JP2004022509A - Cathode-ray tube and color selection mechanism - Google Patents

Cathode-ray tube and color selection mechanism Download PDF

Info

Publication number
JP2004022509A
JP2004022509A JP2002180254A JP2002180254A JP2004022509A JP 2004022509 A JP2004022509 A JP 2004022509A JP 2002180254 A JP2002180254 A JP 2002180254A JP 2002180254 A JP2002180254 A JP 2002180254A JP 2004022509 A JP2004022509 A JP 2004022509A
Authority
JP
Japan
Prior art keywords
thermal expansion
color selection
selection mechanism
ray tube
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002180254A
Other languages
Japanese (ja)
Inventor
Yoshiro Horiuchi
堀内 芳郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002180254A priority Critical patent/JP2004022509A/en
Publication of JP2004022509A publication Critical patent/JP2004022509A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To optimally collect mislanding of electron beams by ensuring the sufficient displacement of a color selection mechanism for collecting the mislanding to the side of a fluorescent surface. <P>SOLUTION: A cathode ray tube comprises a color selection mechanism 5 where a pair of supporting members 10, 11 forming a frame 14 are made of bimetal steel as a clad member 28, in which a high thermal expansion coefficient member 25 and a low thermal expansion coefficient member 26 are bonded together. An electrode thin plate for color selection 17 is stretched between the pair of supporting members 10, 11. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、陰極線管及び色選別機構に関する。
【0002】
【従来の技術】
従来、カラー陰極線管に使用される色選別機構として、図8に示すようにアパーチャグリルと呼ばれる色選別機構が知られている。
この色選別機構39は、同図に示すように、1対の相対向する断面L字型の支持部材41及び42と、その両支持部材41、42の端部間を支持する一対のコの字状をなす弾性付与部材43及び44とから成る枠状の金属フレーム45の該両支持部材41、42間に、多数のリボン状のグリッド素体46が多数のスリット状のビーム透過孔47を形成するように、画面水平方向に沿って所定ピッチをもって配列されてなる色選別用電極薄板48が所定の張力で架張して構成される。
【0003】
この色選別機構39は、カラー蛍光面に対向して配置されるもので、3点支持或いは4点支持、図示の例では4点支持にて陰極線管体のパネル37内壁のパネルピン55に支持される。このため、フレーム45の4辺、即ち支持部材41、42及び弾性付与部材43、44の夫々に、スプリングホルダ49を介して各先端部に係合孔50を有する支持スプリング51が溶接される。色選別機構39は、この支持スプリング51の各係合孔を夫々パネル37内壁の4カ所に設けたパネルピン55に嵌合させて、パネル37に装着される。
【0004】
ところで、このような構成の色選別機構39を備えた陰極線管においては、動作時に電子ビームによってグリッド素体46が発熱し、その熱が一部フレーム45に伝えられてフレーム45が熱膨張することにより、電子ビームのミスランディングが発生する。即ち、図9に示すように、フレ−ム45の熱的影響によって1対の支持部材41、42が破線で示すように長手方向に熱膨張すると、これに追従してグリッド素体46も屁曲し、特に周辺部でのビーム透過孔47が変位する。このため、熱膨張前の位置A1 にある所定のビーム透過孔47を通過して蛍光面56の所定の位置P1 に到達していた電子ビーム53が、フレーム45の支持部材41、42の熱変形後では破線57で示すように位置A2 に変位したビーム透過孔47を通過して蛍光面56の位置P2 に到達することになり、ミスランディングが発生することになる。
【0005】
従来は、フレーム45の熱膨張によるミスランディングを補正する為に、色選別機構39にバイメタル構造による温度ドリフト補正手段を設けていた。この温度ドリフト補正手段としては、例えば、フレーム45の支持部材41、42に固着したスプリングホルダ49をバイメタル構造とすると共に、弾性付与部材43、44の裏面に、この部材43、44より熱膨張係数の大きい金属部材(STCプレート)54を固着して、ここをバイメタル構造とした構成がとられていた。バイメタル構造のスプリングホルダ49は、外側の熱膨張率の大きな金属部材と内側の熱膨張率の小さな金属部材の貼合わせ部材で形成され、且つ夫々の中間部に内方に湾曲したU字状部が設けられた構成である。
この構成では、フレーム45が熱膨張した際に、バイメタル構造により色選別機構39を蛍光面56側へ変位させてミスランディングの補正を行っている。
【0006】
また、色選別機構の他の従来例として、フレームを構成する1対の支持部材の色選別用電極薄板が架張される面とは反対側の裏面に、支持部材より熱膨張率の大きい金属部材を固着してバイメタル構造とした色選別機構も提案されている(特開平10ー255677号参照)。
また、色選別機構の他の従来例として、フレームを構成する断面L字型の1対の支持部材を、そのL字形状の全体にわたってその外側を内側より高い熱膨張率にしたバイメタル構造で形成した色選別機構も提案されている(特開2000ー357466号参照)。
