露光装置の定盤に載置して、定盤を移動させる事により基板の一方の面(第一面)の帯電・露光を行い、静電潜像を形成した。その後、基板の反転動作を行い、定盤上に裏返して載置して、帯電、露光を行い、基板両面に静電潜像を形成した。この基板を特開平6−224541号公報記載の両面トナー現像処理装置をそのまま用いて両面にトナー画像を形成した。
【0032】
その後の処理は実施例と同様にして行い、基板の両面に配線パターンを得た。基板の第1面の帯電・露光処理の処理方向は図4に矢印で示す方向で処理を行い、第2面の帯電・露光処理の処理方向は図5に矢印で示す方向で処理を行い、共に処理速度(定盤の移動速度)はともに0.5m/minであり、トナー現像処理装置での処理方向は図3に矢印で示す方向で処理を行い、その際の搬送速度は2m/minで処理を行った。
その結果、図6に示す基板の部位aと部位bとで同一設計線幅であるにもかかわらず大きな線幅差が出、第一面の部位aの線幅が第二面の部位bの線幅よりも太めに出ており、良好な線幅精度の基板の作製はできていなかった。
トナー現像後の時点で、図6に示す基板の部位aと部位bとで、同じ設計線幅のパターンのトナー画像線幅を測定比較すると、第二面の部位bの線幅が第一面の部位aの線幅よりも10μm以上太めに再現されていた。
【0033】
図6に示す基板の部位aでは、帯電処理は最も早い時期になされ、トナー現像処理は一番最後になされる事になり、帯電・露光からトナー現像までの時間間隔は最も大きなものとなる。また、部位bでは帯電処理は一番最後になされ、トナー現像処理は最初に処理される位置であるため、帯電・露光からトナー現像までの時間間隔は最も短くなる。この時間間隔の差がトナー現像時の表面電位の差になり、結果としてトナー現像画質に影響を及ぼし、最終的な線幅変動に結びついたものと考えられる。
【0034】
また、露光装置上での基板の反転載置作業や、トナー現像装置への投入作業等をきわめて慎重に行う必要があるとともに、基板の絶対的な移動距離が長くなるため、余分な時間がかかり、トータルの処理時間も余分にかかる結果となった。
【0035】
【発明の効果】
以上に説明した如く、電子写真プリント配線板の作製を行う際に、帯電及び露光及びトナー現像処理を該基板を同一速度で移動させながら連続処理する方法及び装置により、省スペース化がはかられると共に、基板の移動距離が絶対的に短くなるため、短時間での処理が可能となり、また、基板ハンドリングに伴う打痕や傷、ゴミ付着等による欠陥を減少させられる。また、各処理工程の時間間隔を基板の全面にわたって同一にする事で、線幅精度の優れた、良好なプリント配線板が安定に得る事ができる。
【図面の簡単な説明】
【図1】本発明に係わる電子写真プリント配線板の作製装置(帯電後露光する通常の電子写真感光体を電子写真感光層として利用した場合)の概略断面構成図。
【図2】本発明に係わる電子写真プリント配線板の作製装置(フォトメモリー性感光体を電子写真感光層として利用した場合)の概略断面構成図。
【図3】基板の処理方向を示す図。
【図4】比較例における基板の第一面の処理方向を示す図。
【図5】比較例における基板の第二面の処理方向を示す図。
【図6】基板の部位を示す図。
【図7】帯電手段付き露光装置の斜視図。
【符号の説明】
1 基板(通常電子写真感光体利用)
2 基板(フォトメモリー性感光体利用)
4 定盤
5 搬送路
11 帯電手段
13 現像電極
14 絞液ロール
15 トナー現像手段
21 液体現像剤
50 露光手段
51 露光ビーム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for manufacturing an electrophotographic printed wiring board, and more particularly, to a method and an apparatus for manufacturing an electrophotographic printed wiring board capable of obtaining a substrate having a good line width accuracy in a short time in a small space.
[0002]
[Prior art]
With the demand for high-density and shortened construction periods of printed wiring boards as electronic devices become lighter, thinner, shorter and more diversified, the application of electrophotographic photosensitive members as resist materials is being studied. Conventionally, in an electrophotographic photosensitive member used for an electrophotographic lithographic printing plate, drawing in an infrared region has already been performed, and image data can be directly transmitted from a computer without using a photomask by scanning exposure with laser light. Forming a high-density image by sending it as digital data has been put to practical use.