【0007】
【発明が解決しようとする課題】
しかしながら、電子ビームのランディング余裕度が極めて少ない高精細度カラー陰極線管においては、このようなバイメタル構造による色選別機構の変位量が十分ではなく、最適なミスランディング補正が得にくい。
即ち、図8のスプリングホルダ49をバイメタル構造とした場合、色選別機構39の変位としては、フレーム45の支持部材41、42に固着されたバイメタル構造のスプリングホルダ49による変位の方が、弾性付与部材43、44に固着した金属部材(STCプレート)54による変位よりも大きい。このため、スプリングホルダ49の板厚を薄くしたり、U字状部を大きくして変位量の増大を図っているが不十分であった。
また、バイメタル構造のスプリングホルダ49の板厚を薄くすると陰極線管の耐衝撃性が劣化し、また、U字状部を大きくするとプレス成形時の加工クラック等の問題で加工形状に限界がある。従って色選別機構39として最適な変位量が求められないのが現状である。
さらに、熱膨張時にバイメタル構造のスプリングホルダ49の湾曲で色選別機構39を変位させるので、パネルピン55と支持スプリング51の間の嵌合位置が変化し、これが支持スプリング51の引っ掛かりとなり元に戻らない状態になる為に、ビームランディングがばらつく原因ともなっていた。
【0008】
また、特開平10ー255677号の色選別機構では、支持部材の裏面に金属部材を固着してバイメタル構造を構成しているので、支持部材と金属部材との隙間にゴミや油等の不純物が入り込む虞れがあり、実用に至っていない。
また、特開2000ー357466号の色選別機構では、断面L字型の部材の外側と内側で熱膨張率を異にしてバイメタル構造を構成しているが、このバイメタル構造では熱的影響を受けたとき熱膨張率の高い方の部材(外側の部材)が長手方向に熱膨張し、ミスランディング補正が十分に行えない虞れがあり、実用に至っていない。
【0009】
本発明は、上述の点に鑑み、熱的影響を受けた際の色選別機構を適正に蛍光面側へ変位させ、最適なミスランディング補正を行えるようにした陰極線管及び色選別機構を提供するするものである。
【0010】
【課題を解決するための手段】
本発明に係る陰極線管は、フレームを構成する1対の支持部材が、高熱膨張率材と低熱膨張率材をはり合わせたクラッド材によるバイメタル鋼材で形成され、この1対の支持部材間に色選別用電極薄板が架張されてなる色選別機構を、備えた構成とする。
【0011】
本発明の陰極線管によれば、色選別機構を構成する支持部材がクラッド材によるバイメタル鋼材で形成され、特に断面L字型支持部材の水平部の下面側を高熱膨張率材で形成されるので、動作時に色選別機構が熱的影響を受けた時に相対向する支持部材が一様に蛍光面側へ変位し、周辺におけるミスランディングが抑制される。
【0012】
本発明に係る色選別機構は、フレームを構成する1対の支持部材が、高熱膨張率材と低熱膨張率材をはり合わせたクラッド材によるバイメタル鋼材で形成され、1対の支持部材間に色選別用電極薄板が架張された構成とする。
【0013】
本発明の色選別機構によれば、フレームの支持部材がクラッド材によるバイメタル鋼材で形成されるので、熱的影響を受けた時に相対向する支持部材が一様に蛍光面側へ変位する。従って、陰極線管に適用した場合、周辺におけるミスランディングの抑制が可能になる。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
【0015】
図1は、本発明に係る陰極線管の一実施の形態を示す。本実施の形態に係る陰極線管1は、陰極線管体2のパネル3内面にストライプ状の赤、緑及び青の各色蛍光体層からなるカラー蛍光面4が形成され、このカラー蛍光面4に対向して本発明による色選別機構5が配置され、管体2のネック部7に電子銃6が配置されて成る。8は偏向ヨークを示す。
この陰極線管1では、電子銃6から出射した赤、緑、青用の3本の電子ビームが色選別機構5によってカラー蛍光面4に照射され、且つ偏向ヨーク8により水平、垂直方向に走査され、所要の画像を表示する。
【0016】
色選別機構5は、図2に示すように、1対の相対向する断面L字型の支持部材10及び11と、その両支持部材10、11の端部間を支持する1対のコの字状をなす弾性付与部材12及び13とから成る枠状の金属フレーム14を設け、このフレーム14の支持部材10、11間上に、多数のリボン状のグリッド素体15が多数のスリット状のビーム透過孔16を形成するように、画面水平方向に沿って所定ピッチをもって各蛍光体ストライプを横切る方向に配列してなる色選別用電極薄板17を所定の張力で架張して構成される。弾性付与部材12、13の下側には、弾性付与部材12、13との間でバイメタル効果をもたせるために、この弾性付与部材12、13よりも熱膨張率の高い金属部材(STCプレート)18が溶接される。ここで、L字に屈曲して断面L字型とした支持部材10、11においては、その縦方向に伸びる部分を、垂直及び垂直より多少斜めに伸びることも含めて、垂直部27Vと定義し、横方向に伸びる部分を水平部27Hと定義する(図2、図3参照)。
この色選別機構5は、3点支持或いは4点支持、図示の例では4点支持にて陰極線管1のパネル3内に蛍光面4に対向して配置される。このため、フレーム14の4辺、即ち支持部材10、11及び弾性付与部材12、13の夫々にスプリングホルダ19を介して各先端部に係合孔20を有する支持スプリング21が溶接される。色選別機構5は、この支持スプリング21の各係合孔20を夫々パネル3内面の4カ所に設けられたパネルピン38に嵌合させて、パネル3に装着される。
【0017】
そして、本実施の形態では、フレーム14を構成する1対の支持部材10、11が、高熱膨張率材25と低熱膨張率材26をはり合わせたクラッド材28によるバイメタル鋼材で形成される。即ち、断面L字型の支持部材10、11の垂直部27Vの上面に色選別用電極薄板17が溶接され、その水平部27Hの下面側に高熱膨張率材25が形成される。
【0018】
支持部材10、11では、図3に示すように、L字形状に屈曲した状態を上方から垂直に見たときの水平方向に延長する水平領域aの範囲に、下面側の高熱膨張率材25が形成される。高熱膨張率材25の厚みT2 は、支持部材10、11の板厚T1 の30%以上で板厚T1 未満に選ばれ、その比率(%)は陰極線管の機種に応じて適宜設定される。高熱膨張率材25の厚さT2 の比率が板厚T1 の30%より少ないと、バイメタル効果が小さくミスランディング補正が十分に行えない。
即ち、図7に示すように、フレームの支持部材のバイメタル比率、つまり支持部材の板厚T1 に対する高熱膨張率材25の厚さT2 の比率と、フレームの熱膨張によるミスランディング量(相対値)との関係を見ると、許容できるミスランディングの規格値(ミスランディング量)を25以下と定めたとき、高熱膨張率材の厚さT2 の比率は28%以上となり、安全を見て30%以上となる。
【0019】
バイメタル構造を構成する高熱膨張率材25と低熱膨張率材26との熱膨張係数差は、4.0×10−6/℃以上とするのが好ましい。熱膨張係数差が4.0×10−6/℃より小さいと、バイメタル効果が小さくミスランディング補正が十分に行えない。
【0020】
クラッド材28は通常の圧延加工で形成されるもので、本例の場合、高熱膨張率材25と低熱膨張率材26とを溶接等によってはり合わせた状態で圧延加工が施される。低熱膨張率材26の一部に高熱膨張率材25をはり合わせたクラッド材(図4参照)を、所定の長さに切断し、折曲して断面L字型に成形してL字形状の水平部の下面側に高熱膨張率材25を有し、それ以外を低熱膨張率材26で形成したバイメタル構造の支持部材10、11が形成される。
【0021】
図5は、支持部材10、11の他の例を示す。本例は、高熱膨張率材25の端部25Aを垂直ではなく斜めとなるように形成し、高熱膨張率材25を剥がれにくくしている。
【0022】
次に、本実施の形態のバイメタル構造によるミスランディング補正(いわゆる温度ドリフト補正)の動作を説明する。
図6に示すように、色選別機構5が熱的影響を受けない状態(実線図示の状態)から色選別機構5が熱的影響を受けると、フレーム14の支持部材10、11が長手方向に熱膨張して色選別用電極薄板17の周辺部における任意のビーム透過孔16が位置A1 より位置A2 に変位するが、同時に支持部材自身のバイメタル構造が作用して支持部材10、11が蛍光面4側へ変位する。即ち、色選別用電極薄板17は、ビーム透過孔16をフレーム14が変形されないときのビーム透過孔16を通過する電子ビームの軌跡上の位置A3 まで変位する(点線図示の状態)。これによって、電子ビームはミスランディングが補正され、蛍光面4上で正規の位置に照射される。
【0023】
本実施の形態によれば、色選別機構5のフレーム14を構成する断面L字型支持部材10、11を、高熱膨張率材25と低熱膨張率材26とが予め一体にはり合わされたクラッド材28で形成し、その垂直部27V及び水平部27Hからなる断面L字形状の水平部27Hの下面側に高熱膨張率材25を有するようにして支持部材10、11の全長にわたってバイメタル構造とすることにより、陰極線管1の動作時に色選別機構5が熱的影響を受けた際、色選別機構5の蛍光面3側への変位量が大きくとれ、画面の特に周辺部でのミスランディングを小さくすることができる。
【0024】
支持部材10、11のバイメタル構造比率、即ち低熱膨張率材26と高熱膨張率材25との厚さの比率、及び熱膨張係数を選定することにより、小型管から大型管まで自由度の高い最適変位量の設計が可能になる。
バイメタル構造のスプリングホルダの湾曲で色選別機構を変位させる構成を採らないので、支持スプリング21のパネルピン38に対する引っ掛かり等がなくなり、ビームランディングのばらつきが現象し、品質の安定したカラー陰極線管の生産ができる。
1対の支持部材10、11をクラッド材によるバイメタル鋼材で形成するので、溶接等による場合と異なり、バイメタル構造にゴミや油等の不純物等が入り込むようなこともない。
【0025】
本発明は、上述のカラー陰極線管1をセットに組み込み、例えば受像機、モニタ、ディスプレイ等の表示装置として構成することができる。
【0026】
【発明の効果】
本発明に係る色選別機構によれば、フレームを構成する支持部材をバイメタル構造にすることにより、熱的影響を受けた際、色選別機構の蛍光面側への変位量を大きくとることができ、画面の特に周辺部でのミスランディングを適正に補正することができる。支持部材のバイメタル構造比率及び熱膨張係数を選定することにより、小型管から大型管まで自由度の高い最適変位量の設計を可能にする。バイメタル構造を有するスプリングホルダの歪曲で変位させる構成を採らないので、支持スプリングのパネルピンに対する引っ掛かり等がなくなる。ビームランディングのばらつきを減少することができる。支持部材をクラッド材で形成するので、支持部材のバイメタル構造にゴミや油などの不純物が入りこむことがない。
【0027】
本発明に係る陰極線管によれば、上述の色選別機構を備えることにより、品質の安定した陰極線管を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る陰極線管の一実施の形態を示す概略構成図である。
【図2】本発明に係る色選別機構の一実施の形態を示す概略構成図である。
【図3】色選別機構の支持部材の要部を示す拡大断面図である。
【図4】クラッド材の説明図である。
【図5】色選別機構の支持部材の他の例を示す拡大断面図である。
【図6】本発明の色選別機構が熱膨張した際の動作を示す説明図である。
【図7】本発明による色選別機構のバイメタル構造の支持部材の板厚に対する高熱膨張率材の比率とミスランディング量との関係を示すグラフである。
【図8】従来の色選別機構の概略構成図である。
【図9】ミスランディングの説明図である。
【符号の説明】
1・・・陰極線管、2・・・陰極線管体、3・・・パネル、4・・・蛍光面、5・・・色選別電極、6・・・電子銃、10,11・・・支持部材、12,13・・・弾性付与部材、14・・・フレーム、15・・・グリッド素体、16・・・ビーム透過孔、17・・・色選別用電極薄板、18・・・金属部材(STC)、19・・・スプリングホルダ、20・・・係合孔、21・・・支持スプリング、25・・・高熱膨張率材、26・・・低熱膨張率材、27V・・・垂直部、27H・・・水平部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cathode ray tube and a color selection mechanism.
[0002]
[Prior art]
Conventionally, as a color selection mechanism used for a color cathode ray tube, a color selection mechanism called an aperture grill is known as shown in FIG.
As shown in the drawing, the color selection mechanism 39 includes a pair of opposing support members 41 and 42 having an L-shaped cross section and a pair of supporting members 41 supporting between the ends of the support members 41 and 42. A large number of ribbon-shaped grid bodies 46 have a large number of slit-shaped beam transmitting holes 47 between the support members 41 and 42 of a frame-shaped metal frame 45 composed of elasticity imparting members 43 and 44 having a letter shape. The color-selecting electrode thin plates 48 arranged at a predetermined pitch along the horizontal direction of the screen so as to be formed are stretched with a predetermined tension.