[0003]
Production of a printed wiring board (hereinafter, referred to as an electrophotographic printed wiring board) using an electrophotographic method is performed as follows. An electrophotographic photosensitive layer is provided on a laminate having a metal conductive layer provided on an insulating substrate, and after uniformly charging the surface of the electrophotographic photosensitive layer, exposure is performed according to a wiring pattern, or exposure is performed according to a wiring pattern. After that, by performing charging, an electrostatic latent image in which the charged portion of the exposed portion has disappeared is obtained. The electrostatic latent image is subjected to a toner developing process to form a toner image, and the toner image is used as a resist to dissolve and remove the electrophotographic photosensitive layer other than the toner image portion, thereby forming a metal comprising the toner image and the electrophotographic photosensitive layer. A resist image of the conductive layer is created. Dissolution and removal of the unnecessary portion of the metal conductive layer and the subsequent steps of manufacturing the printed wiring board can be performed in the same manner as in the related art.
[0004]
An electrophotographic printed wiring board is of a type using an electrophotographic photoreceptor using a normal electrophotographic process of forming an electrostatic latent image by being exposed after being charged, and has been filed in Japanese Patent Application No. 2000-366644. There is a type that uses a photo-memory photosensitive member that forms an electrostatic latent image by being charged after exposure.
In any system, as a process, a substrate exposed by an analog exposure apparatus such as an existing direct exposure apparatus or a contact exposure apparatus is processed by a toner developing apparatus as described in JP-A-6-224541. I was
[0005]
In such a conventional system, depending on the type of photoreceptor to be used, an exposure device or a toner developing device is provided with charging means to make it compact, but the exposure device and the toner developing device are basically Are separate and independent apparatuses, and the processing method, processing speed, processing direction, etc., of the substrate processing in each apparatus are also independently different.
[0006]
That is, a substrate is placed on a surface plate as shown in FIG. 7 and an electrostatic latent image is formed using a direct drawing exposure apparatus with a charging means for charging and exposing by moving the surface plate. In the case of processing with a double-sided toner development processing apparatus as described in JP-A-6-224541, it is necessary to charge and expose one side with a direct drawing exposure apparatus, remove the substrate, and put the substrate into a toner development apparatus. Also, when performing double-sided processing, charge and expose one side with a direct-writing exposure apparatus, turn it over, perform charging and exposure processing again with a direct-writing exposure apparatus, and then put it into the toner developing device. Become.
[0007]
At this time, the time interval between the charging / exposure processing and the toner development processing is not constant depending on the location of the substrate because the processing direction and / or processing speed of the substrate in the charging / exposure processing and the toner development processing are usually different. No. When the charging and exposure processes are performed sequentially on both sides, the difference becomes even more remarkable.
In addition, when the memory photoreceptor is subjected to both-side batch exposure using a contact exposure apparatus, and then processed using a toner developing apparatus with a charging unit applied for Japanese Patent Application No. 2000-379742, the same applies to each part of the substrate. There is a time difference between the processing steps.
[0008]
In an electrophotographic photoreceptor, the surface potential gradually decreases with time after charging or exposure. When the surface potential changes, it also affects the amount of toner adhered when toner development is performed, and a different toner image is obtained.
Normally, the fluctuation of the toner image due to the processing time difference is at a level that does not cause a problem in practical use. Due to the demand, the line width of a circuit becomes finer and the line width accuracy becomes important. When a printed wiring board requiring such strict line width accuracy is processed, a change in the toner image due to a processing time difference between the respective steps may become a problem. In the case of fine pattern processing, the management conditions of the process become stricter, and depending on the variation of the process conditions, the influence of the processing time difference may cause a problem.
[0009]
In other words, from the characteristics of electrophotography, the time interval between each step of exposure, charging, and toner development or the time interval between each step of charging, exposure, and toner development differs depending on the part of the substrate. When a fine pattern or a pattern with strict line width accuracy is output due to a change, the line width may fluctuate, which may cause a problem.