[0003]
The color selection mechanism 39 is disposed so as to face the color phosphor screen, and is supported by the panel pins 55 on the inner wall of the panel 37 of the cathode ray tube by three-point support or four-point support, in the illustrated example, four-point support. You. Therefore, the support springs 51 having the engagement holes 50 at the respective distal ends are welded to the four sides of the frame 45, that is, the support members 41 and 42 and the elasticity providing members 43 and 44, respectively, via the spring holder 49. The color selection mechanism 39 is mounted on the panel 37 by fitting the respective engagement holes of the support spring 51 with panel pins 55 provided at four places on the inner wall of the panel 37.
[0004]
By the way, in the cathode ray tube provided with the color selection mechanism 39 having such a configuration, the grid element body 46 generates heat by the electron beam during operation, and the heat is partially transmitted to the frame 45 so that the frame 45 thermally expands. As a result, mislanding of the electron beam occurs. That is, as shown in FIG. 9, when the pair of support members 41 and 42 thermally expand in the longitudinal direction as shown by the broken line due to the thermal influence of the frame 45, the grid element 46 follows the thermal expansion. The beam is bent, and the beam transmission hole 47 is displaced particularly in the peripheral portion. For this reason, the electron beam 53 that has passed through the predetermined beam transmitting hole 47 at the position A 1 before thermal expansion and reached the predetermined position P 1 on the fluorescent screen 56 is moved to the support members 41 and 42 of the frame 45. than after thermal deformation will be reached through the beam transmission holes 47 displaced to the position a 2, as indicated by the broken line 57 in the position P 2 of the phosphor screen 56, mislanding will occur.
[0005]
Conventionally, in order to correct mislanding due to thermal expansion of the frame 45, a color drift mechanism 39 is provided with a temperature drift correction unit having a bimetal structure. As this temperature drift correction means, for example, the spring holder 49 fixed to the support members 41, 42 of the frame 45 has a bimetal structure, and the coefficient of thermal expansion is provided on the back surface of the elasticity imparting members 43, 44 by the members 43, 44. A metal member (STC plate) 54 having a large size is fixed, and a bimetal structure is used here. The spring holder 49 of the bimetal structure is formed of a bonding member of a metal member having a large coefficient of thermal expansion on the outside and a metal member having a small coefficient of thermal expansion on the inside, and has a U-shaped portion curved inward at each intermediate portion. Is provided.