Further, when the substrate is transferred from the exposure apparatus to the exposure apparatus (in the case of both sides) and the exposure apparatus to the toner developing apparatus as described above, a work space and apparatus for handling are required. There was also a possibility that defects caused by troubles at the time (dents, scratches, dust adhesion) may occur.
[0010]
[Problems to be solved by the invention]
The present invention provides at least a metal conductive layer and an electrophotographic photosensitive layer on at least one surface of an insulating substrate in this order, forms a toner image on the electrophotographic photosensitive layer by an electrophotographic method, and then forms an electrophotographic image other than the toner image portion. A method and an apparatus for producing an electrophotographic printed wiring board for eluting and removing a photosensitive layer and etching a substrate surface of an electrophotographic photosensitive layer-removed portion, wherein a substrate with small space and good line width accuracy can be obtained in a short time. An object of the present invention is to provide a method and an apparatus for manufacturing an electrophotographic printed wiring board that can be manufactured.
[0011]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies to solve the above-described problems. As a result, at least one metal conductive layer and an electrophotographic photosensitive layer are provided in this order on at least one surface of the insulating substrate, and a toner image is formed on the electrophotographic photosensitive layer by electrophotography. Is formed, and then the electrophotographic photosensitive layer other than the toner image portion is eluted and removed, and the electrophotographic photosensitive layer-removed portion is etched on the substrate surface to form a toner image by electrophotography. At this time, it has been found that the above-mentioned problem can be solved by performing the charging, exposure and toner development processing continuously while moving the substrate at the same speed.
Further, by using a direct drawing unit based on digital data for the exposure, a photomask is not required, and the space can be reduced and the processing can be performed stably.
[0012]
In addition, a transport path for transporting a substrate provided with at least one metal conductive layer and an electrophotographic photosensitive layer in this order on at least one surface of an insulating substrate at a constant speed, and at least one side of the same transport path, the surface of the electrophotographic photosensitive layer is charged. An electrophotographic printed wiring board, comprising: a charging unit for performing an exposure, an exposure unit for exposing the surface of the electrophotographic photosensitive layer, and a toner developing unit for performing toner development of an electrostatic latent image on the surface of the electrophotographic photosensitive layer. Solved by the device. Further, since the exposure means is a direct drawing means based on digital data, a photomask is not required, and the processing can be performed stably with less space.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method and an apparatus for manufacturing an electrophotographic printed wiring board of the present invention will be described in detail.
[0014]
FIG. 1 is a schematic cross-sectional configuration diagram of an example of an apparatus for manufacturing an electrophotographic printed wiring board according to the present invention, and a detailed description will be given with reference to FIG.
In FIG. 1, a substrate 1 is provided with a metal conductive layer and an electrophotographic photosensitive layer on both sides of an insulating substrate in this order. The electrophotographic photosensitive layer is charged and exposed to form an electrostatic latent image. Type of electrophotographic photoreceptor of a normal electrophotographic process is used. The substrate 1 is transported along the transport path 5 at the same speed by transport drive means (not shown) attached to the transport path, and charging means 11, exposure means 50, toner developing means 15 provided above and below the transport path 5 are provided. The process is continuously performed by
[0015]
The charging unit 11 charges the surface of the electrophotographic photosensitive layer of the substrate 1 by a corotron-type charger. As the charging means 11, any method can be used as long as it can uniformly charge the surface of the electrophotographic photosensitive layer of the substrate 1, a non-contact charging method such as a corotron method and a scorotron method, and a conductive brush charging method. A known technique such as a contact charging method such as conductive roll charging can be used.
[0016]
The exposure means 50 performs pattern exposure at a desired position by performing scanning modulation exposure of an exposure beam 51 from an optical modulation system 52 including a light source in a direction perpendicular to the substrate surface and the substrate transport direction. Exposure means 50 may be any method as long as it exposes the surface of the charged electrophotographic photosensitive layer and eliminates or reduces the potential of the exposed portion. The light source for the exposure may be a xenon lamp, a tungsten lamp, a fluorescent lamp, or the like. Examples include reflection image exposure using a light source as a light source, contact exposure through a transparent positive film, and scanning exposure using a laser beam, a light emitting diode, or the like. The light source for scanning exposure is a semiconductor laser such as He-Ne laser, argon ion laser, krypton ion laser, ruby laser, YAG laser, nitrogen laser, dye laser, excimer laser, GaAs / GaAlAs, and InGaAsP. A laser light source can be used, or scanning exposure using a light emitting diode, a liquid crystal shutter, or a digital micromirror device (including a line printer type light source using a light emitting diode array, a liquid crystal shutter array, or the like) may be performed. In the case of performing contact exposure, a roll-shaped photomask is brought into linear contact with the substrate, linear exposure is performed using a slit or the like, and exposure is performed at a substrate transport speed.
[0017]
The toner developing unit 15 supplies the liquid developer 21 to the electrostatic latent images formed on both sides of the substrate conveyed on the conveying path 5 and converts the electrostatic latent image into a toner image. In the apparatus shown in FIG. 1, developing electrodes 13 are provided above and below the transport path 5 to supply the liquid developer 21 and to apply bias voltages Va and Vb to the upper and lower developing electrodes 13 to promote toner development. The space between the substrate 1 and the upper and lower developing electrodes 13 is filled with the liquid developer 21, and the charged toner particles in the liquid developer 21 adhere to the surface of the substrate 1 imagewise according to the electrostatic latent image on the substrate surface. After the toner is adhered according to the pattern, the excess liquid developer is removed by nipping the upper and lower squeeze rolls 14, and thereafter, the toner image is fixed by heat by a drying unit and a fixing unit (not shown). Thereafter, a metal conductive layer pattern is obtained by a known alkali developing means and etching means used in the conventional printed circuit board production.
[0018]
As a means for transporting the substrate along the transport path 5, in FIG. 1, a nipping transport means using a roll is used. In particular, it is preferable to transport the substrate in a non-contact manner to the substrate surface after charging and before toner development and fixing. Therefore, an end supporting and conveying method as described in JP-A-2000-185841 may be used. Any method can be used as long as the conveying means can continuously pass the processing by each processing means of the charging means, the exposure means, and the toner developing means at the same speed. In addition to the above-described methods, Any method can be used, such as a substrate transfer means using a chuck, or in the case of processing on only one side, a transfer means mounting on a surface plate.
[0019]
Although the substrate according to the present invention is a single substrate in FIG. 1, a long (roll sheet) substrate can also be used. In that case, as a transporting means for transporting the substrate stably at a constant speed on the transporting path 5, it is possible to add unwinding by a roll, a winding drive, and a stable transporting means such as a tension roll and a backing roll. desirable.
The transport path 5 according to the present invention does not need to be a straight line, and may include a curve partially or entirely as long as the substrate can be transported stably at a constant speed.
[0020]
In order to obtain a good toner image when the charging unit 11, the exposure unit 50, and the toner developing unit 15 are continuously processed at a predetermined constant speed, it is necessary to select an optimum It is necessary to adjust the processing conditions of the charging unit 11, the exposure unit 50, and the toner developing unit 15 so that the processing is performed.
For example, in FIG. 1, in the case where the processing is to be performed at a higher transport speed, in the corotron charging method as the charging unit 11, the number of corona wires is increased, the length of the charged area is increased, and the wires and the transport path ( It is adjusted to a good condition by changing conditions such as narrowing the distance between the substrate and the substrate and increasing the voltage applied to the wire. Similarly, in the laser scanning exposure, which is the exposure means 50, a favorable state is adjusted by changing conditions such as increasing the scanning speed and increasing the number of exposure beams.
Similarly, in the toner developing unit 15, conditions such as increasing the concentration of the liquid developer, increasing the length of the developing electrode, reducing the interval between the developing electrode and the transport path (substrate), increasing the flow rate of the supply liquid, and the like. Adjust to a good condition by changing.
[0021]
Further, as the insulating substrate according to the present invention, glass-based epoxy resin plate, paper-based phenolic resin plate, paper-based epoxy resin plate, glass-based polyimide resin plate, polyester film, polyimide film, polyamide film, and Polyvinyl fluoride film and the like can be mentioned. The thickness of the insulating substrate is about 60 μm to 3.2 mm, and its material and thickness are selected according to the final use form of the printed wiring board.