In this configuration, when the frame 45 thermally expands, the color sorting mechanism 39 is displaced toward the phosphor screen 56 side by the bimetal structure to correct mislanding.
[0006]
Further, as another conventional example of the color selection mechanism, a metal having a larger thermal expansion coefficient than the support member is provided on the back surface of the pair of support members constituting the frame opposite to the surface on which the color selection electrode thin plate is stretched. A color selection mechanism in which a member is fixed to have a bimetal structure has also been proposed (see JP-A-10-255677).
Further, as another conventional example of the color selection mechanism, a pair of support members having an L-shaped cross section constituting a frame is formed by a bimetal structure in which the outside has a higher thermal expansion coefficient than the inside over the entire L-shape. A proposed color selection mechanism has also been proposed (see JP-A-2000-357466).
[0007]
[Problems to be solved by the invention]
However, in a high-definition color cathode ray tube having an extremely small electron beam landing margin, the amount of displacement of the color selection mechanism having such a bimetal structure is not sufficient, and it is difficult to obtain an optimum mislanding correction.
That is, when the spring holder 49 of FIG. 8 has a bimetal structure, the displacement of the color selection mechanism 39 is more elastically imparted by the displacement by the bimetal structure spring holder 49 fixed to the support members 41 and 42 of the frame 45. The displacement is larger than the displacement caused by the metal member (STC plate) 54 fixed to the members 43 and 44. For this reason, the plate thickness of the spring holder 49 is reduced, or the U-shaped portion is enlarged to increase the displacement, but this is insufficient.
Also, if the plate thickness of the bimetal structure spring holder 49 is reduced, the impact resistance of the cathode ray tube is deteriorated, and if the U-shaped portion is enlarged, the processing shape is limited due to problems such as processing cracks during press forming. Therefore, at present, an optimum displacement amount cannot be obtained as the color selection mechanism 39.
Further, since the color selection mechanism 39 is displaced by the curvature of the bimetal structure spring holder 49 during thermal expansion, the fitting position between the panel pin 55 and the support spring 51 changes, which is caught by the support spring 51 and does not return. Because of the state, beam landing was also a cause of variation.
[0008]
Further, in the color selection mechanism disclosed in Japanese Patent Application Laid-Open No. H10-255677, since a metal member is fixed to the back surface of the support member to form a bimetal structure, impurities such as dust and oil may be present in the gap between the support member and the metal member. There is a risk of intrusion, and it has not reached practical use.
Further, in the color selection mechanism disclosed in Japanese Patent Application Laid-Open No. 2000-357466, a bimetal structure is formed with a different coefficient of thermal expansion between the outside and the inside of the member having the L-shaped cross section, but this bimetal structure is thermally affected. In such a case, a member having a higher thermal expansion coefficient (an outer member) thermally expands in the longitudinal direction, and there is a possibility that mislanding correction may not be sufficiently performed, so that it has not been practically used.
[0009]
The present invention has been made in view of the above points, and provides a cathode ray tube and a color selection mechanism capable of appropriately displacing a color selection mechanism toward a phosphor screen side when subjected to thermal influence so as to perform optimal mislanding correction. Is what you do.
[0010]
[Means for Solving the Problems]
In the cathode ray tube according to the present invention, a pair of support members constituting a frame are formed of a bimetallic steel material of a clad material obtained by bonding a high thermal expansion coefficient material and a low thermal expansion coefficient material, and a color is provided between the pair of support members. A configuration is provided with a color selection mechanism in which a selection electrode thin plate is stretched.
[0011]
According to the cathode ray tube of the present invention, the support member constituting the color selection mechanism is formed of a bimetallic steel material made of a clad material, and in particular, the lower surface side of the horizontal portion of the L-shaped support member is formed of a material having a high coefficient of thermal expansion. When the color selection mechanism is thermally affected during operation, the opposing support members are uniformly displaced toward the fluorescent screen side, and mislanding in the periphery is suppressed.
[0012]
In the color selection mechanism according to the present invention, the pair of support members constituting the frame are formed of a bimetallic steel material made of a clad material in which a high thermal expansion coefficient material and a low thermal expansion coefficient material are bonded, and a color is provided between the pair of support members. The configuration is such that the sorting electrode plate is stretched.
[0013]
According to the color selection mechanism of the present invention, since the support member of the frame is formed of a bimetallic steel material made of a clad material, the opposing support members are uniformly displaced toward the fluorescent screen when thermally affected. Therefore, when applied to a cathode ray tube, it is possible to suppress mislanding in the periphery.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 shows an embodiment of a cathode ray tube according to the present invention. In the cathode ray tube 1 according to the present embodiment, a color phosphor screen 4 made up of striped red, green and blue phosphor layers is formed on the inner surface of the panel 3 of the cathode ray tube body 2 and faces the color phosphor screen 4. Then, the color selection mechanism 5 according to the present invention is arranged, and the electron gun 6 is arranged at the neck 7 of the tube 2. Reference numeral 8 denotes a deflection yoke.
In the cathode ray tube 1, three electron beams for red, green and blue emitted from an electron gun 6 are irradiated on a color phosphor screen 4 by a color selection mechanism 5 and scanned in a horizontal and vertical direction by a deflection yoke 8. And display the required image.