[0022]
Examples of the metal conductive layer according to the present invention include copper, silver, aluminum, stainless steel, nichrome, and tungsten. The thickness of the metal conductive layer is generally from 5 to 35 μm, but the thickness is adjusted by soft etching or plating during pretreatment.
[0023]
The electrophotographic photosensitive layer according to the present invention includes organic and inorganic photoconductive compounds as a general electrophotographic photosensitive member that forms an electrostatic latent image in the order of normal charging and exposure. Examples of the inorganic photoconductive compound include selenium and selenium alloys, amorphous silicon, cadmium sulfide, zinc oxide, zinc sulfide, and titanium oxide. Further, examples of the organic photoconductive compound include:
a) Triazole derivatives described in U.S. Pat. No. 3,112,197 and the like,
b) oxadiazole derivatives described in US Pat. No. 3,189,447 and the like;
c) imidazole derivatives described in JP-B-37-16096 and the like;
d) U.S. Pat. Nos. 3,542,544, 3,615,402, 3,820,989, JP-B-45-555, JP-B-51-10983, and JP-A-51-93224. Polyarylalkane derivatives described in JP-A-55-108667, JP-A-55-156953, and JP-A-56-36656;
e) U.S. Pat. Nos. 3,180,729, 4,278,746, JP-A-55-88064, JP-A-55-88065, JP-A-49-105537, JP-A-55-51086, and JP-A-56. Nos. -80051, 56-88141, 57-45545, 54-112637, and 55-74546, and the like.
f) U.S. Pat. Nos. 3,615,404, JP-B-51-10105, JP-B-46-3712, JP-B-47-28336, JP-A-54-83435, JP-A-54-110836, and 54. Phenylenediamine derivatives described in -119925 and the like,
g) U.S. Patent Nos. 3,567,450, 3,180,703, 3,240,597, 3,658,520, 4,232,103, and 4,175,961 No. 4,012,376, West German Patent (DAS) 1,110,518, JP-B-49-35702, JP-A-39-27577, JP-A-55-144250, and JP-A-56-119132. No., and arylamine derivatives described in JP-A-56-22437 and the like,
h) amino-substituted chalcone derivatives described in U.S. Pat. No. 3,526,501;
i) N, N-bicarbazyl derivative described in U.S. Pat. No. 3,542,546;
j) oxazole derivatives described in US Pat. No. 3,257,203 and the like;
k) styryl anthracene derivatives described in JP-A-56-46234 and the like;
1) fluorenone derivatives described in JP-A-54-110837 and the like;
m) U.S. Pat. No. 3,717,462, JP-A-54-59143 (corresponding to U.S. Pat. No. 4,150,987), 55-52063, 55-52064, and 55- Hydrazone derivatives described in No. 46760, No. 55-85495, No. 57-11350, No. 57-148749, and No. 57-104144;
n) U.S. Pat. Nos. 4,047,948, 4,047,949, 4,265,990, 4,273,846, 4,299,897, and 4,306, No. 008, etc.,
o) stilbene derivatives described in JP-A-58-190953, JP-A-59-95540, JP-A-59-97148, JP-A-59-195658, and JP-A-62-36674;
p) Polyvinylcarbazole and its derivatives described in JP-B-34-10966,
q) Polyvinylvinylene, polyvinylanthracene, poly-2-vinyl-4- (4'-dimethylaminophenyl) -5-phenyloxazole, and poly-3 described in JP-B-43-18874 and JP-B-43-19192. Vinyl polymers such as -vinyl-N-ethylcarbazole,
r) Polymers such as polyacenaphthylene, polyindene and acenaphthylene / styrene copolymer described in JP-B-43-19193;
s) condensation resins such as pyrene / formaldehyde resin and ethylcarbazole / formaldehyde resin described in JP-B-56-13940;
t) various triphenylmethane polymers described in JP-A-56-90883 and JP-A-56-161550;
u) U.S. Pat. Nos. 3,397,086, 4,666,802, JP-A-51-90827, JP-A-52-655564, JP-A-64-2061, and JP-A-4-4389. And phthalocyanines and naphthalocyanines, and derivatives thereof.
The organic photoconductive compound according to the present invention is not limited to the compounds described in a) to u), and other organic photoconductive compounds can be used. These organic photoconductive compounds may be used in combination of two or more, if desired.
[0024]
When the electrophotographic photosensitive layer according to the present invention uses a photo-memory photoreceptor, the photoreceptor described in Japanese Patent Application No. 2000-366644 can be used.
When a photo-memory photoreceptor is used, the apparatus for producing an electrophotographic printed wiring board of the present invention includes a charging unit after an exposure unit 50 as shown in FIG. The processing is performed using an electrophotographic printed wiring board manufacturing apparatus provided with 11.
[0025]
The electrophotographic photosensitive layer according to the present invention preferably contains a binder resin in addition to the above compounds. The binder resin used in the present invention must satisfy electrophotographic properties including chargeability and the like and have solubility in an eluate.
An acidic or alkaline liquid is used as the eluate. In the case of an acidic eluate, an acid-soluble binder resin is used as a binder resin, and in the case of an alkaline eluate, an alkali-soluble binder resin is used.
[0026]
The electrophotographic photosensitive layer according to the present invention is formed on a substrate by a dipping method, a bar coating method, a spray coating method, a roll coating method, a curtain coating method, an electrodeposition method, or the like.
[0027]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the examples.
[0028]
Example
A 342 mm × 512 mm (thickness: 0.6 mm) (CCL-E170, manufactured by Mitsubishi Gas Chemical) double-sided copper-clad laminate is used as a substrate, and an electrophotographic photosensitive layer is formed with its long end (512 mm side) sandwiched by 10 mm with a chuck. Coating solution [methacrylic acid / benzyl methacrylate / n-butyl acrylate copolymer (mass composition ratio: 20/30/50, molecular weight: 25,000): 50 parts by mass, χ type metal-free phthalocyanine (manufactured by Dainichi Seika Kogyo Co., Ltd.) , MCP-80) composed of 10 parts by mass and 690 parts by mass of 1,4-dioxane], to form an electrophotographic photosensitive layer having a thickness of about 10 μm by a dipping (immersion) method.
[0029]
The double-sided copper-clad substrate having the electrophotographic photosensitive layer formed on both sides is charged into the electrophotographic printed wiring board manufacturing apparatus shown in FIG. The modulated scanning exposure of the laser beam was performed by the digital data according to the above, and an electrostatic latent image was formed. Thereafter, the toner developing means 15 performed a toner developing process to convert the electrostatic latent image into a toner image. Thereafter, the substrate was dried and thermally fixed to form a resist based on a toner image. At this time, the processing was performed in the processing direction indicated by an arrow in FIG. 3 at a transport speed of the electrophotographic printed wiring board manufacturing apparatus of 1 m / min.
The substrate was sprayed with a 1% by mass sodium carbonate solution heated to 30 ° C, washed with tap water to elute and remove the electrophotographic photosensitive layer not covered with the toner, and then heated to 45 ° C. The exposed copper portion was removed by spraying an aqueous ferric solution. Further, a 3.0% by mass aqueous solution of sodium hydroxide heated to 50 ° C. was sprayed to remove the remaining toner and the electrophotographic photosensitive layer to obtain wiring patterns on both surfaces of the substrate.
[0030]
The wiring pattern formation surface of the obtained substrate had no stain on both sides, and the wiring width of the wiring pattern was good and uniform over the front and back surfaces and the entire surface of the substrate.
At the time after the toner development, the line width of the toner image of the pattern having the same design line width was measured and compared between the portion a and the portion b of the substrate shown in FIG. 6, and the line width difference was within ± 3 μm.
[0031]
Comparative example
A substrate provided with an electrophotographic photosensitive layer on both sides in the same manner as in the example is placed on a surface plate of an exposure apparatus with a charging means as shown in FIG. 7 and one surface of the substrate is moved by moving the surface plate. The first surface was charged and exposed to form an electrostatic latent image. Thereafter, the substrate was turned over, placed upside down on a surface plate, charged, exposed, and an electrostatic latent image was formed on both surfaces of the substrate. A toner image was formed on both sides of this substrate by using the double-sided toner developing apparatus described in JP-A-6-224541.