[0016]
As shown in FIG. 2, the color selection mechanism 5 includes a pair of opposing support members 10 and 11 having an L-shaped cross section and a pair of support members 10 supporting between the ends of the support members 10 and 11. A frame-shaped metal frame 14 is provided, which is formed of elastic members 12 and 13 in the shape of a letter, and a large number of ribbon-shaped grid elements 15 are provided between the support members 10 and 11 of the frame 14 in the form of a large number of slits. In order to form the beam transmission holes 16, the color selection electrode thin plates 17 arranged in a direction crossing each phosphor stripe at a predetermined pitch along the horizontal direction of the screen are stretched with a predetermined tension. A metal member (STC plate) 18 having a higher coefficient of thermal expansion than the elasticity imparting members 12 and 13 is provided below the elasticity imparting members 12 and 13 in order to provide a bimetal effect between the elasticity imparting members 12 and 13. Are welded. Here, in the supporting members 10 and 11 which are bent into an L-shape and have an L-shaped cross section, a portion extending in the vertical direction is defined as a vertical portion 27V including a portion extending vertically and slightly obliquely from the vertical. The portion extending in the horizontal direction is defined as a horizontal portion 27H (see FIGS. 2 and 3).
The color selection mechanism 5 is disposed in the panel 3 of the cathode ray tube 1 so as to be opposed to the fluorescent screen 4 by three-point support or four-point support, in the illustrated example, four-point support. Therefore, a support spring 21 having an engagement hole 20 at each end is welded to each of four sides of the frame 14, that is, the support members 10 and 11 and the elasticity providing members 12 and 13 via the spring holder 19. The color selection mechanism 5 is mounted on the panel 3 by fitting the respective engagement holes 20 of the support spring 21 to panel pins 38 provided at four positions on the inner surface of the panel 3.
[0017]
In the present embodiment, the pair of support members 10 and 11 constituting the frame 14 are formed of a bimetallic steel material made of a clad material 28 in which a high thermal expansion coefficient material 25 and a low thermal expansion coefficient material 26 are bonded. That is, the color selecting electrode thin plate 17 is welded to the upper surface of the vertical portion 27V of the support members 10 and 11 having the L-shaped cross section, and the high thermal expansion coefficient material 25 is formed on the lower surface side of the horizontal portion 27H.
[0018]
As shown in FIG. 3, the support members 10 and 11 are provided with a high thermal expansion coefficient material 25 on the lower surface side in a range of a horizontal area a extending in a horizontal direction when viewed from above from an L-shaped bent state. Is formed. The thickness T 2 of the high thermal expansion coefficient material 25 is chosen in the thickness T of less than 1 at least 30% of the thickness T 1 of the support members 10 and 11, suitably set according to the ratio (%) is the type of cathode ray tube Is done. When the ratio of the thickness T 2 of the high thermal expansion coefficient material 25 is less than 30% of the thickness T 1, it can not be performed sufficiently bimetal effect is small mislanding correction.
That is, as shown in FIG. 7, the bimetal ratio of the support member of the frame, i.e. mislanding amount and the second thickness T 2 ratio, due to thermal expansion of the frame of the high thermal expansion coefficient material 25 against the plate thickness T 1 of the support member (relative looking at the relationship between the value), when the determined standard value for acceptable mislanding the (mislanding weight) and 25 or less, the ratio of the thickness T 2 of the high thermal expansion coefficient material becomes 28% or more, and for safety 30% or more.
[0019]
It is preferable that the difference between the coefficients of thermal expansion of the high thermal expansion coefficient material 25 and the low thermal expansion coefficient material 26 constituting the bimetal structure is 4.0 × 10 −6 / ° C. or more. If the difference in thermal expansion coefficient is less than 4.0 × 10 −6 / ° C., the bimetal effect is small and mislanding correction cannot be performed sufficiently.
[0020]
The clad material 28 is formed by normal rolling. In the case of this example, the high thermal expansion material 25 and the low thermal expansion material 26 are rolled in a state where they are bonded together by welding or the like. A clad material (see FIG. 4) obtained by bonding a high thermal expansion material 25 to a part of a low thermal expansion material 26 is cut into a predetermined length, bent, and formed into an L-shaped cross section. The supporting members 10 and 11 having a bimetal structure in which a high thermal expansion coefficient material 25 is formed on the lower surface side of the horizontal portion and the other portions are formed of a low thermal expansion coefficient material 26 are formed.
[0021]
FIG. 5 shows another example of the support members 10 and 11. In this example, the end portions 25A of the high thermal expansion coefficient material 25 are formed so as to be oblique rather than vertical, so that the high thermal expansion coefficient material 25 is hardly peeled off.
[0022]
Next, the operation of mislanding correction (so-called temperature drift correction) using the bimetal structure of the present embodiment will be described.