[0032]
Subsequent processing was performed in the same manner as in the example, and wiring patterns were obtained on both surfaces of the substrate. The processing direction of the charging / exposure process on the first surface of the substrate is performed in the direction indicated by the arrow in FIG. 4, and the processing direction of the charging / exposure process on the second surface is performed in the direction indicated by the arrow in FIG. In both cases, the processing speed (moving speed of the surface plate) is 0.5 m / min, and the processing is performed in the direction indicated by the arrow in FIG. 3 in the toner development processing apparatus, and the conveying speed at that time is 2 m / min. Was performed.
As a result, a large line width difference appears between the portion a and the portion b of the substrate shown in FIG. 6 even though they have the same design line width, and the line width of the portion a on the first surface is smaller than that of the portion b on the second surface. The line width was larger than the line width, and a substrate with good line width accuracy could not be manufactured.
When the toner image line width of the pattern having the same design line width is measured and compared between the part a and the part b of the substrate shown in FIG. Was reproduced to be at least 10 μm thicker than the line width of the portion a.
[0033]
In the portion a of the substrate shown in FIG. 6, the charging process is performed at the earliest time, the toner developing process is performed last, and the time interval from the charging / exposure to the toner developing is the longest. Further, in the region b, the charging process is performed last and the toner developing process is performed first, so that the time interval from charging / exposure to toner development is the shortest. It is considered that the difference in the time interval becomes a difference in the surface potential during toner development, and as a result, the image quality of the toner development is affected, resulting in a final variation in line width.
[0034]
In addition, it is necessary to carry out the work of reversing and mounting the substrate on the exposure device and the work of putting it in the toner developing device very carefully, and it takes extra time because the absolute moving distance of the substrate becomes longer. As a result, the total processing time was extra.
[0035]
【The invention's effect】
As described above, when manufacturing an electrophotographic printed wiring board, space saving can be achieved by a method and an apparatus for continuously processing charging, exposure, and toner development processing while moving the substrate at the same speed. At the same time, since the moving distance of the substrate is absolutely short, processing can be performed in a short time, and defects such as dents, scratches, and dust attached during substrate handling can be reduced. Further, by setting the time intervals of the respective processing steps to be the same over the entire surface of the substrate, a good printed wiring board having excellent line width accuracy can be stably obtained.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional configuration view of an apparatus for manufacturing an electrophotographic printed wiring board according to the present invention (when a normal electrophotographic photosensitive member that is exposed after charging is used as an electrophotographic photosensitive layer).
FIG. 2 is a schematic cross-sectional configuration diagram of an apparatus for producing an electrophotographic printed wiring board according to the present invention (when a photomemory photosensitive member is used as an electrophotographic photosensitive layer).
FIG. 3 is a diagram showing a processing direction of a substrate.
FIG. 4 is a diagram showing a processing direction of a first surface of a substrate in a comparative example.
FIG. 5 is a diagram showing a processing direction of a second surface of a substrate in a comparative example.
FIG. 6 is a diagram showing portions of a substrate.
FIG. 7 is a perspective view of an exposure apparatus with a charging unit.
[Explanation of symbols]
1 Substrate (usually using electrophotographic photoreceptor)
2 Substrate (using photo-memory photoreceptor)
4 surface plate
5 Transport path
11 Charging means
13 Developing electrode
14 Squeeze roll
15 Toner developing means
21 Liquid developer
50 Exposure means
51 Exposure beam

Claims (4)

絶縁性基板の少なくとも片面に少なくとも金属導電層及び電子写真感光層をこの順に設け、該電子写真感光層上に電子写真法によりトナー画像を形成させ、次いでトナー画像部以外の電子写真感光層を溶出除去し、かつ電子写真感光層除去部基板表面をエッチングする電子写真プリント配線板の作製方法において、電子写真法によりトナー画像を形成する際に帯電及び露光及びトナー現像処理を該基板を同一速度で移動させながら連続処理する事を特徴とする電子写真プリント配線板の作製方法。At least a metal conductive layer and an electrophotographic photosensitive layer are provided in this order on at least one surface of the insulating substrate, a toner image is formed on the electrophotographic photosensitive layer by an electrophotographic method, and then the electrophotographic photosensitive layer other than the toner image portion is eluted. In a method of manufacturing an electrophotographic printed wiring board for removing and etching an electrophotographic photosensitive layer-removed portion substrate surface, when forming a toner image by electrophotography, charging, exposure and toner development processing are performed at the same speed. A method for producing an electrophotographic printed wiring board, characterized by performing continuous processing while moving. 該露光がデジタルデータに基づいた直接描画手段による事を特徴とする請求項1記載の電子写真プリント配線板の作製方法。2. The method for manufacturing an electrophotographic printed wiring board according to claim 1, wherein said exposure is performed by direct drawing means based on digital data. 絶縁性基板の少なくとも片面に少なくとも金属導電層及び電子写真感光層をこの順に設けた基板を一定の速度で搬送する搬送路、その同一搬送路の少なくとも片側に、電子写真感光層表面の帯電を行う帯電手段、電子写真感光層表面の露光を行う露光手段、電子写真感光層表面の静電潜像のトナー現像を行うトナー現像手段を設けた事を特徴とする電子写真プリント配線板の作製装置。A transport path for transporting a substrate provided with at least a metal conductive layer and an electrophotographic photosensitive layer in this order on at least one surface of an insulating substrate at a constant speed, and charging the surface of the electrophotographic photosensitive layer on at least one side of the same transport path. An apparatus for producing an electrophotographic printed wiring board, comprising: a charging unit; an exposing unit for exposing the surface of the electrophotographic photosensitive layer; and a toner developing unit for performing toner development of an electrostatic latent image on the surface of the electrophotographic photosensitive layer. 該露光手段がデジタルデータに基づいた直接描画手段である事を特徴とする請求項3記載の電子写真プリント配線板の作製装置。4. The apparatus according to claim 3, wherein the exposure unit is a direct drawing unit based on digital data.
JP2002171145A 2002-06-12 2002-06-12 Method and device for manufacturing electrophotography printed wiring board Pending JP2004022564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171145A JP2004022564A (en) 2002-06-12 2002-06-12 Method and device for manufacturing electrophotography printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171145A JP2004022564A (en) 2002-06-12 2002-06-12 Method and device for manufacturing electrophotography printed wiring board

Publications (1)

Publication Number Publication Date
JP2004022564A true JP2004022564A (en) 2004-01-22

Family

ID=31171074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171145A Pending JP2004022564A (en) 2002-06-12 2002-06-12 Method and device for manufacturing electrophotography printed wiring board

Country Status (1)

Country Link
JP (1) JP2004022564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858235A (en) * 2010-04-30 2010-10-13 奇瑞汽车股份有限公司 Engine oil supplying module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858235A (en) * 2010-04-30 2010-10-13 奇瑞汽车股份有限公司 Engine oil supplying module

Similar Documents

Publication Publication Date Title
US6815130B2 (en) Electrostatic printing plate possessing a tiered surface
WO1999052335A1 (en) Method and apparatus for manufacturing printed wiring board
US5494764A (en) Method for making printed circuit boards
JP2004022564A (en) Method and device for manufacturing electrophotography printed wiring board
JP3281476B2 (en) Manufacturing method of printed wiring board
JPH07170052A (en) Formation of printed-wiring board
JP3257749B2 (en) Lead frame manufacturing method
JP3571074B2 (en) Developing method of printed wiring board
JPH07273427A (en) Manufacture of printed wiring board
JPH10209606A (en) Method and apparatus for manufacturing printed wiring board
JPH0897539A (en) Manufacture of printed wiring board
JP3281486B2 (en) Manufacturing method of printed wiring board
JP2000299547A (en) Manufacture of electrophotographic printed wiring board
JPH07245468A (en) Manufacture of printed wiring board
JPH07162130A (en) Manufacture of printed wiring board
JP2004031632A (en) Method and apparatus of manufacturing resist pattern for printed circuit board
JP3231053B2 (en) Electrophotographic lithographic printing plate processing method
JPH0766528A (en) Method of manufacturing printed-wiring board
JP3132939B2 (en) Manufacturing method of printed wiring board
JPH0832232A (en) Production of printed wiring board
JP2993572B2 (en) Electrophotographic lithographic printing plate wet development method
JPH0846329A (en) Manufacture of printed wiring board
JP2002182479A (en) Liquid developing method or printing circuit board and liquid developing device
JPH08340168A (en) Manufacture of printed-wiring board
JP2866150B2 (en) Plate making method of electrophotographic lithographic printing plate