As shown in FIG. 6, when the color selection mechanism 5 is thermally affected from a state in which the color selection mechanism 5 is not thermally affected (the state shown by the solid line), the support members 10 and 11 of the frame 14 move in the longitudinal direction. any beam transmitting hole 16 in the peripheral portion of the color selecting electrode thin plate 17 by thermal expansion is displaced to the position a 2 from the position a 1, but the support members 10 and 11 by acting bimetallic structure of the support member itself is at the same time It is displaced to the fluorescent screen 4 side. That is, the color selecting electrode thin plate 17 is displaced a beam transmitting hole 16 to the position A 3 on the locus of the electron beam passing through the beam transmitting hole 16 when the frame 14 is not deformed (the state of a dotted line shown). As a result, the electron beam is corrected for mislanding and is irradiated on the phosphor screen 4 at a regular position.
[0023]
According to the present embodiment, the support members 10 and 11 constituting the frame 14 of the color selection mechanism 5 are formed of a clad material in which a high thermal expansion coefficient material 25 and a low thermal expansion coefficient material 26 are previously bonded together. 28 and a bimetal structure over the entire length of the support members 10 and 11 so as to have the high thermal expansion material 25 on the lower surface side of the horizontal portion 27H having an L-shaped cross section composed of the vertical portion 27V and the horizontal portion 27H. Accordingly, when the color selection mechanism 5 is thermally affected during the operation of the cathode ray tube 1, the displacement of the color selection mechanism 5 toward the fluorescent screen 3 can be increased, and the mislanding at the peripheral portion of the screen, particularly, at the periphery can be reduced. be able to.
[0024]
By selecting the bimetal structure ratio of the supporting members 10 and 11, that is, the ratio of the thickness of the low thermal expansion coefficient material 26 to the high thermal expansion coefficient material 25, and the coefficient of thermal expansion, the optimal degree of freedom from small tubes to large tubes is high. The displacement amount can be designed.
Since the color selecting mechanism is not displaced by the bending of the bimetallic spring holder, the support spring 21 is not caught on the panel pin 38, and the beam landing varies, thereby producing a color cathode ray tube with stable quality. it can.
Since the pair of support members 10 and 11 are formed of a bimetallic steel material made of a clad material, unlike the case of welding or the like, no impurities such as dust and oil enter the bimetal structure.
[0025]
In the present invention, the above-described color cathode ray tube 1 is incorporated into a set, and can be configured as a display device such as a receiver, a monitor, and a display.
[0026]
【The invention's effect】
According to the color selection mechanism of the present invention, the bimetal structure of the support member that constitutes the frame makes it possible to increase the amount of displacement of the color selection mechanism toward the fluorescent screen when thermally affected. In addition, mislanding, particularly in the peripheral portion of the screen, can be properly corrected. By selecting the bimetal structure ratio and the coefficient of thermal expansion of the support member, it is possible to design an optimal displacement with a high degree of freedom from small tubes to large tubes. Since the spring is not displaced by the distortion of the spring holder having the bimetal structure, the support spring is not caught on the panel pin. Variations in beam landing can be reduced. Since the support member is formed of the clad material, impurities such as dust and oil do not enter the bimetal structure of the support member.
[0027]
According to the cathode ray tube according to the present invention, by providing the above-described color selection mechanism, a cathode ray tube having stable quality can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing one embodiment of a cathode ray tube according to the present invention.
FIG. 2 is a schematic configuration diagram illustrating an embodiment of a color selection mechanism according to the present invention.
FIG. 3 is an enlarged cross-sectional view illustrating a main part of a support member of the color selection mechanism.
FIG. 4 is an explanatory diagram of a clad material.
FIG. 5 is an enlarged sectional view showing another example of a support member of the color selection mechanism.
FIG. 6 is an explanatory diagram showing an operation when the color selection mechanism of the present invention thermally expands.
FIG. 7 is a graph showing a relationship between a ratio of a material having a high thermal expansion coefficient to a plate thickness of a support member having a bimetal structure of a color selection mechanism according to the present invention and an amount of mislanding.
FIG. 8 is a schematic configuration diagram of a conventional color selection mechanism.
FIG. 9 is an explanatory diagram of a mislanding.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Cathode ray tube, 2 ... Cathode ray tube body, 3 ... Panel, 4 ... Phosphor screen, 5 ... Color selection electrode, 6 ... Electron gun, 10, 11 ... Support Member, 12, 13: Elasticity imparting member, 14: Frame, 15: Grid element, 16: Beam transmitting hole, 17: Electrode thin plate for color selection, 18: Metal member (STC), 19: spring holder, 20: engagement hole, 21: support spring, 25: high thermal expansion material, 26: low thermal expansion material, 27V: vertical portion , 27H ... horizontal part

Claims (8)

フレームを構成する1対の支持部材が、高熱膨張率材と低熱膨張率材をはり合わせたクラッド材によるバイメタル鋼材で形成され、前記1対の支持部材間に色選別用電極薄板が架張されてなる色選別機構を、備えて成る
ことを特徴とする陰極線管。
A pair of support members constituting the frame are formed of a bimetallic steel material of a clad material obtained by bonding a high thermal expansion material and a low thermal expansion material, and a color selection electrode thin plate is stretched between the pair of support members. A cathode ray tube comprising a color selection mechanism comprising:
前記フレームの1対の支持部材が断面L字型に形成され、
前記断面L字型の垂直部の上面に前記色選別用電極薄板が接合され、
前記断面L字型の水平部の下面側が前記高熱膨張率材で形成されて成る
ことを特徴とする請求項1記載の陰極線管。
A pair of support members of the frame are formed in an L-shaped cross section;
The electrode plate for color selection is joined to the upper surface of the vertical portion having the L-shaped cross section,
2. The cathode ray tube according to claim 1, wherein the lower surface of the horizontal portion having the L-shaped cross section is formed of the high thermal expansion material.
前記高熱膨張率材の厚みが、前記支持部材の板厚の30%以上で該板厚未満である
ことを特徴とする請求項2記載の陰極線管。
The cathode ray tube according to claim 2, wherein the thickness of the high thermal expansion material is 30% or more of the plate thickness of the support member and less than the plate thickness.
前記高熱膨張率材と前記低熱膨張率材との熱膨張係数差が4.0×10−6/℃以上である
ことを特徴とする請求項1記載の陰極線管。
The cathode ray tube according to claim 1, wherein a difference in thermal expansion coefficient between the high thermal expansion material and the low thermal expansion material is 4.0 × 10 −6 / ° C. or more.
フレームを構成する1対の支持部材が、高熱膨張率材と低熱膨張率材をはり合わせたクラッド材によるバイメタル鋼材で形成され、
前記1対の支持部材間に色選別用電極薄板が架張されて成る
ことを特徴とする色選別機構。
A pair of support members constituting the frame are formed of a bimetallic steel material of a clad material obtained by bonding a high thermal expansion coefficient material and a low thermal expansion coefficient material,
A color selection mechanism, wherein a color selection electrode thin plate is stretched between the pair of support members.
前記フレームの1対の支持部材が断面L字型に形成され、
前記断面L字型の垂直部の上面に前記色選別用電極薄板が接合され、
前記断面L字型の水平部の下面側が前記高熱膨張率材で形成されて成る
ことを特徴とする請求項5記載の色選別機構。
A pair of support members of the frame are formed in an L-shaped cross section;
The electrode plate for color selection is joined to the upper surface of the vertical portion having the L-shaped cross section,
6. The color selection mechanism according to claim 5, wherein a lower surface of the horizontal portion having the L-shaped cross section is formed of the high thermal expansion material.
前記高熱膨張率材の厚みが、前記支持部材の板厚の30%以上で該板厚未満である
ことを特徴とする請求項6記載の色選別機構。
7. The color selection mechanism according to claim 6, wherein the thickness of the high thermal expansion material is 30% or more and less than the plate thickness of the support member.
前記高熱膨張率材と前記低熱膨張率材との熱膨張係数差が4.0×10−6/℃以上である
ことを特徴とする請求項5記載の色選別機構。
6. The color selection mechanism according to claim 5, wherein a difference in thermal expansion coefficient between the high thermal expansion coefficient material and the low thermal expansion coefficient material is 4.0 × 10 −6 / ° C. or more.
JP2002180254A 2002-06-20 2002-06-20 Cathode-ray tube and color selection mechanism Pending JP2004022509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180254A JP2004022509A (en) 2002-06-20 2002-06-20 Cathode-ray tube and color selection mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180254A JP2004022509A (en) 2002-06-20 2002-06-20 Cathode-ray tube and color selection mechanism

Publications (1)

Publication Number Publication Date
JP2004022509A true JP2004022509A (en) 2004-01-22

Family

ID=31177436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180254A Pending JP2004022509A (en) 2002-06-20 2002-06-20 Cathode-ray tube and color selection mechanism

Country Status (1)

Country Link
JP (1) JP2004022509A (en)

Similar Documents

Publication Publication Date Title
JP3354254B2 (en) Color picture tube
JPH06267448A (en) Color cathode-ray tube
JP3526466B2 (en) Color picture tube
JP2001256897A (en) Color cathode ray tube
JP3436339B2 (en) Color picture tube with improved connection between shadow mask and frame
JPH0850869A (en) Color picture tube
JP3328189B2 (en) Color cathode ray tube
JP2004022509A (en) Cathode-ray tube and color selection mechanism
EP1386341B1 (en) Detensioning mask frame assembly for a crt
US20020101149A1 (en) Color picture tube having a low expansion tension mask attached to a higher expansion frame
JP4030873B2 (en) Damper wire spring for cathode ray tube
JP3556243B2 (en) Color picture tube
JP2005518631A (en) Device for maintaining tension in shadow mask
JP3361742B2 (en) Color cathode ray tube
JP3476686B2 (en) Color picture tube
EP0677863B1 (en) Color cathode ray tube
JPH07254372A (en) Color selecting electrode structure
JP2001057162A (en) Color picture tube
JP2000021326A (en) Color selecting mechanism for color cathode ray-tube
JPH04248227A (en) Color cathode-ray tube
JP2004079384A (en) Color selection mechanism and color cathode-ray tube
JP2000067772A (en) Color picture tube
JP2003059419A (en) Color cathode-ray tube
JPH1116513A (en) Color selecting mechanism for cathode-ray tube
EP1302970A1 (en) Production method of cathode ray tube